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Abstract
Motivation: Simultaneous profiling of multi-omics single-cell data represents exciting technological advancements for understanding cellular
states and heterogeneity. Cellular indexing of transcriptomes and epitopes by sequencing allowed for parallel quantification of cell-surface pro-
tein expression and transcriptome profiling in the same cells; methylome and transcriptome sequencing from single cells allows for analysis of
transcriptomic and epigenomic profiling in the same individual cells. However, effective integration method for mining the heterogeneity of cells
over the noisy, sparse, and complex multi-modal data is in growing need.

Results: In this article, we propose a multi-modal high-order neighborhood Laplacian matrix optimization framework for integrating the multi-
omics single-cell data: scHoML. Hierarchical clustering method was presented for analyzing the optimal embedding representation and identify-
ing cell clusters in a robust manner. This novel method by integrating high-order and multi-modal Laplacian matrices would robustly represent
the complex data structures and allow for systematic analysis at the multi-omics single-cell level, thus promoting further biological discoveries.

Availability and implementation: Matlab code is available at https://github.com/jianghruc/scHoML.

1 Introduction

With the first release of single-cell transcriptome analysis tech-
nology in 2009 (Tang et al. 2009), an explosion of research
has been conducted in obtaining high-resolution views of
single-cell RNA-seq data, such as Smart-seq (Ramsköld et al.
2012) and Smart-seq2 (Picelli et al. 2014); in vitro
transcription-based Cel-seq (Hashimshony et al. 2012) and
Cel-seq2 (Hashimshony et al. 2016); and designed primer-
based MALBAC (Zong et al. 2012), etc. Advances in scRNA-
seq technologies have enabled the exploration of cellular het-
erogeneity where traditional bulk sequencing cannot reveal.
In Zhang et al. (2018), T cell heterogeneity was investigated
in colorectal cancer. scRNA-seq data were introduced for an-
alyzing genetic tumor heterogeneity in Fan et al. (2018).
Intra-tumoral heterogeneity of pancreatic ductal adenocarci-
noma was highlighted in Peng (2019). In Sorek et al. (2021),
transcriptional heterogeneity was discovered in disease-state
neurons. Ren et al. (2021) applied scRNA-seq to obtain com-
prehensive immune landscape for better understanding of
COVID-19.

Apart from biological research in heterogeneity analysis us-
ing scRNA-seq techniques, extensive research has been

carried out in developing effective and efficient computational
methods for exploring cellular heterogeneity. For instance,
cell-pair differentiability correlation was proposed in evaluat-
ing cellular relationships (Jiang et al. 2018), and further incor-
porated for cellular heterogeneity analysis. Semi-supervised
clustering method (Chen et al. 2021) was developed for ana-
lyzing scRNA-seq data. When data are in large scale, efficient
hierarchical clustering algorithm was developed (Zou et al.
2021). Also, method focused on similarity learning was pro-
posed in Mei et al. (2021) for identifying cell types using
scRNA-seq data. Recent progress has shed light on graph at-
tention auto-encoder for scRNA-seq data representation and
clustering (Cheng and Ma 2022).

Cell state, as usually evaluated by RNA expression, may
not fully capture the complex structure embedded. It is a com-
plex representation determined by the interplay between tran-
scriptome, proteome, epigenome, etc. Multi-omics single-cell
sequencing technologies, by profiling multiple types of
“omics” expression in the same individual cells, enable the ex-
ploration of cellular heterogeneity in an integrative way.
Cellular indexing of transcriptomes and epitopes by sequenc-
ing (CITE-seq) can simultaneously measure RNA expression
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and surface protein abundance via antibody-derived tags, and
robust protein profiling contribute for better understanding
of cell states (Stoeckius et al. 2017). Single-cell methylation
and transcriptome sequencing (scM&T-seq) technique allows
for quantification of transcriptomic and epigenomic expres-
sion in the same individual cells (Angermueller 2016).
Different “omics” layers will together present more accurate
and complete view of “single cell state” and enable dissecting
regulatory heterogeneity from complex cell populations.

With the flourishing development of single-cell multi-omics
technologies, a growing number of methods have been pro-
posed for integrating multi-omics data. These methods can be
categorized into two major types. A major type of methods
was designed for multi-omics data measured in different cells.
Representative methods include Seurat (Stuart et al. 2019) for
integrating scRNA-seq and scATAC-seq data. LIGER (Welch
et al. 2019) was developed to align scRNA-seq data and
single-cell epigenomic data in a low-dimensional space.
MATCHER (Welch et al. 2017) utilized a Gaussian process
latent variable model to evaluate the correlations between
scRNA-seq data and single-cell epigenomic measurements
from different cells. In Zhana et al. (2018), a coupled nonneg-
ative matrix factorization method was proposed for integrat-
ing scRNA-seq and scATAC-seq data. Another type of
methods was proposed for integration of multi-omics profiles
measured in the same set of cells. scAI (Jin 2020) proposed a
regularized matrix factorization framework to iteratively
learn a low-dimensional representation for the multi-modal
single-cell data. In BREM-SC (Wang et al. 2020), a Bayesian
random effects mixture model was developed for joint cluster-
ing single-cell transcriptomic and proteomic data generated
by CITE-seq, where multinomial distribution was proposed
to model scRNA-seq data and Dirichlet multinomial distribu-
tion was proposed to model surface protein (ADT) data. Hao
et al. (2021) designed a weighted nearest-neighbor framework
for integrating multi-modal single-cell data. An elegant design
of modal weights in generating the weighted combination of
modality affinities is proposed to measure the final weighted
similarity metric integrating multiple modalities of single-cell
data. It would be an interesting topic on adaptively and auto-
matically determining a weighted combination of modal-
specific “similarities” or “affinities.” Considering the inherent
relationship between chromatin accessibility and gene expres-
sion, Duren et al. (2022) proposed a new concept: cis-
regulatory potential to formulate a matrix-factorization
framework to integrate scRNA-seq data and scATAC-seq
data. scAB (Zhang et al. 2022) integrated scRNA-seq data or
scATAC-seq data with annotated bulk sequencing data incor-
porating knowledge and guided graph information. The
phenotype-associated cell states and signatures were eluci-
dated through matrix factorization framework on the Pearson
correlation matrix linking single-cell data and bulk RNA se-
quencing data. There are also attempts in using deep learning
frameworks for single-cell multi-omics data integration such
as GLUE (Cao and Gao 2022), a knowledge-based guidance
graph-linked unified embedding method using variational
autoencoders. The incorporation of knowledge either from
gene–gene interaction network or bulk sequencing data would
positively contribute to a better understanding of the cell
states and characteristics described by single-cell omics data.
However, the generalization ability in other multi-omics inte-
gration may be constrained. The development of integration

techniques for single-cell multi-omics data without knowledge
information is in growing need as well.

