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Abstract

Background: Bronchiolitis is the leading cause of hospitalization of U.S. infants and an 

important risk factor for childhood asthma. Recent evidence suggests that bronchiolitis is clinically 

heterogeneous. We sought to derive bronchiolitis endotypes by integrating clinical, virus, and 

lipidomics data, and to examine their relationship with subsequent asthma risk.

Methods: This is a multicenter prospective cohort study of infants (age <12 months) hospitalized 

for bronchiolitis. We identified endotypes by applying clustering approaches to clinical, virus, 

and nasopharyngeal airway lipidomic data measured at hospitalization. We then determined their 

longitudinal association with the risk for developing asthma by age six years by fitting a mixed-

effects logistic regression model. To account for multiple comparisons of the lipidomics data, we 
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computed the false discovery rate (FDR). To understand the underlying biological mechanism of 

the endotypes, we also applied pathway analyses to the lipidomics data.

Results: Of 917 infants with bronchiolitis (median age, 3 months), we identified 

clinically- and biologically-meaningful lipidomic endotypes: A) cinicalclassiclipidmixed (n=263), 

B) clinicalseverelipidsphingolipids-high (n=281), C) clinicalmoderatelipidphospholipids-high 

(n=212), and D) clinicalatopiclipidsphingolipids-low (n=161). Endotype A infants were characterized 

by “classic” clinical presentation of bronchiolitis. Profile D infants were characterized by 

a higher proportion of parental asthma, IgE sensitization, and rhinovirus infection, and low 

sphingolipids (e.g., sphingomyelins, ceramides). Compared with endotype A, profile D infants 

had a significantly higher risk of asthma (22% vs. 50%; unadjusted OR, 3.60; 95%CI, 2.31– 

5.62; P<0.001). Additionally, endotype D had a significantly lower abundance of polyunsaturated 

fatty acids (e.g., docosahexaenoic acid [DHA]; FDR=0.01). The pathway analysis revealed that 

sphingolipid metabolism pathway was differentially-expressed in endotype D (FDR=0.048).

Conclusions: In this multicenter prospective cohort study of infants with bronchiolitis, 

integrated clustering of clinical, virus, and lipidomic data identified clinically- and biologically-

distinct endotypes that have a significantly differential risk for developing asthma.

INTRODUCTION

Bronchiolitis is the leading cause of hospitalization in U.S. infants, accounting for 

~110,000 hospitalizations annually [1]. In addition to the substantial acute disease burden, 

the literature has also highlighted its chronic morbidities [2]. Indeed, of these infants 

hospitalized for bronchiolitis, approximately 30% will develop childhood asthma [3–6].

Although bronchiolitis has traditionally been thought of as a single disease entity with a 

similar mechanism [7], growing evidence supports the heterogeneity of this condition [8]. 

For example, recent epidemiologic studies have reported and validated clinically-distinct 

subgroups of bronchiolitis [9] with a different risk of the development of recurrent 

wheeze [10] and asthma [11, 12]. Yet, these subgroups (phenotypes) were identified only 

through clinical characteristics. The pathobiological mechanisms underlying the clinical 

heterogeneity remains to be elucidated. This insufficient understanding of pathobiology of 

bronchiolitis during infancy—a critical period for airway development—has hindered efforts 

to develop targeted asthma prevention strategies in this high-risk population. Lipidomics 

is well-suited to address this limitation by comprehensively profiling lipids, which not 

only comprise the major structural basis of cell membranes but also have active roles 

in biological signaling [13, 14]. Recent research has suggested that their dysregulation is 

responsible for the pathobiology of various diseases, including bronchiolitis [15–17] and 

asthma [18–22]. However, no study has yet investigated biologically-distinct molecular 

subgroups (endotypes) of infant bronchiolitis based on their lipidomic signatures.

