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Abstract
Linear DNA undergoes a series of compression and folding events, forming
various three-dimensional (3D) structural units in mammalian cells, includ-
ing chromosomal territory, compartment, topologically associating domain,
and chromatin loop. These structures play crucial roles in regulating gene
expression, cell differentiation, and disease progression. Deciphering the prin-
ciples underlying 3D genome folding and the molecular mechanisms governing
cell fate determination remains a challenge. With advancements in high-
throughput sequencing and imaging techniques, the hierarchical organization
and functional roles of higher-order chromatin structures have been gradually
illuminated. This review systematically discussed the structural hierarchy of the
3D genome, the effects and mechanisms of cis-regulatory elements interaction
in the 3D genome for regulating spatiotemporally specific gene expression, the
roles and mechanisms of dynamic changes in 3D chromatin conformation dur-
ing embryonic development, and the pathological mechanisms of diseases such
as congenital developmental abnormalities and cancer, which are attributed to
alterations in 3D genome organization and aberrations in key structural proteins.
Finally, prospects were made for the research about 3D genome structure, func-
tion, and genetic intervention, and the roles in disease development, prevention,
and treatment, which may offer some clues for precise diagnosis and treatment
of related diseases.
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1 INTRODUCTION

The three-dimensional (3D) genome structure plays a cru-
cial role in determining cell fate and maintaining normal
cellular functions.1 In the late 19th century, the existence
of chromatin territory and euchromatin/heterochromatin
in the cell nucleus was proposed based on findings from
optical microscopes and chromatin dyes,2 and Hans
Winker introduced the term “genome” in 1920.3 With
the development of fluorescent in situ hybridization,
the individual chromosomal territories could be directly
observed.4,5 Chromosome conformation capture was first
reported in 2002, which employs formaldehyde-induced
chromatin cross-linking and restriction enzyme digestion
to connect spatially proximate DNA fragments.6 The
interaction frequency between two specific loci in the
genome is detected in a “one versus one” format, using
polymerase chain reaction or next-generation sequencing
technology.6 Circular chromosome conformation capture
facilitates the detection of specific DNA fragments’ inter-
actions with other genomic regions. Designing primers for
the detected fragment achieves a “one versus all” format,
allowing for the detection of all genome regions.7,8 In
2009, genome-wide chromosome conformation capture
(Hi-C) was reported and can detect all chromatin inter-
actions throughout the genome, referred to as “all versus
all”.9 Furthermore, remarkable advancements in optical
and electron microscopy technologies have enabled direct
observation of chromatin structures. The development
of super-resolution fluorescence imaging techniques,
such as stimulated emission depletion and structured
illumination microscopy, has been especially notable.10
By combining these techniques with specific DNA probes,
the chromatin conformation of particular genomic
regions within individual cells can be observed, providing
new insights for exploring gene expression regulation
and other intricate biological processes within the cell
nucleus.11,12
DNA sequence undergoes a series of complex com-

pressions and folding to ultimately form chromosomes.13
A chromosome maintains a specific location within the

nucleus, denoted as a chromosome territory (CT).14 These
chromosomes are organized in a structured manner
within the nucleus and can be classified into euchro-
matin and heterochromatin based on gene transcriptional
activity.15,16 At the subchromosomal level, A/B compart-
ments, with an average size of 3−5 Mb, correspond
to euchromatin and heterochromatin, respectively.17,18
Compartments at the megabase level can be further
divided into different topologically associating domains
(TADs).19 TAD represents the fundamental units of
3D genome structure and function.20–22 High-frequency
interactions between enhancers and promoters within
TAD regulate cell-specific expression of development-
related genes.22 The CCCTC-binding factor (CTCF) at
TAD boundaries isolates aberrant regulatory interfer-
ence, ensuring efficient transcription.23 At a smaller
scale (<2 Mb), chromatin loops often link enhancers
and promoters, playing a crucial role in the regulation
of gene transcription.15 Structural variations or structural
protein abnormalities can lead to disease by disrupt-
ing TAD structure and affecting cis-regulatory element
function.24–26 These may be critical pathological mecha-
nisms for many diseases, such as congenital diseases and
cancers.27,28
Here, we tried to make a systematic review of the 3D

genome structure, function, and relationship with dis-
eases. First, the structural characteristics of mammalian
3D chromatin organization were summarized. Then, the
effect and mechanisms of cis-regulatory elements’ inter-
action in the3D genome for regulating spatiotemporally
specific gene expression, the role and mechanisms of
dynamical changes of 3D chromatin conformation during
embryonic developmentwere discussed. Subsequently, the
pathological mechanisms of some diseases, such as con-
genital developmental abnormalities and cancer, which
attribute to alterations in 3D genome organization and
aberrations in key structural proteins, were systematically
reviewed. Finally, prospects were made for the research
about 3D genome structure, function, and genetic inter-
vention, and the roles in disease development, prevention,
and treatment.
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F IGURE 1 Chromosome 3D structure. In mammalian cells, chromosomes nonrandomly occupy specific regions within the interphase
nucleus, known as chromosome territory (CT). Chromosomes can be classified into euchromatin and heterochromatin based on their
transcriptional activity and regulatory roles. Euchromatin contains numerous transcriptionally active genes and is loosely arranged, while
heterochromatin is tightly organized and primarily comprises transcriptionally silent genes. Heterochromatin at the nuclear periphery
interacts with nuclear lamins, giving rise to Lamin-associated domains (LADs). At the megabase level, the A/B compartment is further
subdivided into TAD. Covering approximately 90% of chromatin structure, TAD represents the basic unit of 3D genome function and
structure. Within TAD, high-frequency interactions between enhancers and promoters regulate cell-specific expression of developmental
genes. CTCF, located at TAD boundaries, effectively isolates aberrant regulatory information interference and ensures smooth transcription.

2 3D GENOME STRUCTURE

The hierarchical structure of the 3D genome, from high to
low levels, includes CT, A/B compartment, topologically
associated domain, and chromatin loop (Figure 1).

2.1 Chromatin and chromosome
territory

In mammalian cells, chromosomes are formed from
approximately 2 m of DNA sequences through a series
of compressions and folding events.29–31 Each nucleo-
some encompasses around 146 base pairs of DNA, giv-
ing rise to chromatin fibers that subsequently condense
and fold to create chromosomes.21,32 These chromosomes
nonrandomly occupy specific regions within the inter-
phase nucleus, known as CT.13,22 Chromosomes with
similar characteristics tend to cluster and are influenced
by size, gene density, and transcriptional activity.33–35
The distribution of chromosome territories can vary
among different cell types.36–38 For instance, differences
in nuclear shapes between human fibroblasts and lympho-
cytes result in distinct radial distributions of chromosome

territories.39 Moreover, interactions between CT bound-
aries may be associated with disease-related chromosomal
translocations.14
Chromosomes can be classified into euchromatin and

heterochromatin based on their transcriptional activity
and regulatory roles.9 Euchromatin, comprising numerous
transcriptionally active genes, exhibits a loosely orga-
nized structure, whereas heterochromatin, characterized
by transcriptionally silent genes, displays a tightly packed
arrangement.40 Heterochromatin at the nuclear periphery
interacts with nuclear lamins (lamin A/C, B1, and B2), giv-
ing rise to Lamin-associated domains (LADs).41–44 Over
1000 LADs exist in humans and mice, with a median size
of approximately 0.5 Mb, comprising 30−40% of the entire
genome.45,46 LADs are characterized by heterochromatin
histone modifications H3K9me2 and H3K9me3 and pre-
dominantly exhibit low or silent gene expression.47 LADs
can be further categorized into constitutive LADs (cLADs)
and facultative LADs (fLADs), based on their conservation
across cell types.48 cLADs retain a relatively stable position
in the genome and display high conservation among cell
types.46 In contrast, fLADs demonstrate variability across
cell types, associate with cell type-specific gene expression
regulation and functions, and experience dynamic changes
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during the cell cycle, cellular differentiation, and circadian
rhythms.49,50

2.2 A/B compartment

At the sub-chromosomal level, A/B compartments corre-
spond to transcriptionally active and silent chromatin.51
These compartmental structures have an average size of
3−5 Mb.17 The A compartment is situated near nuclear
speckles regions and modified by active histones, while
the B compartment locates at the nuclear periphery
and is modified by inactive histones.15 Sites within the
same compartment exhibit more frequent interactions.15
Highly spatially plastic, compartments undergo extensive
A–B switching during embryonic stem cell differentia-
tion. Genes associated with A–B compartment switching
demonstrate increased transcriptional activity throughout
development.16