In this article, we focus on integrative analysis of parallel
multi-omics single-cell data. Most of the current methods
mainly aim to model a common low-dimensional embedding
or unified relationship between cells. Taking into consider-
ation of the sparsity and nonlinearity nature of single-cell
data, also inspired by the above findings, we propose a multi-
modal high-order neighborhood Laplacian matrix optimiza-
tion framework (scHoML) for integrating multi-omics single-
cell data. The method is very flexible and robust, which can
be applied for efficiently integrating multi-omics data both in
simulation and real-world datasets generated by scM &T-seq,
CITE-seq technologies, etc. The article is structured as fol-
lows. In Section 2, we present preliminary information on the
framework for multi-omics data integration. Section 3
presents the method scHoML for integrating multi-omics
data. Experimental results are presented in Section 4. Section
5 discusses the application capability of scHoML. Finally,
Section 6 concludes the article.

2 Preliminaries

In this section, we provide preliminary information on the
framework for multi-omics data integration.

• High-order networks

Assume single modal dataset X ¼ ½x1;x2; . . . ;xn�T 2 Rn�d,
where n is the number of samples, d is the dimensionality of
the attributes. We first present the high-order networks for
the dataset X modeling the connectivity of the data through
definitions of adjacent matrices in different orders
Wi; i ¼ 1;2 . . . ;U.
In the construction of the first-order adjacent matrix W1,

w1;jk ¼
n

Ajk; if a pair of vertices ðj;kÞ is connected
0; otherwise

(1)

where Ajk ¼ exp � jjxj�xkjj2
2r2

� �
; 1 � j;k � n: Here, a pair

of vertices (j, k) is connected if and only if vertex j is in the
nearest neighbors of the vertex k.
In the construction of high-order adjacent matrix Wi, we
follow the similar concept in obtaining Wi�1. If wi�1;j is
similar to wi�1;k, vertex j is also similar to vertex k in a i �
1th-order connectivity. Let wi;j ¼ ðwi;j1;wi;j2; . . . ;wi;jnÞ
represent the jth row of Wi, high-order adjacent matrix
Wi; i � 2 can be derived in the following formulation.

wi;jk ¼
exp � jjwi�1;j �wi�1;kjj2

2r2

� �
; j 6¼ k; if 9t; s:t:

wi�1;jt > 0; wi�1;kt > 0
0; otherwise

8>><
>>:

(2)

where wi;jj ¼ 0; j ¼ 1; 2; . . . ;n, making Wi satisfy the form
of adjacent matrix.

• High-order Laplacian matrix

The corresponding normalized Laplacian matrices in dif-
ferent orders can be derived based on Wi; i ¼ 1; 2;3; . . ..
Let Di 2 R

n�n represent its ith-order degree matrix, a diag-
onal matrix and Di;jj ¼

Pn
k¼1 wi;jk The ith-order normal-

ized Laplacian matrix can be defined as
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LðiÞ ¼ In � ðDiÞ�
1
2WiðDiÞ�

1
2; i ¼ 1; 2; . . .

• Multi-modal Laplacian matrix

Suppose we have paralleled profiled single-cell multi-omics
data in V modals Xð1Þ;Xð2Þ; . . . ;XðVÞ, where XðiÞ 2
R

n�dðiÞ ; i ¼ 1; 2; . . . ;V is the dataset of ith modal and dðiÞ

represents the attribute dimensionality of ith modal.
According to the steps in construction of high-order
networks and high-order Laplacian matrix, we define
L
ðiÞ
p ; i ¼ 1;2; . . . ;U to represent the ith-order normalized

Laplacian matrix for the pth modal, i.e. L
ðiÞ
p ¼ In �

ðDðiÞp Þ�
1
2W
ðiÞ
p ðDðiÞp Þ�

1
2; p ¼ 1; 2; . . . ;V, where W

ðiÞ
p 2 R

n�n

represent ith-order adjacent matrix for pth modal single-
cell data, D

ðiÞ
p 2 R

n�n represent ith-order degree matrix for
the pth modal single-cell data.
Hence, in single-cell data composed of V modals, we have
in total U�V Laplacian matrices for different modals and
different orders.

• Multi-modal multi-order Laplacian matrix fusion

In multi-modal single-cell data integration, how to inte-
grate the modal-specific Laplacian matrices to formulate a
fused, appropriate Laplacian matrix is a central and criti-
cal problem.
Taking into consideration on the modal-specific Laplacian
matrices, we first integrate Laplacian matrices for specific
order i, i ¼ 1;2; . . . ;U, where

LðiÞl ¼
XV

p¼1

lpL
ðiÞ
p ;

XV

p¼1

lp ¼ 1; lp � 0; p ¼ 1;2; . . . ;V;

to integrate modal-specific proximity information from
multi-modal data.
Second, incorporating high-order connectivity information
embedded in the high-order Laplacian matrix, we propose
the linear combination of LðiÞl ; i ¼ 1;2; . . . ;U to formulate
the fused Laplacian matrix for multi-omics single-cell data

L� ¼
XU

i¼1

kiLðiÞl ;
XU

i¼1

ki ¼ 1; ki � 0; i ¼ 1;2; . . . ;U: (3)

Intuitively, we aim to approximate the fused Laplacian
matrix L� as the linear combination of different order
Laplacian matrix LðiÞl ; i ¼ 1;2; . . . ;U, respectively, to in-
corporate comprehensive structure information and seek
better representation capability of the relationship de-
scribed by multi-modal data.