To address this knowledge gap, we analyzed data from a multicenter prospective cohort 

of infants hospitalized for bronchiolitis to 1) identify distinct nasopharyngeal lipidomic 

endotypes of bronchiolitis by applying an integrated clustering approach, and 2) determine 

their association with the subsequent development of recurrent wheeze and asthma.
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METHODS

Study design, setting, and participants

We analyzed data from a multicenter prospective cohort study of infants hospitalized for 

bronchiolitis—the 35th Multicenter Airway Research Collaboration (MARC-35) study [23, 

24]. MARC-35 is coordinated by the Emergency Medicine Network (EMNet, www.emnet-

usa.org), an international research collaboration with 247 participating hospitals. Details of 

the study design, setting, participants, data collection, testing, and statistical analysis may be 

found in the Supplemental Methods.

Briefly, MARC-35 investigators at 17 sites across 14 U.S. states (Supplemental Table E1) 

enrolled infants (age <1 year) who were hospitalized with an attending physician diagnosis 

of bronchiolitis during three bronchiolitis seasons (November 1 to April 30) from 2011 

to 2014. The diagnosis of bronchiolitis was made according to the American Academy of 

Pediatrics bronchiolitis guidelines, defined as acute respiratory illness with a combination of 

rhinitis, cough, tachypnoea, wheezing, crackles, or retraction [7]. We excluded infants with 

a preexisting heart and lung disease, immunodeficiency, immunosuppression, or gestational 

age <32 weeks. All patients were treated at the discretion of the treating physicians.

Of 921 infants enrolled into the longitudinal cohort, the current analysis investigated 

917 infants who underwent nasopharyngeal lipidomic testing. All study procedures were 

approved by the responsible bioethics committee at each participating hospital and were in 

accordance with the World Medical Association Declaration of Helsinki. A written informed 

consent was obtained from the parent or guardian.

Data collection

Clinical data (demographic characteristics, family, environmental, and medical history; and 

details of the acute illness) were collected via structured interview and chart reviews [15]. In 

addition to the clinical data, investigators also collected nasopharyngeal airway specimens at 

hospitalization using a standardized protocol [25, 26]. These specimens underwent 1) viral 

testing of 17 respiratory viruses (including respiratory syncytial virus [RSV], rhinovirus) 

using real-time polymerase chain reaction (RT-PCR) assays at Baylor College of Medicine 

(Houston, TX, USA) [25, 26], 2) complex lipidomic profiling at Metabolon (Durham, 

NC, USA), and 3) RNA sequencing (transcriptome profiling; n=243) at the University of 

Maryland (Baltimore, MD, USA) [19].

Nasopharyngeal complex lipidomic profiling

Lipids were extracted from the nasopharyngeal specimens by a modified Bligh-Dyer 

extraction using methanol/water/dichloromethane in the presence of deuterated internal 

standards [27]. The extracts were dried under nitrogen and reconstituted in ammonium 

acetate dichloromethane: methanol. The extracts were transferred to vials for infusion-mass 

spectrometry (MS) analysis, performed on a Shimadzu liquid chromatograph (LC) with 

nano PEEK tubing (Shimadzu Scientific Instruments, Kyoto, Kyoto, Japan) and the SCIEX 

SelexIon-5500 QTRAP (SCIEX, Toronto, ON, Canada). The specimens were analyzed by 

both positive and negative mode electrospray. Individual lipid species were then quantified 
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by taking the ratio of the signal intensity of each target compound to that of its internal 

standard, then multiplying by the concentration of internal standard added to the specimen.

Nasopharyngeal transcriptomic profiling

The details of RNA extraction, RNA-sequencing, quality control, and transcriptome 

profiling are described in the Supplemental Methods. Briefly, after total RNA extraction, 

DNase treatment, and ribosomal RNA reduction, we performed RNA-sequencing with 

NovaSeq6000 (Illumina, San Diego, CA, USA) using an S4 100PE Flowcell (Illumina, San 

Diego, CA, USA). All RNA-sequencing samples had high sequence coverage after quality 

control. The transcript abundances were estimated with Salmon using the human genome 

hg38 and the mapping-based mode [28].