2.3 Topologically associating domain

At the megabase level, A/B compartments are further
divided into different TADs.52 In mammalian genomes,
TADs tend to be conserved across species and different
cell types,15,53,54 covering approximately 90% of chromatin
structure and serving as the fundamental unit of 3D
genome function and structure.55 In most cases, TAD for-
mation precedes gene expression.56 In the human genome,
TADs emerge during the eight-cell stage when the inter-
actions between regulatory elements within TAD are low
and gradually increase throughout embryo development.
TADs span approximately 0.1–1 Mb, and up to a maxi-
mum of 2 Mb, containing one or more genes.52 Smaller
sub-TAD structures reside within TADs and are associ-
ated with tissue-specific gene expression.57–59 Although
earlier studies have suggested that TADs function as a unit
at the cell population level, recent studies indicate that
TADs are chromatin structures in individual cells, exhibit-
ing globular conformations and sharp structural domain
boundaries.60,61
TADs boundaries are co-localized with housekeeping

genes, cohesin, and CTCF.53,54 CTCF is located at TAD
boundaries and effectively compartmentalizes external
regulatory information.53,54 As a highly conserved zinc
finger protein, CTCF plays crucial roles in transcrip-
tional activation/repression, insulation, and the forma-
tion of higher-order chromatin structures.62,63 Due to the
DNA sequences that bind CTCF being asymmetric, CTCF
located at TADs boundaries has directionality.64,65 In over
90% of TADs, CTCF sites are situated at boundaries in
a convergent orientation.66 CRISPR-edited inversions of

CTCF binding sequences disrupt TAD structure and cause
abnormal gene expression, suggesting that CTCF orien-
tation is important for TAD.67 Multiple CTCF binding
sites at TAD boundaries ensure precise gene expression
through synergistic and redundant effects.68–70 Recent
studies showed that six CTCF binding sites exist between
Epha4 and Pax3 TADs, and are located adjacent to each
other. Deletion of a single CTCF binding site can alter
Pax3 expression level without causing observable pheno-
types.However, deletion of multiple CTCF binding sites
leads to TADs fusion and abnormal finger development in
mice.70 TAD boundaries are highly conserved and remain
relatively stable during organ development and tissue
differentiation.16,23,71 However, human genome analysis
suggests that although the vast majority of CTCF loci are
conserved, thousands of CTCF loci may be associated with
tissue-specific gene expression.72 For instance, CTCF func-
tion and insulating activity are positively correlated with
the level of enhancer–promoter interactions within TAD.73
CTCF at TAD boundaries is more conserved than CTCF
located within TAD, with stronger binding, more open
chromatin, and lower DNA methylation levels.74 Further-
more, TAD boundaries containing a single gene are more
conserved than TAD boundaries that contain multiple
genes.75

2.4 Chromatin loop

Chromatin loop is relatively stable, ring-shaped structure
formed by chromatin within 3D space, often containing
regulatory elements such as enhancers and promoters.76
In 2014, Rao and colleagues discovered approximately
10,000 chromatin loops through the analysis of in situ
Hi-C conducted on human lymphoblastoid cells.15 Most
of these loops are conservation across various species
and cell types.15 Genes that form chromatin loops exhibit
higher expression levels compared with those did not form
chromatin loops, indicating the involvement of chromatin
loops in regulating gene expression.15 Furthermore, an
analysis of 24 cell lines derived from three human germ
layers revealed that approximately 28% of chromatin loops
varied among different cells.77 These tissue-specific chro-
matin loops are strongly associated with the tissue-specific
gene expression.77
The “loop extrusion”model, mediated by cohesin-CTCF

cooperation, aptly describes the formation of chromatin
loops and TADs78 (Figure 2). In this process, CTCF
and cohesin exhibit distinct roles.78 CTCF acts as a bar-
rier to prevent overextension of cohesin.79 Cohesin is
a ring-shaped DNA-entrapping adenosine triphosphatase
(ATPase) complex that works as a molecular motor.80
Human cohesin comprises three subunits: SMC1, SMC2,
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F IGURE 2 Mechanism of loop extrusion. Cohesin acts as a molecular motor in the “loop extrusion” model: After binding to
chromosomes, cohesin moves in two opposite directions along chromatin fibers and extrudes DNA loops until it contacts the target CTCF site
in the converging direction. During TAD formation, cohesin undergoes functional changes by interacting with various regulatory factors. The
cohesin loading factor, NIPBL, loads cohesin at specific DNA sites and facilitates cohesin’s translocation on chromosomal fibers. Cohesin’s
release from chromosomes requires the PDS5 subunit to recruit the cohesin-releasing factor, WAPL. The unloading efficiency of WAPL is
stronger than that of PDS5, and both participate in the cohesin release process. Finally, cohesin ensures its smooth arrival at the target CTCF
site through direct interaction with CTCF.

and Scc.81 Cohesin moves along the chromatin fiber with
a speed of 1.5 kb/s until it interacts with convergently
oriented CTCF sites.82 This process lasts 10−30 min.83
Scc1 plays an essential role in loop extrusion by bind-
ing to several regulators, such as NIPBL and PDS5.84
The cohesin loading factor NIPBL loads cohesin at spe-
cific DNA sites, promoting cohesin translocation across
chromosome fibers.85–87 In addition, NIPBL can activate
ATPase to supply energy for the high-speed movement
of cohesin on chromatin fibers.88 Cohesin release from
chromosomes requires PDS5 to recruit WAPL, a cohesin-
releasing factor.89 The unloading efficiency of WAPL is
stronger than that of PDS5, and both participate in the pro-
cess of cohesin release.89–91 Cohesin ensures its smooth
arrival at the CTCF site by directly interacting with
CTCF.92 The N-terminal 77-aa region of CTCF can directly
interact with the cohesin Scc1-SA2, providing a structural
and functional basis for the precisely anchoring of cohesin
to CTCF binding sites.93

The functional changes of the aforementioned cohesin
subunits or complexes affect the formation of TAD. For
example, deletion of the Scc1 subunit leads to the dis-
ruption of TAD,75,94 while depletion of WAPL leads to
a more than 20-fold prolongation of the duration of
cohesin action, resulting in the formation of a larger chro-
matin loop, which increases the amount of TAD and/or
sub-TAD.90,95–97

3 MECHANISMS OF 3D GENOME
REGULATING GENE EXPRESSION:
CIS-REGULATORY ELEMENTS
INTERACTION IN 3D GENOME

In the human genome, protein-coding sequences con-
stitute merely 2% of the DNA sequence,98 and gene
expression is subject to regulation by various noncod-
ing structures, such as promoters and enhancers within
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F IGURE 3 Mechanisms of enhancer–promoter interactions. Within TADs, cis-regulatory elements play crucial roles in gene expression.
Cohesin compresses DNA to form chromatin loops, thereby shortening the distance between enhancers and promoters. The promoter is the
transcription start site for mammalian gene expression, determining the location and direction of transcription. The core promoter is a DNA
sequence situated approximately 50 bp upstream and downstream of the transcription start site, containing multiple general transcription
factor binding sites, and represents the minimal sequence required for initiating gene expression. Enhancers are significant non-coding
elements, typically located in nucleosome-depleted regions, and contain multiple transcription factor binding sites.

the 3D genome, and does not operate in isolation
(Figure 3).99,100

3.1 Promoter

The promoter serves as the starting point for mammalian
gene expression and determines the location and direction
of transcription.101 The core promoter is a DNA sequence
located approximately 50 base pairs upstream and down-
stream of the transcription start site, containing multiple
universal transcription factor start sites, and is the min-
imal sequence that initiates gene expression.102,103 The
promoter has some transcriptional activity, but it is rel-
atively weak.104,105 In specific cases, promoters can act
as enhancers to regulate gene expression by interact-
ing with other promoters.106,107 The transcription preini-
tiation complex(PIC) assembles at the promoter and

binds to the promoter sequence, a prerequisite for gene
transcription.108,109 The structure and function of the PIC
vary between stages, and the PIC consists of universal
transcription factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF,
TFIIH), RNA polymerase II (RNAP II), and other factors
in most cases.110 These general transcription factors play
distinct roles in regulating gene expression, with TFIID
recognizing and binding to promoter DNA sequences and
TFIIB directing other transcription factors and RNAPII to
bind to promoter sequences.111 RNAPII undergoes three
stages of transcription initiation, pause, and pause release
at the promoter,112 with RNAPII pausing after about 60
bases of transcription and restarting transcription.113 The
exact mechanism of this process is unclear, and current
studies suggest that RNAPII transcription is influenced by
various factors. For example, p300/CBP promotes RNAPII
transcription initiation and pause release, whereas TFIID
is associated with RNAPII pause.114,115
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3.2 Enhancer

Enhancers are important noncoding elements that reg-
ulate the tissue-specific expression of genes.116 Active
enhancers typically reside in nucleosome-deficient
regions and contain multiple transcription factor binding
sites.117,118 The regulatory function of enhancers is gen-
erally direction-independent, with enhancers separated
from their cognate promoters by approximately 104−106
base pairs.119 Cohesin facilitates enhancer–promoter inter-
actions by shortening the distance between enhancers and
promoters through chromatin loop formation.120 A single
enhancer can act directly with its cognate promoter to reg-
ulate target gene expression,121 while multiple enhancers
can act on the same target gene and regulate its transcrip-
tion through synergistic or cumulative effects.122–124 In
addition, superenhancers span longer DNA sequences,
often containing multiple common enhancers within
them, and can drive higher expression levels of target
genes with increased activity.125 Shadow enhancers are a
class of enhancers that partially or completely overlap in
expression patterns.126 During mammalian development,
especially under conditions of physiological or genetic
stress, these enhancers with similar expression patterns
are able to resist genetic variation and keep relatively
stable gene expression levels.127 These seemingly “redun-
dant” enhancers provide a guarantee of accurate gene
expression.128