3 Materials and methods

In this section, we present the method for integrating multi-
omics data, to optimize the fused Laplacian matrix, as well as
obtaining the low-dimensional representation for the multi-
omics data.

For single modal data, spectral clustering can be realized
through solving optimization problem with given Laplacian
matrix L. In terms of multi-omics single-cell data, the pro-
posed Laplacian matrix L� approximated by linear combina-
tion of different order modal-specific Laplacian matrices in
the form

PU
i¼1 kiLðiÞl has several parameters yet to be

determined.

How to automatically determine the parameters embedded in
Laplacian matrix L� and seek better representation capability of
the common embedding for multi-modal data thus constitutes a
critical challenge. Motivated by the framework of spectral clus-
tering, we propose the optimization objective as minimization
of trðHTL�HÞ, while simultaneously seek optimized H as the
low-dimensional embedding for the multi-modal data, and the
optimization problem can be expressed as follows:

min
k;H;l

trðHTL�HÞ þ kL� �
XU

i¼1

kiLðiÞl k
2
F

s:t:LðiÞl ¼
XV

p¼1

lpL
ðiÞ
p ði ¼ 1;2; . . . ;UÞ;

L� ðpositive-semi-definiteÞ; L�jk � 0; j 6¼ k

H 2 R
n�c; HTH ¼ Ic

l ¼ ½l1;l2; . . . ;lV �T ; jjljj1 ¼ 1; l � 0

k ¼ ½k1; k2; . . . ; kU�T ; jjkjj1 ¼ 1; k � 0:

(4)

3.1 Multi-modal Laplacian matrix optimization

High-order Laplacian matrix can model the hidden high-order
connection information among data, but the value of order
needs properly selected as too high order may distort the
original relationship embedded in the dataset. Hence, we fo-
cus on integration of Laplacian matrix in first order and sec-
ond order, to preserve global data structure in a better
manner, as well as improving learning performance.
However, the positive-semi-definite property of L� added in
the constraints of the optimization problem makes the opti-
mization problem hard and inefficient to solve. Taking into
consideration on the original definition of Laplacian matrix
In �D�1=2W1D�1=2, and the symmetric property of W1

that can be decomposed into eigen-matrix form
W1 ¼ ~UK ~U

T
, the optimization term L� can be reformulated

with In �WKWT , hence we alternatively propose the final
optimization problem in the following:

min
k;W;K;H;l

trðHTðIn �WKWTÞHÞ

þkIn �WKWT � ðkLð1Þl þ ð1� kÞLð2Þl Þk
2
F

s:t:LðiÞl ¼
XV

p¼1

lpL
ðiÞ
p ði ¼ 1; 2Þ;

W;H 2 R
n�c; WTW ¼ Ic; HTH ¼ Ic

l ¼ ½l1; l2; . . . ;lV �T ; jjljj1 ¼ 1; l � 0
0 � Kkk � 1; k ¼ 1;2; . . . ; c; 0 � k � 1:

(5)

Here K is a diagonal matrix, and 0 � Kkk � 1 makes sure
the optimization stable.

3.1.1 Optimization framework

Taking into consideration on the nonconvexity of the above
problem, we propose alternative optimization framework to
solve the problem by updating each variable iteratively. For
the convenience of optimization, we rewrite jjIn �WKWT �
ðkLð1Þl þ ð1� kÞLð2Þl Þjj

2
F into the following form:

tr½In � 2WKWT � 2ðkLð1Þl þ ð1� kÞLð2Þl Þ
þ2WKWTðkLð1Þl þ ð1� kÞLð2Þl Þ
þWK2WT þ ðkLð1Þl þ ð1� kÞLð2Þl Þ

2�:
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The optimization process consists of the following five steps:

• Updating k: Fixing W;K;H;l, the update of k can be real-
ized through solving the optimization problem:

min
0� k� 1

tr½ðkLð1Þl þ ð1� kÞLð2Þl Þ
2�

�2tr½ðIn �WKWTÞðkLð1Þl þ ð1� kÞLð2Þl Þ�
(6)

Define

a ¼ tr½ðLð1Þl Þ
2 � 2Lð1Þl Lð2Þl þ ðLð2Þl Þ

2� ¼ jjLð1Þl � Lð2Þl jj
2
F � 0:

b ¼ 2tr½ðLð2Þl � In þWKWTÞðLð1Þl � Lð2Þl Þ�:

1) If a > 0, we can obtain

k ¼

0; if � b

2a
< 0

1; if � b

2a
> 1

� b

2a
; otherwise

8>>>>>><
>>>>>>:

• If a ¼ 0, then we can deduce b ¼ 0. In this case, we keep k
unchanged. That means if kk represent the value of k in
kth iteration, we will let kk ¼ kk�1.

• Updating W: Given fixed k;K;H; l, the update of W
can be generated through the optimization problem as
follows:

min
WIW¼Ic

trðKWTBWÞ (7)

where B ¼ kLð1Þl þ ð1� kÞLð2Þl � 1
2 HHT .

The solution W of Equation (7) can be calculated as the
first c eigenvectors of B (Zhou et al. 2020).

• Updating K: Given fixed k;W;H;l, we optimize the fol-
lowing problem to update K:

min
0�Kii � 1;Kij¼0ði 6¼jÞ

trðK2 þ 2KCÞ; (8)

where

C ¼WT ðkLð1Þl þ ð1� kÞLð2Þl Þ �
1

2
HHT

� �
W � Ic

We can get:

Kii ¼
(

0; Cii � 0
1; Cii � �1
�Cii; otherwise

• Updating H: Fixing k;W;K; l, the optimization problem
with respect to H can be reduced into the following
formula:

min
HT H¼Ic

trðHTðIn �WKWTÞHÞ (9)

Then we can obtain the solution H of Equation (9) by cal-
culating the first c eigenvectors of In �WKWT .