Outcome measures

The primary outcome was the development of asthma by six years of age. Asthma was 

defined using a commonly used epidemiologic definition: physician diagnosis of asthma, 

with either asthma medication use (e.g., inhaled bronchodilators, inhaled corticosteroids, 

leukotriene receptor antagonists) or asthma-related symptoms (e.g., wheezing, nocturnal 

cough) in the preceding year [29]. The secondary outcome was the development of recurrent 

wheeze by three years of age. Recurrent wheeze was defined as having at least two 

corticosteroid-requiring exacerbations in six months or at least four wheezing episodes in 

one year that last at least one day and affect sleep [30].

Statistical analysis

The study objectives were 1) to identify biologically-distinct lipidomic endotypes among 

infants hospitalized for bronchiolitis (clustering), and 2) to relate them to subsequent clinical 

outcomes (association). The analytic workflow is summarized in Figure 1. The details of the 

statistical analysis can be found in the Supplemental Methods.

First, we computed a distance matrix for each of the three datasets (clinical, virus, and 

lipidomic data). Based on a priori knowledge [15, 19, 24, 31, 32], we choose clinical 

(age, sex, birth weight, history of breathing problems, lifetime antibiotics use, lifetime 

corticosteroid use, parental asthma, parental eczema, IgE sensitization, and intensive care 

use) and virus (RSV, rhinovirus species A and C, and virus genomic load) variables. We 

analyzed lipidomic data for 982 lipid species. We then derived mutually-exclusive clusters 

for each dataset by using a consensus clustering algorithm [33]. To choose an optimal 

number of clusters for each dataset, we used a combination of the consensus matrix, 

consensus cumulative distribution function, cluster consensus value, cluster size, and clinical 

and biological plausibility (Supplemental Figures E1–3) [15, 19, 24, 31, 32, 34]. Second, 

we combined these clusters (i.e., the clinical, virus, and lipidomic clusters) to derive a fused 

matrix, computed a Gower distance, and derived mutually-exclusive endotypes [33]. Third, 

to interpret the endotypes clinically and biologically, we developed chord diagrams on the 

relationship of the endotypes with major clinical and virus variables as well as a heatmap 

of the major lipid classes. Fourth, to determine the longitudinal association of the endotypes 

with asthma risk, we constructed a mixed-effects logistic regression model accounting for 

patient clustering within hospitals. As there was no significant between-endotype difference 
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in the proportion of the outcome missingness (n=59; P=0.85), we conducted a complete 

case analysis. To determine the association with the rate of recurrent wheeze, we modeled 

the time to the outcome by fitting a Cox proportional hazards model. Patients who did 

not have an outcome were censored at their last follow-up interview during the 36-month 

follow-up period. We verified the proportionality of hazards assumption through examining 

the Schoenfeld residuals. Fifth, to examine the function of each endotype, we conducted 

three analyses: i) between-endotype examinations of fatty acids, ii) metabolic pathway 

analysis by comparing the reference endotype with each of the other endotypes with 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) as the reference [35], and iii) 

integrated transcriptomic-lipidomic pathway analysis in a subset of subject (n=243) using 

MetaboAnalyst 5.0 [36].

Lastly, in the sensitivity analysis, we first examined the endotype-asthma associations 

after excluding infants with a previous breathing problem. Second, we also examined the 

robustness of the endotype-outcome association by repeating the analysis using a different 

number of endotypes. We performed the statistical analysis using R version 3.6.1. (R 

Foundation, Vienna, Austria). We computed the Benjamini-Hochberg false discovery rate 

(FDR) that allows for the interpretation of statistical significance in the context of multiple 

hypothesis testing [37].

RESULTS

Of 921 infants enrolled into the MARC-35 longitudinal cohort, the current study focused on 

917 infants hospitalized for bronchiolitis who underwent nasopharyngeal lipidomic testing. 

Among the current cohort, the median age was 3 (interquartile range [IQR], 2–6) months, 

60% were male, and 44% were non-Hispanic white. Overall, 89% had RSV, 20% had 

rhinovirus, and 15% underwent intensive care use during the hospitalization (Table 1).