3.3 Mechanisms of enhancer–promoter
interactions

Chromatin loops can shorten the distance between
enhancers and promoters, but the interaction between
them also requires the involvement of transcription factors
and multiple cofactors.129 Enhancer sequences contain
multiple transcription factor binding sites and are able to
specifically bind to a variety of transcription factors. Pio-
neer transcription factors are able to efficiently degrade
nucleosomes by binding to DNA sequences through an
alpha helix structure,130 resulting in a chromatin-open
state.131,132
Transcription factors recruit p300/CBP and media-

tor complexes.133 P300/CBP, a transcriptional activator
with acetyltransferase activity, directly activates enhancers
through histone acetylation.134 The mediator complex
serves as a functional hub between the enhancer and
the promoter and consists of four parts: head, mid-
dle, tail, and kinase module (CDK8 module).135,136 This
complex is capable of transmitting genetic information
from the enhancer to the promoter.137 First, the tail of
the mediator interacts with transcription factors at the

enhancer, whereas its head and middle of the mediator
are involved in RNAP II recruitment and assembly of the
transcriptional preinitiation complex.138 The kinase mod-
ule (CDK8) phosphorylates the carboxy terminus of RNAP
II to facilitate transcription initiation.139 In conjunction
with transcription factors and cofactors, enhancers deliver
genetic information to the promoter for precise expression
of target genes.

4 MECHANISMS OF DYNAMICAL
CHANGE OF 3D GENOME AMONG
DIFFERENT FUNCTIONAL STATES

The 3D genome undergoes dynamic changes during cell
differentiation and organ development to regulate interac-
tions between cis-regulatory elements, exhibiting diverse
functional states. In this section, the mechanisms of these
dynamic changes in the 3D genome are summarized.

4.1 Chromatin compartment switches

During mammalian cell differentiation, chromatin com-
partments exhibit dynamic changes at various stages and
significantly influence the spatiotemporal-specific expres-
sion of development-related genes.140 Throughout the
differentiation of human embryonic stem cells (hESCs),
substantial transitions transpire between compartments
A and B.141–143 The number of genomes participating
in A–B compartment switches varies among cell types,
and the number of TADs involved declines as differen-
tiation progresses.144,145 For instance, when ESCs differ-
entiate into skeletal muscle progenitors, approximately
20% of the genome participates in the A–B compartment
switches. In contrast, only 6.5% of genomes are involved
in compartmentalization when skeletal muscle progeni-
tor cells further differentiate.144,146 Among the 10 marker
genes associated with preadipocyte differentiation, nine
are observed to convert from compartment B to A dur-
ing differentiation.147 Similarly, Prdn1 and Atf4, related to
plasma cell fate determination, are transferred to euchro-
matin, whereas Ebf1, an inhibitor of their differentiation,
transitions from euchromatin to heterochromatin.148

4.2 Dynamical change of TAD

During mammalian development, TAD facilitates pre-
cise gene expression by providing a suitable environment
while minimizing interference from external regulatory
information.149 TAD-D (∼250 kb) and TAD-E (∼500 kb)
are adjacent TADs within the mouse X chromosome
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inactivation center, containing mutually repressed genes
Tsix and Xist, respectively.54 Xist is associated with X chro-
mosome inactivation, while Tsix represses the expression
of Xist.150 In male mice, embryonic stem cell differenti-
ation (mESCs), Tsix is transcriptionally active, but Xist
is barely expressing.151 In female mESCs, although Tsix
is also transcriptionally active, Xist transcript levels grad-
ually increase as mESCs further differentiate, eventually
leading to X chromosome inactivation.152 In male mESCs,
a 40 kb inversion across the TAD-D and TAD-E bound-
aries places the promoters of Tsix and Xist inside each
other’s TAD, respectively. This alteration in the regulatory
environment enables enhancers to interact with nontar-
get promoters, causing promoters that should regulate Tsix
gene expression to be ectopically activated within TAD-
E, ultimately leading to aberrant Xist expression in male
mESCs.56
The HoxD gene clusters locate between two adjacent

TADs: the telomeric side (T-DOM) and the centromeric
side (C-DOM). During mammalian limb development,
HoxD genes are sequentially regulated by spatiotemporal-
specific enhancers within these two TADs.153–155 The
T-DOM TAD contains multiple enhancers that regulate
proximal limb development by controlling the expression
of Hoxd9, Hoxd10, and Hoxd11 genes.156 In contrast, dur-
ing subsequent distal limb development, enhancers within
T-DOM are silenced, whereas enhancers within C-DOM
are activated.157 Enhancer II1, one of the enhancers in
C-DOM responsible for distal limb development, plays
a crucial role in tetrapod distal limb development by
binding to the transcription factor Hox13. When the
enhancer II1 sequence is inserted into T-DOM, its activ-
ity is almost entirely suppressed, even though the tran-
scription factor Hox13 remains explicitly bound to the
sequence within enhancer II1.158,159 The regulatory activ-
ity of enhancer II1 in the distal limb is restored only
after most of the sequence at the mitotic end of T-
DOM (Mtx2-II1-T-DOM) is deleted.160 Thus, promoter
and enhancer activities relate to the chromatin environ-
ment during gene expression.157 TADs, as higher-order
chromatin structures, provide an appropriate regulatory
environment for enhancer–promoter interactions, ensur-
ing that development-related genes are expressed in a cell-
or tissue-specific manner.
During cell differentiation, sub-TADs gradually form

within TADs, promoting cis-regulatory elements to pre-
cisely regulate target gene expression.161,162 Runx1, a tran-
scription factor, is associated with hematopoietic devel-
opment and is situated within a 1.1 Mb TAD, which
forms prior to Runx1 gene expression.163,164 Analysis of
mESCs reveals the emergence of two sub-TADs within the
Runx1 TAD, promoting tissue-specific enhancer–promoter
interactions.165 Similarly, observation of α-globin protein

motifs within erythrocytes at different stages of differen-
tiation in mice shows the appearance of sub-TADs during
cell differentiation.166,167
Furthermore, a progressive increase in chromatin acces-

sibility, accompanied by a corresponding rise in the fre-
quency of enhancer–promoter interactionswithinTADs, is
observed during the differentiation of various cell types.166
For instance, due to changes in enhancer activity, fre-
quent chromatin loop reconnections are observed during
the differentiation from preadipocytes to adipocytes.168

5 ROLE OF DYNAMICAL CHANGE OF
3D GENOME IN GAMETOGENESIS AND
EARLY EMBRYOGENESIS

Meiosis plays a crucial role in germ cell development,
facilitating the maturation of sperm and oocytes.169,170
Throughout this process, germ cells undergo morpholog-
ical transformations, and their chromosomes experience
intricate 3D structural alterations, ultimately leading to
highly differentiated germ cells.171 In this section, the
dynamic changes of the 3D genome in gametogenesis and
early embryogenesis are systematically reviewed.

5.1 Role of dynamical change of 3D
genome in spermatogenesis

Meiosis I and II enable the development of spermatogonia
into spermatozoa,172 involving homologous chromosome
separation and sister chromatid separation to form round
spermatids.169,173 Subsequently, these round spermatids
undergo a series of complex, dynamic changes to gen-
erate mature spermatozoa.174 During meiotic prophase,
although A/B compartments are still present, TAD dis-
appears due to alterations in cohesin activity in mouse
spermatocytes.175–177 In postmeiotic stages, the level of
genomic compartmentalization in round spermatocytes
gradually increases. Mature spermatocytes exhibit chro-
matin higher-order structures such as compartments
and TADs, demonstrating frequent remote interactions
between TADs.178,179 Comparing Hi-C data from mature
sperm cells, fibroblasts, and ESCs reveals considerable
similarity in their 3D genomes.180 As protamine replaces
over 85% of histone loci in mature spermatozoa, chro-
matin becomes highly compressed, leading to a more
than 10-fold reduction in sperm cell nuclear volume com-
pared with fibroblasts.180 In contrast, retained histones are
highly enriched at the promoters of crucial developmen-
tal genes. For instance, nucleosomes modified by active
histones were observed at the transcription start sites of
genes such as EVX1/2 and ID1.174,181 Moreover, studies
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on mouse sperm reveal that mature sperm contain over
10,000 enhancers and over 500 superenhancers.180,182 The
vast majority of these are identical to those in mESCs,
suggesting that regulatory elements are ready for tissue
differentiation and cell fate decisions as early as in the
sperm.177