• Updating l: Given fixed k;W;K;H, then we can optimize
the problem in the following form:

min
jjljj1¼1;l�0

tr½�2ðkLð1Þl þ ð1� kÞLð2Þl Þ

þ2WKWTðkLð1Þl þ ð1� kÞLð2Þl Þ
þðkLð1Þl þ ð1� kÞLð2Þl Þ

2�
(10)

The optimization problem can be rewritten as a standard
quadratic programming formulation, which can be effec-
tively solved with MATLAB quadprog.
Algorithm 1 presents the process of optimization for better
understanding of scHoML.

3.1.2 Convergence and complexity

• Convergence analysis
Since Laplacian matrix is a positive-semi-definite matrix, we
can conclude that the objective function of scHoML takes
zero as lower bound. Obtaining its global optimal solution is
difficult, because the objective function is nonconvex. If alter-
native optimization framework is applied, the objective func-
tion value decreases while updating variables. Therefore, the
algorithm will eventually converge to a local solution.

• Complexity
The computational complexity of scHoML is mainly
caused by SVD decomposition when updating W and H,
and its corresponding complexity is Oðn3Þ. Meanwhile,
the complexity of updating k and K is O(1) and O(n), re-
spectively. Furthermore, to update l, we need to solve a
standard quadratic programming problem. Let e be the
precision of the result and V be the number of modals, the
complexity of solving the quadratic programming prob-
lem is Oðe�1VÞ. If the algorithm has been run for t itera-
tions, the total complexity of our method is
Oðtðn3 þ nþ e�1VÞÞ. If e�1 � n2, the complexity of
scHoML can be considered as Oðtn3Þ.

3.2 Clustering with inferred low-dimensional

representation

In the optimization of high-order neighborhood Laplace ma-
trix, we simultaneously obtain a common low-dimensional

Algorithm 1 High-order Laplacian matrix optimization for single-cell

multi-omics data: scHoML

Input: Datasets:fX1;X2; . . . ;XV g, dimensionality of common

embedding c, number of nearest neighbors k.

Output: Low-dimensional embedding H

1: Compute L
ðiÞ
p of each modal Xp, p ¼ 1; 2; . . . ;V ; i ¼ 1;2.

2: Initialize k;W ;K;l.
3: repeat

4: Update k by solving optimization problem in Equation (6).

5: Update W by solving Equation (7).

6: Update K by solving Equation (8).

7: Update H by solving Equation (9).

8: Update l by solving Equation (10).

9: until converge.
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embedding H 2 Rn�c for the single-cell multi-modal data. The
cell subpopulations can be identified from the matrix H
through appropriate evaluation on the cellular relationships
between cells.

Assume H ¼ ½h1; h2; . . . ;hn�T 2 Rn�c, we model the dis-
tance between cell s and cell t (s; t ¼ 1;2; . . . ; n) as

Disðs; tÞ ¼ 1� ðhs � hsÞðht � htÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs � hsÞðhs � hsÞT

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðht � htÞðht � htÞT

q

where hs ¼ 1
c

Pc
j¼1 xsj; s ¼ 1;2; . . . ;n: and

Disðs; tÞ ¼
Xc

k¼1

jhsðkÞ � htðkÞj:

Agglomerative hierarchical clustering was performed on
the constructed distance matrix to entangle the heterogeneity
embedded in the cells.

An appropriate evaluation of the cluster number is critical.
We here provide a grain to coarse design of the optimal clus-
ter number. The cluster number is determined through solving
the following optimization problems.

If the involved number of samples is small, we strive to evaluate
the sample-specific Silhouette coefficient to measure the clustering
matching degree and optimize the mean Silhouette coefficient of
all samples to determine the best cluster number c?no:

c?no ¼ argmaxk2K
Xn

i¼1

ðbkðiÞ � akðiÞÞ=maxðakðiÞ; bkðiÞÞ

where akðiÞ ¼ 1
jCI j�1

P
j2CI ;i 6¼j dði; jÞ is the average distance from

the ith point to the other points in the same cluster I as i, and
bkðiÞ ¼ minJ 6¼I

1
jCJ j
P

j2CJ
dði; jÞ is the minimum average distance

from the ith point to points in a different cluster J, minimized
over clusters. For different cluster number k 2 K, we run ag-
glomerative hierarchical clustering to generate different cluster-
ing results. If most samples have a high Silhouette value, the
clustering solution is believed appropriate.

If the involved number of samples is relatively large, we
propose statistical measures in terms of variance for evalua-
tion of cluster number appropriateness.

c?no ¼ argmaxk2K
tr
Pk

q¼1 nqðcq � cEÞðcq � cEÞT
� �

=ðk� 1Þ

tr
Pk

q¼1

P
x2Cq
ðx� cqÞðx� cqÞT

� �
=ðn� kÞ

;

where Cq is the set of all data in class q, cq is the central
point of class q, cE is the central point of all data involved,
and nq is the total number of data points in class q. It is rea-
sonable that we evaluate inter-class variance and intra-class
variance to determine the optimal cluster number c?no when

tr
Pk

q¼1
nqðcq�cEÞðcq�cEÞT

� �
=ðk�1Þ

tr
Pk

q¼1

P
x2Cq
ðx�cqÞðx�cqÞT

� �
=ðn�kÞ

achieves maximum.

4 Experiments
4.1 Datasets

We introduce a number of multi-modal single-cell data to test
the performance of our proposed method.

• Simulation dataset 1.
The dataset is obtained from Jin (2020), which consists
of two simulated modals (paired scRNA-seq and
scATAC-seq) at different noise levels. The ground
truth data matrices were X1 ¼W1H;X2 ¼W2H, where
W1 ¼W1 þ qE;W2 ¼ W2 þ qE, E is the Gaussian noise
with q ¼ 0:5.