Multi-modal clustering identified distinct lipidomic endotypes among infants with 
bronchiolitis

After integrating the cluster data derived from each of the clinical, virus, and lipidomic 

datasets (Figure 1 and Supplemental Figures E1–3), we applied the consensus clustering 

approach. The combination of the consensus matrix, consensus cumulative distribution 

function, cluster consensus value, endotype size (n=161–281), and clinical and biological 

plausibility found that a 4-class model was an optimal fit (Supplemental Figure 

E4), with the four lipidomic endotypes called A, B, C, and D. The four distinct 

endotypes were chiefly characterized by their clinical and lipidomic characteristics: A) 

clinicalclassiclipidmixed (n=263; 29%), B) clinicalseverelipidsphingolipids-high (n=281; 31%), C) 

clinicalmoderatelipidphospholipids-high (n=212; 23%), and D) clinicalatopiclipidsphingolipids-low 

(n=161;18%).

Between the endotypes, several clinical characteristics were significantly different (P<0.05; 

Table 1 and Figure 2). Figure 3A summarizes between-endotype differences in lipid classes 

(all FDR<0.05). Endotype A (clinicalclassiclipidmixed) infants were characterized by a young 

age, a high proportion of males, a low proportion of breathing problem history, parental 

history of asthma and eczema, and IgE sensitization, and a high proportion of RSV 
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infection, with a mixed lipidomic profile. In many clinical aspects, endotype A resembled 

“classic” bronchiolitis. Endotype B (clinicalseverelipidsphingolipids-high) was the most severe 

endotype with a high proportion of girls, intensive care use, prolonged hospital length-of-

stay, and RSV infection, with the highest abundance of sphingolipids (including ceramides) 

(Figures 2A and 3A). Endotype C (clinicalmoderatelipidphospholipids-high) infants were 

characterized by an intermediate severity among the four endotypes (moderate severity), 

with the highest abundance of phospholipids (Figures 2B and 3A). Lastly, endotype 

D (clinicalatopiclipidsphingolipids-low) infants were characterized by a high proportion of 

breathing problem history, eczema, parental history of asthma and eczema, and IgE 

sensitization, and a high proportion of rhinovirus infection, with the lowest abundance of 

sphingolipids and the highest abundance of lysophosphatidylcholine (LPC) (Figures 2C and 

3A).

Lipidomic endotypes had differential risks of chronic airway morbidities

To investigate the longitudinal association of the lipidomic endotypes with the clinical 

outcomes, we compared the outcome risks between endotype A (who resemble classic 

bronchiolitis) and each of the other endotypes. Compared to endotype A, endotype D had 

a significantly higher risk of developing asthma (22% vs. 50%; odds ratio [OR], 3.60; 

95%CI, 2.31–5.62; P<0.001; Figure 4). For the recurrent wheeze outcome, the Kaplan-Meier 

curves significantly differed between the endotypes (Plog-rank=0.01; Figure 5). Compared to 

endotype A, endotype D had a significantly higher rate (30% vs. 43%; hazard ratio [HR], 

1.65; 95% CI, 1.19–2.27; P=0.003; Figure 4). In contrast, the risk of asthma and the rate of 

recurrent wheeze were not significantly different in endotype B or C infants.

Lipidomic endotypes had distinctly different functional characteristics

The lipidomic endotypes of infant bronchiolitis had distinctly different lipid classes (all 

FDR<0.05; Figure 3A) and fatty acid profiles (all FDR<0.05 except for hexacosanoic acid; 

Figure 3B). For example, compared to endotype A, endotype D had a lower abundance 

of ceramides and sphingomyelins (FDR≤0.10; Figure 6A) and polyunsaturated fatty acids 

(PUFAs), including docosahexaenoic acid (DHA) (FDR<0.05; Figure 6B). Likewise, 

the metabolic pathway analysis revealed that the sphingolipid metabolism pathway was 

differentially enriched between endotypes A and D (FDR<0.05; Figure 6C). Similarly, the 

integrated transcriptomic-lipidomic analysis also revealed a between-endotype difference 

in the sphingolipid and α-linolenic acid (an ω−3 fatty acid) metabolism pathways (both 

FDR<0.05; Figure 6D).