5.2 Role of dynamical change of 3D
genome in oogenesis

In contrast to spermdevelopment, oocyte formation begins
during the embryonic stage.183,184 Primordial germ cells,
originating from the proximal epiblast, differentiate into
oogenic cells within the embryonic gonads. These oogenic
cells undergo a series of differentiations, eventually form-
ing primary oocytes that enter meiosis I prophase. Upon
reaching the diplotene stage of meiosis I, the primary
oocytes constitute primordial follicles, which are subse-
quently stored in the ovary. During puberty, the primordial
follicles gradually transition hormonally into germinal
vesicle oocytes.185 These germinal vesicle oocytes continue
to undergo hormone-stimulated meiosis and remain sus-
pended in themetaphase of meiosis II until fertilization.185
During oogenesis, the 3D genome structure undergoes

a series of dynamic changes, characterized by the grad-
ual disappearance of compartment, TAD, and loop.186,187
Meiosis I oocytes and germinal vesicle oocytes exhibit sim-
ilar numbers of TADs, whereasmetaphase II (MII) oocytes
display an almost complete absence of TADs and A/B
compartments, resulting in a uniform chromatin folding
pattern.188

5.3 Role of dynamical change of 3D
genome in zygote

After fertilization, two transcriptionally quiescent gametes
fuse to forma zygote, characterized by amore relaxed chro-
matin structure.189–191 Transcription remains inactive in
zygotes and early embryos.189,192 Concurrent with zygotic
genome activation (ZGA), gene expression is activated, and
an extensive reorganization of the 3D genome structure
occurs.193–195 Mouse embryo studies reveal a progressive
increase in TAD intensity and the extent of chromatin
remote interactions at the two-cell stage.196,197 In con-
trast, human embryos exhibit compartments and TADs
as early as the eight-cell stage, with continuous enhance-
ment throughout development.181,198 Although the onset of
ZGA often coincides with TAD formation in many species,
recent research indicates that TAD formation associates
with DNA replication and that inhibiting ZGA does not
impede TAD formation.195

6 ROLE OF DYNAMICAL CHANGE OF
3D GENOME IN ORGAN DEVELOPMENT

In addition to playing a crucial role in gametogenesis,
dynamic changes in the 3D genome are also important for
regulating organ development.

6.1 Role of dynamical change of 3D
genome in brain development

The mammalian brain, a highly complex organ, is pri-
marily composed of neurons and neuroglial cells.199
Glial cells include astrocytes, oligodendrocytes, and
microglia.200 Neurons can be classified as either excitatory
or inhibitory.201,202 Apart from microglia, all other cells
are derived from neural progenitor cells (NPCs), which
strictly regulate the spatiotemporal distribution of gene
expression to modulate physiological functions such as
memory, cognition, and emotion.203,204
During brain development, ESCs first differentiate into

NPCs, which subsequently differentiate into neurons and
further into various cell subtypes.199 Throughout this
process, chromatin experiences extensive reorganization
and compaction.205 Initially, the chromatin of ESCs is
globally accessible, but as differentiation progresses, it
becomes increasingly condensed, reducing accessibility.206
Concurrently, at the compartment level, the A compart-
ment size decreases by approximately 5% compared with
ESCs as neural cell differentiation continues.16,71 Despite
this change, TAD boundaries do not exhibit significant
alterations; the TAD landscape remains stable in NPCs,
neurons, and glial cells.207 As differentiation ensues, TAD
sizes undergo a slight increase, interaction levels between
TADs in the A compartment decrease, and those in the B
compartment increase.71
Additionally, human-specific brain structures, such as

the formation of the subplate layer, are associated with
the development of human-specific TADs and chro-
matin loops.208,209 These human-specific TADs are gen-
erally smaller than conserved TADs between species
due to chromatin structure alterations, and their bound-
ary CTCF binding strengths are marginally weaker.208
Human-specific enhancers play a crucial role in brain
development by effectively regulating target gene tissue-
specific expression.210–212 For instance, the human-specific
enhancer EOMES controls FGFR2 expression, which is
associated with NPCs proliferation.206 EPHA7 is regulated
by an upstream human-specific enhancer, and its inactiva-
tion impacts the development of human cortical pyramidal
cells,208 ARHGAP11B collaborates with a human-specific
enhancer located 500 kb away, contributing to the expan-
sion of the human neocortex.213
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6.2 Role of dynamical change of 3D
genome in cardiac development

The heart, originating from the mesoderm, has chromatin
regulatory mechanisms in its development process that
have long captivated researchers. Primarily composed of
cardiomyocytes, the heart derives these cells from car-
diac progenitor cells, which in turn arise from distinct
subgroups of cardiac mesodermal cells.214
Cardiomyocyte-specific compartments form early dur-

ing heart development and differentiation.215 Studies
reveal that in adult mouse cardiomyocytes, approximately
66.7% of cardiac-specific genes reside in compartment
A.216 During cardiomyocyte differentiation, around 20%
of the genome undergoes compartment conversion, with
genes transitioning from compartment B to A demonstrat-
ing greater cardiac specificity.217–219 Moreover, as hESCs
or human induced pluripotent stem cells (hiPSCs) dif-
ferentiate into cardiomyocytes, a decrease in the number
of TADs, loss of boundaries, and reduction in inten-
sity are observed.218 Roughly 70% of TADs remain stable
throughout development, suggesting their importance in
heart development through the promotion of enhancer–
promoter interactions and regulation of developmental
gene expression. For instance, Handsdown (Hdn) and
Hand2,which are locatedwithin the sameTADand closely
related to heart development, play a significant role in car-
diomyocyte differentiation and heart development.220,221
Hdn encodes a lncRNA and modulates Hand2 transcrip-
tion by inhibiting its upstream enhancer activity. Hdn
deficiency results in an abnormal increase in Hand2
expression, leading to the thickening of the right ventricu-
lar wall.222 Furthermore, structural protein abnormalities
associated with TAD formation may cause heart devel-
opment abnormalities of varying degrees.214,223,224 For
example, STAG2, one of the cohesin subunits, has its
deficiency affecting the proliferation and migration of sec-
ondary heart field progenitor cells, leading to delayed heart
development and morphological defects.225 A heterozy-
gous deletion of the adhesion loading factor NIPBL may
induce atrial septal defects.226,227

6.3 Role of dynamical change of 3D
genome in blood system development

The development and differentiation of hematopoietic
stem cells (HSCs) provide a valuable model for 3D
genomics research. During embryonic development, HSCs
initially appear within the principal arteries and sub-
sequently migrate to the liver.228 Before birth, HSCs
relocate to the bone marrow, where they remain for an
extended period. In adult mouse bone marrow, more

than 70% of HSCs exist in a quiescent differentiation
state.229
Studies have demonstrated that as ESCs differenti-

ate into HSCs, the spatial arrangement of TADs expe-
riences dynamic shifts coinciding with the transition
of A–B compartments.230,231 Within TADs, chromatin
accessibility progressively increases, and sub-TADs form
gradually.165,166 Furthermore, research on mouse embryos
and adult mouse HSCs has revealed that compartments
and TADs are predominantly conserved, with amere 5% of
compartments and 12% of TADs undergoing alterations.232
In adult mouse HSCs, both compartmentalization and
TAD boundary strength augment, whereas chromatin
accessibility declines. Approximately 52% of enhancer–
promoter interaction levels vary, correlating with differen-
tial gene expression.232
Erythropoiesis refers to the biological process wherein

hematopoietic stem cells and progenitor cells differenti-
ate into mature red blood cells.233 Erythroid progenitor
cells proliferate and undergo a sequence of morpho-
logical transformations, ultimately yielding enucleated
reticulocytes.234 Throughout erythroid cell differentia-
tion, widespread chromatin condensation occurs, and
both chromatin accessibility and transcriptional activity
diminish.235,236 Heterochromatin significantly compacts,
and H3K9me3 is repositioned, leading to numerous long-
range interactions.237 Approximately 58% of TADs are
disrupted, and TAD boundaries weaken considerably dur-
ing the final stages of erythroid development. TADs with
active chromatin modifications are partially conserved,
and GATA1 is thought to participate in the preservation of
TADs.237

6.4 Role of dynamical change of 3D
genome in immune system development

B cells and T cells both derive from hematopoietic stem
cells in the bone marrow.238 Within this environment,
common lymphoid cells either differentiate intoB cells and
innate lymphoid-like cells or migrate to the thymus, where
T cell differentiation is initiated. The development of B and
T cells is intimately associated with the recombination of
antigen gene loci.
Throughout B cell development, the dimensions, quan-

tity, and positions of the majority of TADs remain rel-
atively constant.239 However, significant gene loci asso-
ciated with B cell fate determination exhibit dynamic
changes. The Ebf1 gene locus encodes an essential B cell
transport protein and serves a crucial regulatory func-
tion in B cell differentiation.240 At the pluripotent stage,
the Ebf1 locus resides in the transcriptionally repressed
B compartment.241,242 As cells transition from pre-pro-B



LIU et al. 11 of 30

cells to pro-B cells, Ebf1 relocates to the transcription-
ally active A compartment, playing a role in B cell fate
determination.239 During the differentiation of B cells into
plasma cells, Ebf1 is repositioned to the heterochromatin
region.148
T cell development relies on Bcl11b expression. In

the pluripotent stage, Bcl11b is situated within the B
compartment, with its activation closely tied to the non-
coding RNAThymoD.243,244 ThymoD facilitates local DNA
demethylation through transcription, promoting CTCF-
DNA binding and cohesin protein recruitment. This pro-
cess contributes to Bcl11b-TAD formation and strengthens
the interactions between enhancers and promoters.245

7 3D GENOME STRUCTURAL
VARIATIONS AND DISEASE

The 3D genome structure is pivotal in gene expression reg-
ulation. Pathological conditions can lead to extensive reor-
ganization of the higher-order chromatin structure, which
affects the expression of functional genes. The switching of
aberrant A/B compartments at the subchromosomal level
is closely linked to the onset and progression of the disease.
Chromatin structural variations (SVs) at the megabase
scale modify the TAD structure and interactions between
regulatory elements, resulting in abnormal gene expres-
sion levels. Additionally, the formation of disease-specific
chromatin loops alters enhancer–promoter interactions,
exacerbating gene expression dysfunction and contribut-
ing to disease development. This section systematically
reviews the dynamic reorganization of higher-order chro-
matin structures at different levels during the onset and
progression of diseases. Thismay provide valuable insights
into the complex relationship between chromatin confor-
mation and diseases (Table 1).