W1ði; jÞ ¼

1; 1 � i � 100; j ¼ 1;
151 � i � 300; j ¼ 2;
501 � i � 800; j ¼ 3;

0; otherwise;

8>><
>>: (11)

W2ði; jÞ ¼

1; 1 � i � 500; j ¼ 1;
1001 � i � 1500; j ¼ 2;
3001 � i � 3800; j ¼ 3;

0; otherwise;

8>><
>>: (12)

Hði; jÞ ¼

1; i ¼ 1; 1 � j � 70;
i ¼ 2; 71 � j � 130;
i ¼ 3; 131 � j � 200;

0; otherwise;

8>><
>>: (13)

Dropouts were generated by a Bernoulli distribution on
X1 and X2 with the probabilities p1i; p2j, which were de-
fined as p1i ¼ e�k1x2

i ;p2j ¼ e�k2y2
j , where xi is the mean ex-

pression level of the ith cluster of X1, yj is the mean
expression level of the jth cluster of X2. Next, Gaussian
noises were added to X1 and X2 as X1 ¼ X1 þ q1E;
X2 ¼ X2 þ q2E, where noise parameter q1 in modal 1 var-
ied from 3 to 5 with an increment 0.5, and noise parame-
ter q2 varied from 0.2 to 1 with an increment 0.2. In total,
there are 200 simulated cells, the number of attributes in
modal 1 and 2 are 5000 and 2000, respectively. The cell-
type number is 3.

• Simulation dataset 2.
The dataset is obtained from Jin (2020), which consists
of two simulated modals (paired scRNA-seq and
scATAC-seq) where some clusters that were defined
from epigenetic profile do not reflect transcriptomic
distinctions. The ground truth data matrices were
X1 ¼W1H;X2 ¼W2H, where W1 ¼W1 þ qE;
W2 ¼W2 þ qE, E is the Gaussian noise with q ¼ 0:5;
xjðnÞ ¼ ðj� 1Þðn� cophÞ.

W1ði; jÞ ¼
1; 1þ xjð200Þ � i � 200þ xjð200Þ;
0; otherwise;

	
(14)

W2ði; jÞ ¼
1; 1þ xjð500Þ � i � 500þ xjð500Þ;
0; otherwise;

	
(15)

The rank of W1 was set to be 3 and the rank of W2

(denoted as K2) varied from 3 to 7.

Hði; jÞ ¼
1; 1þ xjðcÞ � i � xjðcÞ; j � K2 � 1

or 1þ xjðcÞ � i � n; j ¼ K2;
0; otherwise;

8<
: (16)

Similar to the above-mentioned procedures, dropouts on
both X1 and X2 were generated with k1 ¼ 0:05; k2 ¼
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0:025 and added Gaussian noise with q1 ¼ 2; q2 ¼ 1. In
addition, if the values in X2 with dropouts were greater
than 0.7, we set the values to be 1, otherwise 0. In total,
there are 500 simulated cells with four different cell types,
the number of attributes in modal 1 and 2 are 5000 and
2000, respectively.

• Mouse embryonic stem cells (mESCs) data.
The dataset was obtained from 77 mESCs, including 13
cells cultured in “2i” media and 64 serum-grown cells,
which were profiled by parallel scM&T-seq technique
(Angermueller 2016).

• pbmc_inhouse data.
It is a CITE-seq dataset extracted from a healthy donor
under IRB approval from the University of Pittsburgh
(Wang et al. 2020). We follow the instructions of cell type
identification using well-defined markers, and removed
those cells with uncertain cell types. In the dataset, there
are 1242 cells in total, containing five different cell types.

• pbmc_10X data.
The multi-modal single-cell data (CITE-seq dataset) was
downloaded from 10� Genomics website. A total of
7865 human peripheral blood mononuclear cells
(PBMCs) with 14 surface protein markers are included in
the dataset in addition to matched scRNA-seq data. Cells
with uncertain cell types were removed. In total, there
are 6661 cells involved, containing seven different cell
types: B cells, CD14þ monocytes, CD16þ monocytes,
CD4þ T cells, CD8þ T cells, dendritic cells, and natural
killer (NK) cells.

4.2 Methods for comparison

We compare our proposed method scMoHL with state-of-
the-art method scAI (Jin 2020), for deconvoluting cellular het-
erogeneity from parallel transcriptomic and epigenomic pro-
files. Apart from that, we introduce a number of methods for
dealing with multi-modal data for comparison. The methods
for comparison are listed as follows:

• SCbest: a single-view spectral clustering applied for all the
views with the best clustering for output.

• MSE (Xia et al. 2010): a multi-view spectral embedding
method. We set the parameter r in the range of
½2;3; . . . ; 10� and report the best result.

• CoregSC (Kumar and Daumé 2011): a multi-view spectral
clustering method based on co-training strategy. We set
the parameter k ¼ 0:01 for clustering.

• AASC (Huang et al. 2012): a multi-view spectral cluster-
ing method for optimizing linear combination of affinity
matrices.

• RMSC (Xia et al. 2014): a multi-view spectral clustering
combined with Markov chain. The parameter k is set as
0.005 for clustering.

• AMGL (Nie et al. 2016): a auto-weighted multiple graph
learning method for multiple views.

• AWP (Nie et al. 2018): a multi-view spectral clustering
based on spectral rotation technique.

• scAI (Jin 2020): a regularized matrix-factorization frame-
work for single-cell multi-omics data integration.

• OPMC (Liu et al. 2021): a multi-view matrix factorization
clustering.