For the comparisons of endotype A with each of the other endotypes (B and C), the detailed 

functional differences are summarized in Supplemental Figures E5 and 6. For example, 

the pathway analyses demonstrated that endotype B (clinicalseverelipidsphingolipids-high) 

had a differentially-enriched sphingolipid metabolism pathway and that endotype C 

(clinicalmoderatelipidphospholipids-high) had a differentially-enriched glycerophospholipid 

metabolism pathway (both FDR<0.05).
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Sensitivity analysis demonstrated the robustness of the findings

In the analysis limiting to infants without a previous breathing problem, the endotype-

outcome associations remained consistent (Supplemental Table E2). For example, compared 

with endotype A, profile D infants had a significantly higher risk of asthma (OR, 3.64; 

95%CI, 2.18–6.08; P<0.001). Next, different numbers of endotypes were also examined. 

The alluvial plot (Supplemental Figure E7) demonstrates consistency with the original 

endotypes across the different numbers chosen. With the use of 5-class models (endotypes 

1–5), for example, endotype 1 had 100% concordance with the original endotype A 

and the endotype 5 had 100% concordance with endotype D (Supplemental Table 

E3). Additionally, compared to endotype 1 (concordant with endotype A), endotype 5 

(concordant with endotype D) had a significantly higher risk of asthma (19% vs. 53%; 

OR, 4.72; 95%CI, 2.86–7.81; P<0.001; Supplemental Figure E8). Likewise, in the rate 

of developing recurrent wheeze, the Kaplan-Meier curves significantly differed between 

the endotypes (Plog-rank=0.01; Supplemental Figure E9). Lastly, compared to endotype 1, 

endotype 5 had a significantly higher rate (28% vs. 41%; HR, 1.70; 95% CI, 1.18–2.46; 

P=0.005; Supplemental Figure E8).

DISCUSSION

By applying a clustering approach to the integrated clinical, virus, and nasopharyngeal 

lipidomic data from a multicenter prospective cohort of 917 infants hospitalized for 

bronchiolitis, we identified four endotypes. These endotypes not only had distinct lipidomic 

profiles but also invoked differential risks of chronic airway morbidities—the development 

of recurrent wheeze and asthma. In particular, compared with infants with an endotype 

A (cinicalclassiclipidmixed), those with an endotype D (clinicalatopic lipidsphingolipids-low) had 

a significantly higher risk. Furthermore, endotype D had a unique fatty acid profile with 

low PUFAs (e.g., DHA). The sensitivity analysis indicated the robustness of our inference. 

To the best of our knowledge, this is the first investigation that has identified clinically-

meaningful and biologically-distinct lipidomic endotypes among infants with bronchiolitis 

and demonstrated their longitudinal relationships with the risk of chronic respiratory 

outcomes.

Epidemiological studies have indicated heterogeneity of bronchiolitis by demonstrating 

reproducible clinical subtypes (phenotypes) based on clinical data [10–12]. For example, 

a recent analysis of three cohort studies of bronchiolitis in the U.S. and Finland has 

revealed that the phenotype characterized by a history of breathing problems, allergic 

predisposition, and rhinovirus infection had a significantly increased risk for asthma [12]

—which is in line with the present analysis. Additionally, previous reports using global 

metabolomics (i.e., not lipidomics) have suggested pathobiological roles of complex lipids 

in the pathobiology of both acute respiratory infections [17, 38–42] and asthma [19, 

43, 44]. For example, concordant with the endotype B (clinicalseverelipidsphingolipids-high) 

observed in the current study, a metabolomic analysis of 144 infants with bronchiolitis has 

reported a positive association of sphingolipids in the upper airway with higher bronchiolitis 

severity [15]. Furthermore, consistent with the endotype D (clinicalatopiclipidsphingolipids-low) 

observed in the current study, an analysis of plasma metabolome has reported that lower 
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levels of ceramides and sphingomyelins at age six months were associated with a higher 

risk of asthma-like symptoms before age three years in two birth cohort studies from 

Denmark and the U.S [18]. Moreover, another global metabolomic analysis of infants 

with bronchiolitis has shown that the “metabotype” characterized by a low abundance of 

PUFAs (e.g., α-linolenic acid) had the highest risk for developing asthma by five years 

[19]. These studies have collectively suggested important roles of functional lipids in the 

pathogenesis of childhood asthma. The current multicenter prospective study builds on these 

previous reports, and extends them by comprehensively investigating airway lipids and 

demonstrating biologically-distinct bronchiolitis endotypes that have differential risks for 

developing asthma.