7.1 Compartment and disease

The abnormal conversion of A/B compartments under
pathological conditions may result in dysregulated
gene expression, playing a crucial role in the onset
and progression of diseases.246 Nonalcoholic fatty liver
disease (NAFLD) is a chronic liver disease primarily
observed in obese individuals, characterized by hepatic
fat accumulation.247 NAFLD increases the risk of liver
cirrhosis and hepatoma.248 Studies on NAFLD-induced
mice have revealed that around 33% of the genome
undergoes A/B compartment conversion. Sugct and Fgfr2
are examples of genes transferred to the A compartment,
linked to lipid metabolism disorders and tumor develop-
ment potential, respectively.249–251 This finding enhances

our understanding of NAFLD pathogenesis, disease
progression, and the pathological mechanisms that make
patients susceptible to liver cancer.251 The metastatic
potential and invasiveness of prostate cancer are also
intimately connected to dynamic genome alterations.
Recent in vitro investigations on prostate cancer metas-
tasis have revealed that during cancer progression, there
is a widespread genome compartment conversion, which
results in significant changes in the nuclear chromatin
activation environment, leading to increased mixing and
interaction in the A compartment.252 Forty-eight genes
have been transferred from transcriptionally repressed B
compartments to A compartments and activated, includ-
ing genes associated with prostate cancer progression and
poor prognoses, such as WNT5A, CDK44, and TMPRS22.
These research findings reveal potential key factors in the
pathogenesis and progression of prostate cancer.252
Additionally, viruses can reshape the host’s 3D genome

structure, which affects gene expression and is closely
linked to disease progression. The Hepatitis B virus (HBV)
is a leading cause of hepatocellular carcinoma.253 Integra-
tion of HBV DNA into the human genome results in the
remodeling of the 3D genome structure.254,255 During this
process, there are dynamic changes in the A/B compart-
ments, mainly in the genomic regions on chromosomes
9, 13, and 21. Most genes are moved from transcription-
ally repressed B compartments to A compartments, where
they are subsequently activated.256 These regions have
many transposable elements that promote viral DNA repli-
cation. A smaller subset of regions moves from the A
compartment to the B compartment, including enhancers
and genes associated with the regulation of inflamma-
tory responses.256 Research on human cells infected with
SARS-CoV-2 shows that about 30% of the genome under-
goes compartment switching, which is accompanied by a
decrease in chromatin interaction levels within the A com-
partment. Thismay be linked to the high incidence of acute
sequelae resulting from SARS-CoV-2 infection.257

7.2 TAD and disease

Approximately 5% of the human genome exhibits struc-
tural variation.258 SVs include both balanced and unbal-
anced rearrangements, which lead to altered expression
levels of functional genes by impacting the TAD structure.
This results in aberrant enhancer–promoter interactions,
contributing to the development of numerous human
diseases (Table 1).259 Copy number variation comprises
chromatin deletions and duplications, whereas inversions
and translocations represent balanced rearrangements.25
This process is distinct from chromatin remodeling dur-
ing cell cycle progression, which occurs in the nucleus
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TABLE 1 3D genome structural variations and disease.

Chromatin
Structure

Gene
Locus Diseases Pathogenic mechanism Reference

Compartment Sugcct
Fgfr2

Nonalcoholic fatty
liver disease

Approximately 33% of the genome undergoes A/B
compartment conversion. Sugct and FGFR2 are activated in
association with Non-alcoholic fatty liver disease.

251

Compartment WNT5A
CDK44

Prostate cancer The metastatic potential and invasiveness of prostate cancer
are closely linked to dynamic genome alterations.
Forty-eight genes have shifted from B to A compartments
and activated.

252

Compartment HNF4A
NR5A2

HBV infection HBV DNA integration into the human genome leads to the
remodeling of the 3D genome structure. During this
process, dynamic changes occur in the A/B compartments,
including HNF4A and NR5A2.

256

Topologically
associating
domain

Sox9 Pierre-Robin
sequence

Deletions of the long-range enhancer clusters of Ec1.45 and/or
Ec1.25 in the Sox9-TAD result in decreased expression levels
of Sox9 and cause.

267

Topologically
associating
domain

Ihh Abnormal
Ossification of
the Skull

Deletions of enhancers i2–i9 decreased the expression levels
of Ihh which lead to abnormal ossification of the skull.
Whereas duplication of i2–i9 increased Ihh expression.

281

Topologically
associating
domain

HoxD 2q31 syndrome Sequence duplications or deletions within HoxD-TAD
resulted in a reduction to similar levels of
enhancer–promoter interactions.

288

Topologically
associating
domain

Sox9 Sex reversal/
disorder of sex
development

Deletion of the Sox9 upstream enhancer eSR-A(Enh13) results
in sex reversal, whereas a sequence duplication involving
this enhancer results in a disorder of sex development.

268, 277

Topologically
associating
domain

Pmp22 Hereditary neu-
ropathy/Charcot
Marie tooth.

Deletion of Pmp22-SE, an upstream enhancer of PMP22, leads
to hereditary neuropathy. Sequence duplications involving
this enhancer are associated with Charcot-Marie-Tooth
disease.

271

Topologically
associating
domain

Pitx1 Hindlimb deformity The enhancer Pen tissue specifically regulates the Pitx1
expression in hindlimb development and aberrant Pitx1
expression by Pen deletion results in hindlimb deformity.

319

Topologically
associating
domain

Epha4
Pax3

Brachydac-tyly A heterozygous deletion of 1.75-1.9 Mb on 2q35 spanning the
TAD boundaries of EphA4 and Pax3 resulted in TAD
fusion. In this fused TAD, an enhancer originally regulating
EphA4 interacts with the Pax3 promoter.

258

Topologically
associating
domain

MYC-
BDME

T-cell acute
lymphoblastic
leukemia

Abnormal MYC transcript levels in T-cell acute lymphoblastic
leukemia patients result from MYC-TAD fusion with
adjacent TADs, causing aberrant MYC promoter
interactions with enhancers BDME.

293

Topologically
associating
domain

CFTR-
WNT2

Intestinal neoplasia A 121.1 kb heterozygous deletion on 7q31.2 located in the
border between CFTR and WNT2. Consequently, the
enhancer (located in introns 1, 10, and 11), which initially
regulates the tissue-specific expression of CFTR, interacts
with the WNT2 promoter.

297

Topologically
associating
domain

CDKN2A
MIR31HG

Pancreatic ductal
carcinoma

The proto-oncogene MIR31HG-TAD is adjacent to CDKN2A-
TAD, and sequence deletions involving TAD boundaries
can result in the fusion of the two TADs. The proto-
oncogene MIR31HG promoter is aberrantly regulated by the
enhancer, resulting in an increase in its expression level.

299

Topologically
associating
domain

Sox9
Kcnj2

Cooks Syndrome Duplications spanning the Sox9-TAD and Kcnj-TAD give rise
to “neo-TAD”., and result in an enhancer otherwise
regulating Sox9 expression incorrectly interacting with the
Kcnj2 promoter in the “neo-TAD”.

304

(Continues)
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TABLE 1 (Continued)

Chromatin
Structure

Gene
Locus Diseases Pathogenic mechanism Reference

Topologically
associating
domain

YPEL2
GDPD1

Retinitis
Pigmentosa

Sequence duplications spanning YPEL2, GDPD1 result in the
creation of neo-TAD, and enhancers originally located in
YPEL2-TAD ectopically regulate GDPD1 expression.

307

Topologically
associating
domain

GPR101
RBMX

X-linked
acrogigantism

A 600 kb sequence duplication on chromosome Xq26.3 led to
a neo-TAD. Within the neo-TAD, the GPR101 promoter
interacted with the enhancer eRBMX from within the TAD
on the centromeric side and up-regulated the GPR101
transcript levels.