4.3 Computational results
For performance evaluation, we introduced two popular
measures: Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI) for comparing the clustering ac-
curacy. Table 1 reports the ARI measures for the compared
methods applying in the considered datasets. Table 2 reports
the NMI measures for the compared methods applying in the
considered datasets. In the construction of scMoHL, there are
two parameters involved: the scale parameter r and the pa-
rameter k in KNN graph. We set the scale parameter r as the
sample standard deviation of dataset, and the parameter k re-
quired by the KNN matrix is set to 10 for small datasets and
100 when sample size is relatively large. Modal-specific
Laplacian matrices are computed on the preprocessed datasets
through standard normalization and dimension reduction
with principal component analysis. As for the multi-modal in-
tegration methods, SCbest, MSE, CoregSC, AASC, RMSC,
AMGL, and k-means clustering methods are applied on the
integrated embedding matrix obtained by these methods,
hence we report the averaged ARI and NMI values running
20 times for performance comparison. And the averaged ARI
and NMI values with standard deviations are reported. AWP
can ensure a stable clustering result, hence the standard devia-
tion is 0. In scAI method, a low-dimensional representation
matrix H for the multi-omics single-cell data was obtained
through regularized matrix factorization framework. The het-
erogeneity of cells is then identified by clustering through the
low-dimensional representation matrix H using the Leiden
community detection method, with default resolution param-
eter setting of 1. The resolution parameter has a great effect
on the cluster number evaluation for the dataset. When we set
the default resolution parameter 1 in experiments, most clus-
tering results turned to be single cluster instead, distorting the
original heterogeneity in datasets. Hence we use resolution
parameter 0.1 in Leiden algorithm (scAI-Leiden) on the best
H chosen (scAI is applied to each dataset 10 times with differ-
ent seeds) in the comparisons. Besides, we also introduce con-
sensus hierarchical clustering method on the matrix H
obtained by scAI (scAI-hc). Regarding the cluster number, if
the cluster number is a parameter as input including scAI-hc,
we use the true cluster number for comparison. In simula-
tion_data1, the true cluster number is 3, and the estimated
cluster number by Leiden algorithm and scHoML are both 3.
For simulation_data2, where the true cluster number is 4, the
estimated cluster number by scHoML is 4. But for Leiden al-
gorithm, the estimated cluster number is 5. mESC dataset has
two different cell states, but in Leiden algorithm, the esti-
mated cluster number is equal to the number of cells in the
dataset, namely, 77. scHoML can accurately estimate the
cluster number. For pbmc_inhouse and pbmc_10X data,
where the true cluster numbers are 5 and 7, respectively, scAI-
Leiden estimated the cluster number to be 13 and 77 instead.
Overall, scAI-Leiden tends to overestimate the heterogeneous
groups inside datasets.

4.3.1 Overall performance comparison

Aside from scMoHL, all the compared algorithms demon-
strate specific patterns, with no dominant methods.

scAI demonstrates obvious superiority compared to SCbest,
MSE, CoregSC, AASC, RMSC, AMGL, AWP, and OPMC
for simulated datasets. But the performance of scAI is not sat-
isfactory when applied in mESC and pbmc datasets. SCbest as
a single-view clustering method performs in an unstable way,
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where the ARI values obtained for the two simulated datasets
and mESC dataset are unsatisfactory, revealing the complex
structure of multi-modals in the respected datasets. But it is
interesting to see that on pbmc data, SCbest outperforms
most of the compared methods including scAI, indicating that
in this dataset, there exists some modal showing a clear rela-
tionship among data. MSE as a multi-modal integration
method performs similarly as SCbest. In particular for simula-
tion data2 when the single-view clustering result showing
0.2323 in ARI value on average, MSE cannot learn a better
integration of modals, getting only 0.0111 in averaged ARI
value. For AASC, the clustering result on mESC data is the
best excluding scHoML, showing 0.7022 in averaged ARI
value. The performance of RMSC and AMGL resembled with
each other on simulated datasets. When applied on real-world
datasets, RMSC and AGML cannot compete with scAI in
ARI values on mESC data. RMSC and AGML show better
performance than scAI in ARI values and NMI values on
pbmc data. For AWP algorithm, the best clustering perfor-
mance is achieved on pbmc_10X dataset, 0.7230 in ARI
value. OPMC algorithm shows the best clustering perfor-
mance in pbmc_inhouse data, while has poor discrimination
power in other datasets.

When we compare single-view clustering-based algorithm
(SCbest) with the other multi-modal clustering methods, some
conclusions can be made as follows. First, different modal
may reveal the data in different perspectives, there are cases
when some particular modal shows a clear relationship
among data. Second, integration methods may not fully inte-
grate the proper information embedded in modals, showing

unsatisfactory result compared to single-view based clustering
method. Taking CoregSC for example, the results in mESC
data, pmbc_inhouse and pbmc_10X data are inferior to that
of SCbest. Third, appropriate evaluation of the data relation-
ship is of critical significance for entangling the heterogeneity
described by multi-modals. Among all the compared methods,
scHoML as a graph-based embedding method provides a bet-
ter description on the relationship between cells, showing that
the incorporation of high-order correlation contributes in a
positive manner for relationship description.

4.3.2 Comparison with scAI: aggregation and integration
method for parallel single-cell multi-omics data

scAI demonstrates explicit superiority compared to other tra-
ditional multi-view data clustering methods for simulation
datasets. For simulation datasets, scAI ranks the second best,
slightly inferior to scHoML. In real-world datasets such as
mESC data, scAI with consensus hierarchical clustering
method ranks the third in clustering accuracy in terms of ARI
and NMI values. It is interesting to see that in pbmc-inhouse
data and pbmc-10X data, scAI is not satisfactory. The com-
putational efficiency is also restricted in scAI when the data-
sets contain large population of cells. When we compare
different clustering methods in conjunction with scAI, we
have the following findings. scAI with consensus hierarchical
clustering (scAI-hc) outperforms scAI with Leiden clustering
(scAI-Leiden) in cellular population heterogeneity analysis in
an overall manner. For simulation datasets, scAI-Leiden per-
form in a similar way with scAI-hc. While for real-world data-
sets, scAI-Leiden perform in a unsatisfactory way. One

Table 1. Performance comparisons of different methods in terms of ARI.

Dataset

Algorithm Simulation data1 Simulation data2 mESC pbmc_10X pbmc_inhouse

SCbest 0.2426 6 0.0233 0.2323 6 0.0072 0.3764 6 0.0000 0.7214 6 0.0411 0.6679 6 0.0742
MSE 0.2709 6 0.0050 0.0111 6 0.0059 0.3764 6 0.0000 0.7161 6 0.0133 0.6807 6 0.0502
CoregSC 0.2529 6 0.0080 0.1368 6 0.0280 0.1716 6 0.0628 0.7162 6 0.0164 0.5152 6 0.1351
AASC 0.1755 6 0.0044 0.0063 6 0.0089 0.7022 6 0.0235 0.6805 6 0.0799 0.6027 6 0.0290
RMSC 0.0423 6 0.0094 0.0745 6 0.0050 0.3468 6 0.0000 0.5724 6 0.0001 0.5212 6 0.0266
AMGL 0.1424 6 0.0892 �0.0246 6 0.0123 0.4869 6 0.4691 0.6332 6 0.1047 0.7275 6 0.1452
AWP 0.3338 6 0.0000 0.1154 6 0.0000 0.2416 6 0.0000 0.7230 6 0.0000 0.5693 6 0.0000
OPMC 0.0241 6 0.0463 0.6927 6 0.3311 0.2269 6 0.2012 0.6133 6 0.0648 0.8778 6 0.1095
scAI-hc 0.9391 6 0.0000 0.6587 6 0.0000 0.5480 6 0.0000 0.5131 6 0.0000 0.7875 6 0.0000
scAI-Leiden 0.9539 6 0.0000 0.8042 6 0.0000 0 6 0.0000 0.0738 6 0.0000 0.3317 6 0.0000
scHoML 0.9854 6 0.0000 1 6 0.0000 0.9350 6 0.0000 0.8737 6 0.0000 0.9523 6 0.0000