The exact mechanisms underlying the observed endotypes—particularly endotype D 

characterized by rhinovirus infection, unique lipidomic profiles (e.g., lower sphingolipid 

and PUFA levels and higher LPC levels), and the highest asthma risk—warrant further 

clarification. First, studies have suggested that sphingolipids play important roles in the 

airway immune response, contributing to asthma pathogenesis [19, 45] For example, 

the inhibition of serine palmitoyl-CoA transferase—the rate-limiting enzyme of de novo 
sphingolipid biosynthesis—in the airways alters the pulmonary sphingolipid composition 

(e.g., decreased ceramides) and results in bronchial hyperreactivity [19]. Second, 

sphingolipid biosynthesis is regulated by the ORMDL3 gene in the 17q21 locus—one of 

the most widely replicated loci in the asthma GWAS literature [46]. Its overexpression 

results in decreased sphingolipid levels [17] and increased asthma risks [47]. Consistently, 

an epidemiologic study has also shown an interaction between 17q21 variants and rhinovirus 

infection in early childhood on the risk of asthma development [48]. Third, research has 

also suggested immune modulating roles of PUFAs (e.g., ω−3 PUFAs, including DHA and 

eicosapentaenoic acid [EPA]) in asthma pathobiology [49]. For example, DHA and EPA 

are precursors for protectins and resolvins, which bring about a programmed resolution 

of the inflammatory process [50, 51]. Observational studies and randomized controlled 

trials have also shown a protective effect of PUFAs on asthma development [52–54]—

e.g., an inverse association of plasma PUFA levels and dietary PUFA intake with the risk 

of allergic sensitization and asthma-like symptoms at age 3 years [52]. Supplementation 

with ω−3 long-chain PUFAs during the third trimester of pregnancy significantly reduced 

the risk of persistent wheeze or asthma in offspring [53]. Lastly, we also observed that 

LPC level is highest in endotype D. Consistently, observational studies have reported 

that LPC—a pro-inflammatory lipid mediator—is elevated in the bronchoalveolar lavage 

fluids of patients with asthma [55, 56]. Additionally, mouse models also demonstrated 

that intranasal LPC exposure increases Th2 cytokine levels, airway inflammation, and 

hyperresponsiveness [57]. Notwithstanding the complexity of these potential mechanisms, 

our findings—in conjunction with the existent literature—should facilitate further research 

into the mechanisms underlying the bronchiolitis-asthma link and the development of early 

and targeted interventions (e.g., supplementation of DHA) for asthma prevention.

LIMITATIONS

This study has several potential limitations. First, bronchiolitis involves lower airway 

inflammation in addition to that of upper airways. Although the current study relied on 
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nasopharyngeal airway data, research has demonstrated that upper airway specimens offer 

a reliable representation of inflammatory profiles in the lower airways [58]. Additionally, 

the use of upper airway specimens is favored because bronchoscopy or other lower airway 

sampling methods are invasive in these infants. Second, the nasopharyngeal specimens were 

obtained at the time of bronchiolitis hospitalization. While sequential lipidomic testing 

would also be instrumental, the goal of the current study was to identify lipidomic endotypes 

of bronchiolitis. Even with the single–time point data, the study successfully identified 

biologically-meaningful endotypes that have differential risks of asthma development. Third, 

our data did not include detailed nutritional information (e.g., supplemental DHA use by the 

mother and infants), which may have contributed to the endotypes. Fourth, the current study 

did not have non-bronchiolitis controls. Nonetheless, the objective of the study was not to 

assess lipidomic endotypes related to incident bronchiolitis but to examine the relationship 

of endotypes with subsequent asthma risk among infants hospitalized for bronchiolitis 

[4]. Fifth, although this hypothesis-generating study derives novel and well-calibrated 

hypotheses that guide future experiments, our inferences warrant further validation. Lastly, 

while the study sample consists of racially/ethnically- and geographically-diverse infants, 

the generalization of our findings to other populations (e.g., infants with mild-to-moderate 

bronchiolitis) requires caution. Regardless, our observations remain directly relevant to the 

110,000 infants hospitalized yearly in the U.S.—a patient population with large morbidity 

[1].