300

Topologically
associating
domain

SHH
MNX1

Complete
pulmonary
hypoplasia

Sequence duplications spanning the SHH-TAD and telomeric
TAD generated 2 consecutive neo-TAD. In the neo-TAD,
MACS1, an enhancer that originally regulates the tissue-
specific expression of SHH interacts with the MNX1
promoter.

301

Topologically
associating
domain

EGFR
LINC01446

Glioblastoma In glioblastoma multiforme, a sequence duplication between
ZINCO1446 and EGFR on 7p11.2 creates a neo-TAD,
resulting in EGFR being aberrantly activated.

311

Topologically
associating
domain

TFAP2A Branchiooculofacial
syndrome

An 89 Mb inversion with a breakpoint within TAD
disconnects the TFAP2A gene from enhancers such as
Enh100 and Enh105, which resulted in haploinsufficient
expression of the TFAP2A gene in human neural crest cells.

315

Topologically
associating
domain

Pitx1 Liebenberg
syndrome

Pitx1 is regulated by enhancers RA4 and RA5, and enhancer
Pen regulates tissue-specific expression of Pitx1. A fragment
inversion of 113 Kb containing Pen and RA4 places pen in
the position of RA4, causing Pitx1 to be transcriptionally
activated erroneously by Pen in forelimb development.

320

Topologically
associating
domain

Wnt6
Epha4

F syndrome The heterozygous inversion of 1.1 Mb sequence in 2q36 region
crosses the Wnt6-TAD and Epha4-TAD boundary caused
the Epha4 enhancer to incorrectly regulate wnt6
expression.

258

Topologically
associating
domain

PRDM6S
NCAIP

Medulloblastoma The PRDM6 gene, situated at 5q23, is located approximately
600 kb downstream from SNCAIP. Owing to chromosomal
inversion, the super-enhancer initially responsible for
regulating SNCAIP interacts with PRDM6.

324

Topologically
associating
domain

MEF2C 5q14.3
microdeletion
syndrome

A complex translocation of 1Mb between 5q14.3 and 3q24
results in a disrupted TAD structure that disconnecting
MEF2C from its cognate enhancers.

329

Topologically
associating
domain

Kcnj2
Kcnj16

Cooks syndrome The translocation on chr17 disrupts the interaction of the
KCNJ2 promoter with its cognate enhancer IMR90.

312

Topologically
associating
domain

GATA2
EVI1

Acute myeloid
leukemia

Translocations between 3q21 and 3q26.2 have been observed
in patients with acute myeloid leukemia, repositioning an
enhancer located upstream of the GATA2 gene within the
telomeric side TAD.

335

Topologically
associating
domain

MYB
QKI

Angiocentric
glioma

Translocations between 2q35 and 13q14 resulting in interaction
of the FOXO1 enhancer B116Z with the Pax3 promoter have
been observed in rhabdomyosarcoma cell lines.

337

Topologically
associating
domain

CCND1
IGH

Malignant B cell
lymphomas

CCND1 expression levels are increased more than 500-fold in
malignant B cell lymphomas. The t(11; 14) (q13; q32) causes
a superenhancer that should intrinsically regulate IGH
expression to interact with the CCND1, ultimately leading
to a significant increase in CCND1 expression levels.

333

(Continues)
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TABLE 1 (Continued)

Chromatin
Structure

Gene
Locus Diseases Pathogenic mechanism Reference

Chromatin loop DDX60L
CXXL13

Systemic lupus
erythematosus

In Systemic lupus erythematosus patients, 391 disease-specific
chromatin loops are present, encompassing crucial
inflammation- and immunity-related genes, including
DDX60L and CXCL13.

373

Chromatin loop NPPA
NPPB

Dilated
cardiomyopa-thy

During Dilated cardiomyopathy development,
enhancer–promoter loop dynamic remodeling occurs
extensively across the genome in response to rapid
transcription.

376

Chromatin loop LIPC Pancreatic cancer In metastatic pancreatic cancer cells, the number of
chromatin loops increases LIPC expression is modulated by
Enhancer 3 and Enhancer 4, while tissue-specific
chromatin loops form progressively during pancreatic
cancer distant metastasis.

378

Chromatin loop MYCN Acute myeloid
leukemia

Disease-specific chromatin loop formation has been observed
in AML, involving oncogenes. The specific interaction
between the MYCN promoter and enhancers situated
650 kb downstream is related to AML onset.

379

without concomitant changes.173,260 Copy number variants
within the same TAD can alter gene expression by influ-
encing the amount of regulatory elements or the frequency
of interactions.261 Structural variations between TADs can
affect gene expression by disrupting enhancer–promoter
interactions or creating ectopic interactions (Figure 4).
Additionally, recent studies have shown that struc-

tural variation is a significant mechanism contributing
to cancer.262,263 Genomic rearrangements cause transcrip-
tional dysregulation of proto-oncogenes and oncogenes by
changing interactions between cis-regulatory elements in
somatic cells, ultimately leading to abnormal proliferation
and differentiation of somatic cells.264–266

7.2.1 Deletions and duplications within
TADs lead to diseases

Copy number variations within TADs significantly mod-
ulate gene expression by changing the quantity of regu-
latory elements or the frequency of interactions between
them. Such changes can cause the dysregulation of gene
expression, contributing to various human diseases and
developmental disorders (Figure 4A).267–272
Sox9 is located within a 2 Mb TAD,273,274 contain-

ing multiple tissue-specific enhancers that participate in
mammalian sex determination, craniomaxillofacial devel-
opment, and chondrogenesis.268,275–277 Located 1.45 and
1.25 Mb upstream of the Sox9 gene, remote enhancer clus-
ters Ec1.45 andEc1.25 regulate its tissue-specific expression
in the mandibular process and the first branchial arch
region.267 Deletion of Ec1.45 and/or Ec1.25 in the Sox9-

TAD leads to reduced Sox9 expression levels, causing
Pierre–Robin sequence,267 a group of craniomaxillofacial
developmental malformations such as mandibular dyspla-
sia, cleft palate, and tongue recession.278,279 Specifically,
deletion of Ec1.45 in the human genome can cause a
decrease of over 50% in the expression level of Sox9,267
whereas simultaneous deletion of both appears to have a
more substantial impact on Sox9 expression.280
The Ihh gene participates in skeletal development, and

its expression is regulated by at least nine enhancers (i1–
i9) located within Ihh-TAD.281 Deletion of Ihh in mouse
models causes joint fusion and skeletal shortening,282
whereas Ihh duplication is associated with finger defor-
mities and premature closure of cranial sutures.283,284
Deleting enhancers i2–i9 within Ihh-TAD in mice results
in a 98% reduction of Ihh mRNA expression levels, lead-
ing to abnormal cranial ossification, reduced bone cortex,
and shortened extremities.281 In contrast, duplication of
i2–i9 enhances Ihh-TAD endointeraction, increasing the
expression of Ihh to five-fold in the head and limbs, which
results in premature closure of the cranial suture and
syndactyly.281
It is worth noting that not all intra-TAD fragment

duplications result in increased enhancer–promoter inter-
actions and target gene expression levels within the TAD.
Alterations in enhancer–promoter distances can influ-
ence interaction frequency and, as a result, impact gene
expression.285 2q31 syndrome, characterized by facial mal-
formations, mental retardation, and limb deformities,286
can result from sequence duplication or deletion within
HoxD-TAD.287,288 This occurs because sequence duplica-
tion increases the distance between the enhancer and
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F IGURE 4 Structural variation located between TAD. (A) Sequence deletions or duplications within TADs primarily affect regulatory
functions by altering the number of enhancers and causing abnormal expression of target genes. (B) Sequence deletions at the boundaries
result in the merging of adjacent TADs into one, forming a new TAD, referred to as “TAD fusion.” Duplication of DNA sequences containing
boundary elements can create a “neo-TAD.” The “neo-TAD” is situated between the original TADs, wherein the interacting enhancers and
promoters originate from different initial TADs, and their interactions do not interfere with the enhancer–promoter interactions within the
original TADs. Chromosomal inversions occurring between adjacent TADs alter the position and/or orientation of DNA segments, placing
genes and/or regulatory elements in different chromosomal contexts, and causing pathological effects known as “TAD shuffling”.
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gene, which weakens the interaction between the HoxD
promoter and its enhancer, resulting in a 50% downregula-
tion of the HoxD gene cluster transcript levels. In this case,
sequence duplication within HoxD-TAD leads to similar
changes in gene expression levels as deletion.288

7.2.2 Deletions between TADs lead to
diseases

Copy number variations across TAD boundaries can dis-
rupt chromosomal rearrangements of boundary elements.
Deletions at the boundaries can merge adjacent TADs,
resulting in a “TAD fusion”,258 and can lead to abnormal
gene expression levels as enhancers from different TADs
interact with promoters (Figure 4B).289 Structural varia-
tion has been identified as a crucialmechanismunderlying
cancer development.262,263 Genomic rearrangements can
cause transcriptional dysregulation of proto-oncogenes
and oncogenes by altering interactions between cis-
regulatory elements in somatic cells, leading to abnormal
proliferation and differentiation.264–266