Table 2. Performance comparisons of different methods in terms of NMI.

Dataset

Algorithm Simulation data1 Simulation data2 mESC pbmc_10X pbmc_inhouse

SCbest 0.2630 6 0.0149 0.2572 6 0.0047 0.3894 6 0.0000 0.8144 6 0.0070 0.8456 6 0.0470
MSE 0.3196 6 0.0098 0.0404 6 0.0108 0.3894 6 0.0000 0.8149 6 0.0004 0.8536 6 0.0325
CoregSC 0.2796 6 0.0026 0.1650 6 0.0295 0.2742 6 0.0341 0.8125 6 0.0057 0.6456 6 0.1145
AASC 0.2456 6 0.0027 0.0592 6 0.0120 0.6198 6 0.0200 0.7374 6 0.0398 0.6877 6 0.0195
RMSC 0.1130 6 0.0295 0.0688 6 0.0027 0.3719 6 0.0000 0.6705 6 0.0000 0.6179 6 0.0186
AMGL 0.2313 6 0.0787 0.1140 6 0.0231 0.5166 6 0.4328 0.7106 6 0.0574 0.8615 6 0.0701
AWP 0.3704 6 0.0000 0.1703 6 0.0000 0.3122 6 0.0000 0.8078 6 0.0000 0.7225 6 0.0000
OPMC 0.0329 6 0.0450 0.7343 6 0.3040 0.2372 6 0.1989 0.6939 6 0.0149 0.8815 6 0.0298
scAI-hc 0.9112 6 0.0000 0.7892 6 0.0000 0.5003 6 0.0000 0.6232 6 0.0000 0.7906 6 0.0000
scAI-Leiden 0.9348 6 0.0000 0.8080 6 0.0000 0.3233 6 0.0000 0.5128 6 0.0000 0.7170 6 0.0000
scHoML 0.9764 6 0.0000 1 6 0.0000 0.8729 6 0.0000 0.8374 6 0.0000 0.9470 6 0.0000
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possible explanation may be that the resolution parameter
play an important role in the performance of scAI-Leiden
method, especially in tuning the number of clusters to be
detected. In the experiments with resolution parameter 0.1,
the tuned number of clusters is more reasonable compared to
default resolution parameter 1 for many datasets. Hence we
used resolution parameter 0.1 for performance illustration.
Second, we further checked the influence of resolution param-
eter on the clustering performance for datasets as shown in
Supplementary Table S3. We found that default resolution pa-
rameter 1 would be appropriate in traditional cases, but may
also fail in many new cases. In our experiments with the con-
sidered datasets, they all perform unsatisfactory results.
Besides, different datasets have different optimal resolution
parameters. The estimation and determination of optimal res-
olution parameter would become an interesting problem.

In the comparison, scHoML shows the best performance
for integration in both simulation datasets and real-world sin-
gle-cell multi-omics data when the performance is evaluated
in ARI and NMI measures. As a nonlinear relationship
modeling framework, scHoML used Laplacian matrix to
model the relationship in multi-modal single-cell data. In par-
ticular, the incorporation of high-order neighborhood
Laplacian matrix in optimization contributes to a better de-
scription of the geometric structure of the complex multi-
modal data. Besides, scHoML can robustly represent the
noisy, sparse multi-omics data in a unified low-dimensional
embedding space. The cluster number determination strategy
with sample-specific Silhouette coefficient for small sample
problems as well as variance-based statistical measure offers a
flexible way for accurately estimating the intrinsic clusters in
the data. However, the computational complexity would be-
come an unavoidable issue if the involved number of cells is
large, because the time complexity is proportional to the num-
ber of cells n, which is Oðn3Þ.

4.3.3 Common embedding performance evaluation

All the compared methods attempt to find a common low-
dimensional embedding for the single-cell multi-omics data,
hence we compared 2D visualization of aggregated low-
dimensional embeddings by different methods to evaluate the
embedding capabilities of the considered methods. All the fig-
ures are attached in Supplementary Files.

Figures 1–5 show the visualization of aggregated low-
dimensional embeddings by different methods using tSNE.
Different color represents different true clusters in the dataset.
Figures 1 and 2 refer to the tSNE plots for simulation datasets
with considered methods. Traditional multi-view clustering
methods, such as SCbest, MSE, CoregSC, AASC, RMSC,
AMGL, AWP, and OPMC failed to decipher the heterogene-
ity in the cells, where the cell subpopulations were indistin-
guishable in the recovered low-dimensional space by those
methods. However, scAI can obtain a proper low-
dimensional embedding matrix H showing appropriate rela-
tionship in the cells, where the cells are almost distinguish-
able. scHoML demonstrates clear superiority in getting
common embedding information for the two simulation data-
sets, and the cell subpopulations were clearly distinguishable
in the low-dimensional space when using the aggregated data.

Figure 3 shows tSNE plot of different methods in obtaining
low-dimensional embeddings for mESC data. AASC and
AMGL perform similarly, and the cells tend to show distin-
guishable properties. scHoML clearly help recover a

satisfactory low-dimensional embedding for mESC data gen-
erated by parallel scM&T-seq technique. Other methods in-
cluding scAI cannot guarantee a proper embedding for mESC
data, where different types of cells tend to mix with each
other.