CONCLUSIONS

By integrating the clinical, virus, and nasopharyngeal airway lipidomic data from 

a multicenter prospective cohort study of 917 infants hospitalized for bronchiolitis, 

we identified four clinically-meaningful and biologically-distinct lipidomic endotypes. 

Specifically, compared with the endotype that clinically resembles “classic” bronchiolitis, 

lipidomic endotype D —which was characterized by a higher proportion of previous 

breathing problems, history of eczema, parental asthma, IgE sensitization, and rhinovirus 

infection, and specific lipidomic profile (e.g., low sphingolipids and PUFAs)—had a higher 

risk for developing recurrent wheeze and asthma. Our data lend significant support to 

the emerging concept that bronchiolitis is a heterogeneous syndrome involving different 

pathobiological mechanisms. For clinicians, our observations provide an evidence base for 

early identification of infants at high risk for childhood asthma. For researchers, our findings 

should advance research into the development of endotype-specific strategies for asthma 

prevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key messages

What is already known on this topic:

Emerging evidence suggests that bronchiolitis is a heterogeneous condition. Although 

subgroups (phenotypes) were identified only through clinical characteristics, little is 

known about its biologically-distinct subgroups (endotypes) based on the molecular 

signatures and their longitudinal relationships with asthma development.

What this study adds:

Integrated clustering of clinical, virus, and nasopharyngeal lipidomic data in infants 

with bronchiolitis revealed biologically-distinct endotypes (e.g., an endotype with low 

sphingolipids and PUFAs) that have differential risks for asthma development.

How this study might affect research, practice or policy:

Our observations not only lend significant support to the emerging concept 

that bronchiolitis is a heterogeneous syndrome involving different pathobiological 

mechanisms but also provide an evidence base for early identification of infants at high 

risk for asthma.
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Figure 1. Analytic workflow of lipidomic endotyping
The analytic cohort consists of 917 infants hospitalized for bronchiolitis in a multicenter 

prospective cohort study—MARC-35. At enrolment, the nasopharyngeal airway specimens 

were collected for lipidomic and transcriptomic profiling.

1. Clustering individual datasets: We first computed a distance matrix and identified 

mutually exclusive clusters for each of the clinical, virus, and lipidomic datasets by applying 

consensus clustering algorithms.
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2. Clustering fused matrix: By integrating these derived clusters from three datasets, 

we generated a fused matrix and computed a Gower distance. By applying a consensus 

clustering algorithm to the fused matrix, we identified four mutually exclusive lipidomic 

endotypes. To choose an optimal number of profiles, we used a combination of consensus 

matrix, consensus cumulative distribution function, cluster consensus value, endotype size, 

and clinical and biological plausibility.

3. Examining clinical and biological characteristics of endotypes: To interpret the 

lipidomic endotypes clinically and biologically, we developed chord diagrams on major 

clinical and virus variables and a heatmap of 14 major lipid classes.

4. Determining clinical significance of endotypes: To examine clinical significance of 

the endotypes, we determined the longitudinal relationship of the lipidomic profiles with 

the risk for developing asthma (the primary outcome) and recurrent wheeze (the secondary 

outcome). We constructed logistic regression models for asthma development and Cox 

proportional hazards models for recurrent wheeze.

5. Investigating the biological significance of each endotype: We conducted three 

analyses: i) between-endotype examinations of fatty acids, ii) metabolic pathway analysis, 

and iii) integrated transcriptomic-lipidomic pathway analysis.