Congenital diseases
An example of chromosomal rearrangement that impacts
gene expression is theWnt6/Ihh/Epha4/Pax3 locus located
on chromosome 2q35-36. A heterozygous deletion of 1.75–
1.9 Mb in the 2q35 region results in short-fingered mal-
formation in humans and mice. This deletion disrupts
the TAD boundary between Epha4 and Pax3, leading
to TAD fusion and producing an 800 kb fused TAD.258
Within this fused TAD, the enhancer that initially regu-
lated Epha4 interacts with the Pax3 promoter, causing an
increased expression level of Pax3 and a decreased expres-
sion level of Epha4, ultimately leading to the development
of short-fingered malformations.
Not all deletions across TAD boundaries lead to TAD

fusion. In the mouse genome, adjacent motifs Sox9-Kcnj
show that deleting only the CTCF locus at the boundary
does not result in TAD fusion. TAD fusion occurs only after
deleting all four CTCF loci within the TADs. Only deleting
all four CTCF loci within the TADs leads to TAD fusion,
but it does not significantly affect gene expression.290 The
limited impact on gene expression resulting from small
deletions may be due to the redundancy of CTCF sites in
the TADs. This redundancy mechanism helps maintain
the structural and functional stability of TADs and ensures
precise gene expression.

Cancers
The oncogene MYC is a critical downstream target gene of
Notch1 signaling.238,291 Its expression levels are frequently
elevated in patients with T-cell acute lymphoblastic

leukemia (T-ALL).292 Recent studies have shown that dele-
tions of TAD boundaries in T-ALL patients result in the
fusion of MYC-TADwith adjacent TADs, leading to abnor-
mal interactions between the enhancer BDME/BENC and
the MYC promoter within the fused TAD. This results
in increased expression of MYC and the development of
T-ALL.293
CFTR andWNT2 genes are located in adjacent TADs on

chromosome 7. Research on patients with intestinal neo-
plasia pedigrees has shown that a 121.1 kb heterozygous
deletion on 7q31.2 disrupts the border between CFTR and
WNT2 and deletes the CFTR promoter sequence.294 Con-
sequently, the enhancer located in introns 1, 10, and 11 that
originally regulates the tissue-specific expression of CFTR
interacts with the WNT2 promoter, resulting in increased
levels of WNT2 expression and decreased levels of CFTR
expression in this pedigree.294–296 This dysregulation is
associated with the development of intestinal adenocarci-
noma and small intestinal neuroendocrine tumors.295,297
The majority of patients with pancreatic ductal car-

cinoma present a homozygous deletion of CDKN2A.298
Recent studies have shown that MIR31HG-TAD is adja-
cent to CDKN2A-TAD in various pancreatic ductal car-
cinoma cell lines. Deletions in the boundary regions of
the two TADs result in their fusion. In the fused TADs,
the MIR31HG promoter is abnormally regulated by the
enhancer, leading to increased expression levels.299

7.2.3 Duplications between TADs lead to
diseases

Duplication of DNA sequences containing boundary ele-
ments can result in the formation of “neo-TADs”,300–302
which are located between the original TADs. The
enhancers and promoters within these “neo-TADs” orig-
inate from different initial TADs, but their interactions do
not interfere with the enhancer–promoter interactions in
the original TADs (Figure 4B).

Congenital diseases
Cooks syndrome is linked to chromosomal duplications
and is characterized by nail hypoplasia and short-fingered
malformations.303 The duplication of the Sox9-TAD and
Kcnj-TAD creates a “neo-TAD”, as evidenced by RNA-seq
results from mouse limbs at various developmental stages
that show no changes in the expression levels of Sox9 and
Kcnj16, but an increase in Kcnj2 expression.304 This rise in
Kcnj2 expression is a result of misinteraction between the
enhancer that originally regulated Sox9 expression and the
Kcnj2 promoter within the “neo-TAD”.
Retinitis pigmentosa is a common inherited retinal dis-

ease characterized by progressive peripheral vision loss
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and night blindness, which can lead to blindness in severe
cases.305 The disease is associated with a chromosome
17q22 duplication spanning the YPEL2 and GDPD1 genes.
YPEL2 is highly expressed in the brain and retina,306
whereas GDPD1 encodes glycerophosphodiesterase and is
predominantly expressed in the brain and testis.307 This
duplication leads to the formation of new interaction
domains, where enhancers originally located in YPEL2-
TAD regulate GDPD1 expression ectopically.307 Elevated
GDPD1 expression levels can cause dysregulation of lipid
metabolism, a pathogenic factor contributing to photore-
ceptor cell inactivation and the development of retinitis
pigmentosa.308–310

Cancer
EGFR and LINC01446 are situated in adjacent TADs on
chromosome 7p11.2. In cell lines derived fromglioblastoma
patients, a sequence duplication was observed between
EGFR and LINC01446, generating a “neo-TAD” between
the two adjacent TADs. Within the “neo-TAD,” the
enhancer initially intended to regulate LINC01446 expres-
sion aberrantly interacts with the promoter responsible
for regulating EGFR expression, leading to an increase
in EGFR expression levels. This is one of the patholog-
ical mechanisms that contribute to the development of
glioblastoma.311

7.2.4 Inversion between TADs leads to
diseases

Balanced chromosomal rearrangements, including inver-
sions and translocations, occur between spatially adjacent
or separated TADs, changing the position and/or orienta-
tion of DNA segments.27 Balanced rearrangements cause
pathological effects by placing genes and/or regulatory
elements in different chromosomal environments, a phe-
nomenon known as “TAD shuffling”.312 TADs that expe-
rience balancing rearrangements result in abnormal gene
expression due to disrupted enhancer–promoter inter-
actions, enhancer hijacking effects, or positional effects
(Figure 4B).27

Congenital diseases
The mechanisms described above can explain the etiology
of chromosomal inversions causing congenital diseases
such as branchiooculofacial syndrome and Liebenberg
syndrome. Branchiooculofacial syndrome is a rare devel-
opmental defect caused by heterozygous deletions or
mutations in the TFAP2Agene.313,314 In patientswith bran-
chiooculofacial syndrome, an 89Mb inversion was found
with a breakpoint located in the TAD, which disconnects

the TFAP2A gene from enhancers such as Enh100 and
Enh105, leading to haploinsufficient expression of TFAP2A
in human neural crest cells.315
Liebenberg syndrome is characterized by a heterozy-

gous leg-arm transformation, where the upper limb
exhibits morphological features typically seen in the lower
limb.316,317 Pitx1 is expressed in the hindlimbs, pituitary
gland, and first-gill arch, and gene rearrangements involv-
ing Pitx1 are associated with the disorder.318,319 During
limb development, Pitx1 is regulated by enhancers RA4
and RA5, in both the anterior and posterior limbs.320
However, enhancer Pen specifically regulates Pitx1 expres-
sion in the hindlimbs, and there is no interaction with
Pitx1 during forelimb development.318,320 In Liebenberg
syndrome, an inversion of a 113-kb fragment containing
enhancers Pen and RA4 results in the placement of Pen in
the position of RA4. This misplacement causes Pitx1 to be
activated by Pen during forelimb development, leading to
the development of phenotypes such as radial curvature,
patellar heterotaxy, and shortened ulnar hawk in adult
mice.320

Cancers
Medulloblastoma is a highly malignant tumor of the
central nervous system that commonly occurs in
children.321–323 Recent studies suggest that chromo-
somal inversions may significantly contribute to the
development of this disease.324 The PRDM6 gene, encod-
ing a histone transferase, is located approximately 600 kb
downstream from SNCAIP at 5q23. Chromosomal inver-
sion leads to the interaction between the super-enhancer
responsible for regulating SNCAIP and PRDM6, resulting
in a significant increase of approximately 20-fold in
PRDM6 expression levels.262,324