6. Examining the robustness of the findings: In the sensitivity analysis, we also examined 

the concordance between different numbers of lipidomic endotypes.
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Figure 2. Major clinical and virus characteristics according to the lipidomic endotypes among 
infants hospitalized for bronchiolitis
The ribbons connect from the individual lipidomic profiles to the major clinical and virus 

characteristics. The width of the ribbon represents the proportion of infants within the profile 

who have the corresponding clinical or virus characteristic, which was scaled to a total of 

100%. For example, in panel C, the endotype A infants (blue) had a high proportion of 

males, a low proportion of previous breathing problems, parental history of asthma and 

eczema, and IgE sensitization, and a high proportion of RSV infection. In contrast, endotype 

D (red) infants had a high proportion of previous breathing problems, parental history of 

asthma and eczema, and rhinovirus infection.

Abbreviations: IgE, immunoglobulin E; RSV, respiratory syncytial virus

A. Comparison of endotype A (blue) with endotype B (green)

B. Comparison of endotype A (blue) with endotype C (orange)

C. Comparison of endotype A (blue) with endotype D (red)
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Figure 3. Lipid classes and fatty acids according to the lipidomic endotypes among infants 
hospitalized for bronchiolitis
Heatmaps show the mean values for the corresponding A) lipid classes and B) fatty acids 

in each of the four lipidomic endotypes. The areas of circles and colors represent the mean 

value of the corresponding value. Each variable is standardized by using auto-scaling. The 

between-endotype differences were examined by the Kruskal-Wallis test.

* False discovery rate <0.05
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Figure 4. Association of the lipidomic endotypes among infants hospitalized for bronchiolitis 
with the risk for developing asthma and recurrent wheeze
* To examine the association of the lipidomic endotypes (endotype A as the reference) with 

the risk for developing asthma, a mixed-effects logistic regression model accounting for 

potential patient clustering within the hospitals was fit.
† To examine the association between the endotypes (endotype A as the reference) and the 

rate of recurrent wheeze, a mixed-effects Cox proportional hazards model was constructed.

Abbreviation: CI, confidence interval
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Figure 5. Kaplan-Meier curves for development of recurrent wheeze by age three years, 
according to the lipidomic endotypes, among infants hospitalized for bronchiolitis
Overall, the survival curves significantly differed between the endotypes (Plog-rank=0.01). 

Compared with endotype A infants (clinicalclassiclipidmixed), the rate of developing 

recurrent wheeze by age three years was not significantly different in endotype B 

or endotype C infants. In contrast, the rate was significantly higher in endotype D 

(clinicalatopiclipidsphingolipids-low) infants (HR 1.65; 95% CI 1.19–2.27; P=0.003). The 

corresponding hazard ratio estimates are presented in Figure 4.
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Figure 6. Between-endotype differences (A vs. D) in lipidomic profiles and pathways among 
infants hospitalized for bronchiolitis
A) Lipid classes: The mean values for the corresponding lipid classes in each of lipidomic 

endotypes (A vs. D) are plotted. Each lipid class is standardized by using auto-scaling. The 

between-endotype differences were examined by Wilcoxon rank-sum test.

B) Fatty acids: The mean values for the corresponding fatty acids in each of lipidomic 

endotypes (A vs. D) are plotted. Each fatty acid is standardized by using auto-scaling. The 

between-endotype differences were examined by Wilcoxon rank-sum test.

C) Metabolic pathway analysis: In the metabolite pathway analysis, all detected pathways 

(based on the Kyoto Encyclopedia of Genes and Genomes [KEGG]) are shown. The color of 

each dot represents the pathway impact. The pathway impact is calculated as the sum of the 

importance measures of the matched metabolites normalized by the sum of the importance 

measures of all metabolites in each pathway [59].

D) Integrated transcriptomic-lipidomic pathway analysis: In the integrated 

transcriptomic-lipidomic pathway analysis, 20 pathways (based on KEGG) with the lowest 

FDRs are selected. The color of each dot represents the ratio of hit lipids and genes for the 

corresponding pathways.
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* False discovery rate (FDR) of <0.05 and ** FDR of ≤0.10 in panels A and B.

Abbreviations: DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; GPI, 

glycosylphosphatidylinositol; KEGG, Kyoto Encyclopedia of Genes and Genome
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