7.2.5 Translocations between TADs lead to
diseases

Congenital diseases
Chromosomal translocations can also cause developmen-
tal defects through pathological mechanisms akin to inver-
sions. MEF2C is considered one of the crucial pathogenic
genes in the 5q14.3 microdeletion syndrome,325,326 which
is associated with developmental brain malformations,
epilepsy, and intellectual deficits.327,328 A 1 Mb com-
plex translocation between 5q14.3 and 3q24 disrupts the
TAD structure, disconnecting MEF2C from the enhancer
that regulates its expression.329 Chromosomal transloca-
tions reduce MEF2C expression to 50% compared with
controls,329 a level comparable to that observed in humans
with MEF2C heterozygous deletions.330
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Cancers
A chromosomal translocation involving 11q13 and 14q32
has been identified in multiple myeloma and mantle cell
lymphoma, and is associated with the CCND1 and IGH
gene loci.331 The proto-oncogeneCCND1, situated on chro-
mosome 11, encodes a cell cycle protein, while the IGH
gene is located on chromosome 14.332 This translocation
allows the superenhancer, which initially regulates IGH,
to aberrantly activate CCND1 expression, leading to an up
to 500-fold increase in its expression levels.333
Acute myeloid leukemia (AML) is linked to aber-

rant expression of the stem cell factor EVI1. Chromoso-
mal translocations involving 3q21 and 3q26.2 have been
observed in AML patients.334 These rearrangements per-
mit the upstream enhancer of the GATA2 gene to relocate
and aberrantly interact with the EVI1 promoter, leading to
increased EVI1 expression and GATA2 haploinsufficiency.
As a result, hematopoietic stem cell growth and differen-
tiation are impeded, contributing to the development of
AML.335
Angiocentric glioma, a low-grade malignant glioma,

is associated with the MYB-QKI rearrangement.336 The
proto-oncogene MYB and the oncogene QKI reside at
6q23.3 and 6q25.3, respectively. Chromosomal transloca-
tions lead to the enhancers Q3SE1 and Q3SE2, which
initially regulate QKI transcription, aberrantly activating
the proto-oncogene MYB expression. Consequently, the
fusion proteinMYB-QKI, a proto-oncoprotein, contributes
to the development of angiocentric glioma.337
Chromatin remodeling can contribute to cancer devel-

opment by altering the local 3D genomic structure.Human
papillomavirus (HPV) genes can integrate into the human
genome, facilitating cervical cancer development through
TAD structure remodeling.338,339 PEG3 andCCDC16, genes
co-located within the same TAD on chromosome 19, are
impacted by this alteration.340,341 HPV reshapes the TAD
structure, dividing it into two unequal TADs. As a result,
enhancers initially regulating PEG3 aberrantly activate
the proto-oncogene CCDC16 expression, contributing to
cervical cancer development.338

7.2.6 Abnormalities in structural proteins
lead to diseases

The “loop extrusion” model, mediated by CTCF, cohesin,
and their regulators, effectively elucidates TAD forma-
tion and remote enhancer–promoter interactions within
TAD.342 Previous research has demonstrated distinct func-
tions of cohesin and CTCF in TAD formation.78,79 Abnor-
malities in cohesin or CTCF function can result in aberrant
gene expression due to alterations in higher chromatin
structure. Mutations in genes encoding cohesin subunits

or regulatory factors can disrupt TAD formation and chro-
matin interactions, affecting normal gene expression.343
These mutations, which impact cohesin activity and func-
tion, are termed “cohesinopathies”.344 Cornelia de Lange
syndrome (CdLS) is characterized by intellectual disabil-
ity, microcephaly, growth retardation, and upper limb
deformities.345 CdLS pathogenesis is linked to cohesin
dysfunction.344,345 NIPBL mutations are found in 65% of
CdLS patients.346,347 Normally, the cohesin loader NIPBL
introduces cohesin into the promoter of highly expressed
genes,84,348,349 facilitating its movement along chromatin
fibers.87,350 In primary fibroblasts derived from CdLS
patients, cohesin is still loaded at specific sites, but its
chromatin fiber binding stability is reduced.351 The NIPBL
mutation decreases cohesinmobility and ultimately affects
the DNA loop extrusion process and TAD formation.351
CTCF is involved in forming chromosomal higher-order

structures and plays a crucial role in cell differentiation
and apoptosis.352–354 Located at TAD boundaries, CTCF
avoids ectopic contact with enhancers while promoting
high-frequency enhancer–promoter interactions within
the TAD.However, CTCF is highly sensitive tomethylation
levels,355,356 and abnormally elevated methylation levels
at CTCF-DNA binding sites cause disruption of the TAD
boundaries,357 leading to a decrease in enhancer–promoter
interactions within the TAD and an increase in inter-TAD
interactions.78 This mechanism was first identified in the
study of isocitrate dehydrogenase (IDH) mutant gliomas.
IDHmutant glioma patients have increased levels of DNA
methylation,357,358 resulting in ectopic interaction between
the enhancer located 50 kb upstream of FIP1L1 and the
proto-oncogene PDGFRA promoter, leading to a three-
fold increase in the expression level of proto-oncogene
PDGFRA and promoting glioma cell proliferation.359 Sim-
ilarly, in regions of pathogenic short tandem repeats, local
DNA methylation levels elevate and affect local CTCF
binding sites.360,361 Short tandem repeats comprise repeats
of three or more base pairs in a DNA sequence. They
make up approximately 1% of the human genome and
are generally non–pathogenic.362 Recent Hi-C data sug-
gested that in various congenital disorders, such as fragile
X syndrome, Friedreich’s ataxia, andHuntington’s disease,
pathogenic short tandem repeat sequences are located at
the TAD boundary.363–366 These pathogenic short tandem
repeat regions have abnormally elevated local methylation
levels and alter the TAD boundaries, contributing to many
congenital disorders.367,368 For example, FMR1 has been
identified as the pathogenic gene in fragile X syndrome.369
Disruption of the FMR1-TAD boundary due to increased
local methylation in the genome of Fragile X syndrome
patients results in disrupted FMR1 interaction with telom-
ere orientation cognate enhancers and decreased FMR1
expression.370
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7.3 Chromatin loop and disease

During disease development, chromatin loops experi-
ence reprogramming in a cell-specific manner, regulating
gene expression. Systemic lupus erythematosus (SLE) is
an autoimmune disease frequently involving multiple
organs.371 In CD4+ T cells derived from SLE patients, 391
disease-specific chromatin loops are present, encompass-
ing crucial inflammation-related and immunity-related
genes, including DDX60L and CXCL13.372,373 Notably, the
DDX60L locus contains two disease-specific chromatin
loops, whose formation is associated with histone modi-
fications in the promoter region mediated by transcription
factor SPI1.372,373
Dilated cardiomyopathy (DCM) is a leading cause of

heart failure.374,375 Recent studies have revealed that dur-
ing DCM development, enhancer–promoter loop dynamic
remodeling occurs extensively across the genome in
response to rapid transcription under cardiac stress
conditions.376 Chromatin loops reprogramming, directly
driven by transcription factor HAND1, results in ele-
vated expression levels of DCM-associated pathogenic
genes.376 For instance, the NPPA-AS1 promoter possesses
enhancer functions, interacting with NPPA and NPPB
promoters during DCM development and leading to the
co-transcription of NPPA and NPPB.376
Distant metastasis in pancreatic cancer significantly

contributes to its poor prognosis.377 Recent investigations
suggest that pancreatic cancer distantmetastasis correlates
with epigenetic alterations.378 In metastatic pancreatic
cancer cells, the number of chromatin loops increases,
along with the emergence of cell-specific chromatin loops.
LIPC, a gene promoting pancreatic cancer metastasis, is
implicated in tumor cell migration and invasion.378 LIPC
expression is modulated by Enhancer 3 and Enhancer 4,
while tissue-specific chromatin loops form progressively
during pancreatic cancer distant metastasis, enhancing
LIPC expression.378 Additionally, disease-specific chro-
matin loop formation has been observed inAML, involving
oncogenes such as MYCN,WT1, and RUNX1.379 For exam-
ple, a specific interaction between the MYCN promoter
and enhancers situated 650 kb downstream is related to
AML onset.379

8 CONCLUSION AND PERSPECTIVE

The 3D genome structure and its functions have long
been a focal point. In recent years, significant advances
have been made in this area due to the rapid devel-
opment of chromatin conformation capture techniques
and super-resolution fluorescence imaging technologies.
In this review, the structural hierarchy of the 3D genome,

the effect and mechanisms of cis-regulatory element inter-
actions in the 3D genome for regulating spatiotemporally
specific gene expression, the role and mechanisms of
dynamic changes in 3D chromatin conformation dur-
ing embryonic development, and the pathological mech-
anisms of diseases such as congenital developmental
abnormalities and cancer, which are attributed to alter-
ations in 3D genome organization and aberrations in key
structural proteins, were systematically discussed. In sum-
mary, the 3D genome structure plays crucial roles in cell
differentiation and disease development by regulating spa-
tiotemporal gene expression, which may offer some clues
for precise diagnosis and treatment of related diseases.
Nevertheless, further research is needed to under-

stand the fundamental principles of 3D genome organi-
zation and the relationship between 3D genome structure
and spatiotemporal gene expression. The recent develop-
ment of single-cell chromatin conformation capture tech-
niques and genome architecturemapping technologies has
enabled a more in-depth exploration of the structural and
functional features of the 3D genome. This also includes
the mechanisms by which chromatin higher-order struc-
tures regulate cell-type-specific gene expression, thereby
shedding light on the impact of the genome’s spatial
organization on cell differentiation and fate determination.
Furthermore, SVs and abnormalities in structural pro-

teins can influence the function of cis-regulatory elements,
leading to atypical gene expression and, consequently,
various diseases. Advancements in chromatin conforma-
tion capture techniques and transcriptomics will facilitate
a deeper understanding of the pathological mechanisms
underlying developmental defects and cancer. This will
provide new theoretical insights and research directions
for prenatal screening and precision diagnosis and intro-
duce novel therapeutic targets for treating a more com-
prehensive range of congenital diseases and malignant
tumors.
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