As shown in Fig. 4, for pbmc_inhouse data, AMGL,
SCbest, and MSE perform quite similarly and the tSNE plots
for the three methods share similar pattern formations, where
most of the cells are distinguishable. scHoML undoubtedly
demonstrates superiority compared to the remaining nine
methods in aggregated low-dimensional representation for
the 1242 pbmc cells profiled by CITE-seq.

Figure 5 corresponds to the aggregated low-dimensional
embedding for PBMC_10X data, where the multi-modal sin-
gle-cell data (CITE-seq dataset) was downloaded from 10�
Genomics website containing 6661 human PBMCs cells.
When the number of cells increase, the data become more
complicated and the cells are more heterogeneous. Methods
include OPMC and RMSC, AWP tend to mix the cells. Apart
from scHoML, CoregSC shows the best aggregation perfor-
mance where the same type of cells are more compactly scat-
tered though for some particular types, the cells are diversely
scattered.

Take a further look at the intrinsic complexity of the multi-
omics data, we analyze the tSNE plots for original data in all
considered modals. Due to the inherent sparsity and noise in
the data, the cells were not well separated in the scRNA-seq
data and the scATAC-seq data using t-SNE, for simulation
datasets as shown in subfigs (a) and (b) for simulation data1
and (c) and (d) for simulation data2 in Fig. 6. Also, for mESC
data, the cell populations are mixed, as shown in subfigs (e)
and (f). However, the aggregated low-dimensional data gener-
ated by scHoML help capture heterogeneity between different
types of cells, as shown in subfig (j) in Figs 1–3. For pbmc_in-
house data, the modal described by ADT features can clearly
differentiate cell types, while the modal described by RNA is
quite noisy and makes the data analysis complicated. It is in-
teresting to see that for scAI and many of the traditional
multi-view data integration methods, such as MSE, AASC,
RMSC, and OPMC, the aggregated matrix H obtained by
those methods failed to give play to the descriptive advantages
of ADT features, but quite influenced by the noisy RNA data.
scHoML tends to obtain the satisfactory common embedding
for pbmc_inhouse data. Similar results can be discovered by
pbmc_10X data.

5 Discussions

From the computational results, we can confirm the robust-
ness and effectiveness of scHoML in dealing with single-cell
multi-omics data under different signal-to-noise ratio scenar-
ios. In the following, we discuss the feasibility and effective-
ness of multi-modal and high-order Laplacian matrix
optimization in scHoML. While only considering one mode
of single-cell data, we have the following observations.
Different datasets demonstrate different characteristics. For
simulation data1 (subfigs a and b), simulation data2 (subfigs
c and d), and mESC data (subfigs e and f) as shown in Fig. 6,
both modals are noisy. scHoML, however, can overcome the
influence of noise effect, robustly integrate the noisy modals
to generate a clear common embedding in low dimensions as
shown in Figs 1–3 subfig (j). Slightly inferior to scHoML,
scAI can similarly recover the geometric distribution of
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cells after data integration, shown in Figs 1–3 subfig (i). The
multi-view clustering-based algorithms seem to be consider-
ably influenced by the noisy data, and the performance of in-
tegration sometimes cannot compete with single-mode
clustering method SCbest. For pbmc_inhouse data or
pbmc_10X data, the ADT modal is relatively clear for cell-
type differentiation on tSNE shown in Fig. 6 subfigs (g) and
(i). It is shown in Figs 4 and 5 that multi-view clustering-based

algorithms, such as AWP and CoregSC can learn the clear re-
lationship revealed by the ADT modal, demonstrating a rela-
tively acceptable performance. However, scAI seems to be
influenced by the clustering algorithm, in particular for
Leiden algorithm. When the resolution parameter differs, the
performance fluctuates with large variance. scHoML among
all the compared partners shows the stable and robust perfor-
mance. We conclude that when modals are noisy, scHoML

(a) AASC (b) AMGL (c) MSE (d) OPMC (e) RMSC

(f) SCbest (g) AWP (h) CoregSC (i) scAI (j) scHoML

Figure 1. tSNE plots of different methods in obtaining low-dimensional embeddings for simulation data1. Subfigures (a) to (j) represent the different

methods indicated by the subtitles.

(a) AASC (b) AMGL (c) MSE (d) OPMC (e) RMSC

(f) SCbest (g) AWP (h) CoregSC (i) scAI (j) scHoML

Figure 2. tSNE plots of different methods in obtaining low-dimensional embeddings for simulation data2. Subfigures (a) to (j) represent the different

methods indicated by the subtitles.

(a) AASC (b) AMGL (c) MSE (d) OPMC (e) RMSC

(f) SCbest (g) AWP (h) CoregSC (i) scAI (j) scHoML

Figure 3. tSNE plots of different methods in obtaining low-dimensional embeddings for mESC data. Subfigures (a) to (j) represent the different methods

indicated by the subtitles.
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can dig inside the intrinsic geometric relationship and learn a
clear common embedding; when multi-modal data contains
clear modal information, scHoML has the ability of not
being influenced by noisy modals. When only considering
the first-order Laplacian matrix optimization, we can check the
performance of MSE whose optimization objective
is argminH;a

PV
p¼1 ar

ptrðHTLpHÞ. From the tSNE plots in
Figs 1–5 as well as Tables 1 and 2, we came to know that
when all the involved modals are noisy, MSE did not have the

ability to extract the intrinsic relationship of cells accurately.
However, when incorporating high-order Laplacian informa-
tion, we model the hidden high-order connection information
among data in scHoML, and the learned low-dimensional data
provide a better representation of the original noisy modals.

Besides, we compared scHoML to a robust single-cell muti-
omics integration method UnionCom (Cao et al. 2020) in
terms of embedding capability. In UnionCom, a reference
modal within the dataset should be given in advance for

(a) AASC (b) AMGL (c) MSE (d) OPMC (e) RMSC

(f) SCbest (g) AWP (h) CoregSC (i) scAI (j) scHoML

Figure 4. tSNE plots of different methods in obtaining low-dimensional embeddings for pbmc_inhouse data. Subfigures (a) to (j) represent the different

methods indicated by the subtitles.

(a) AASC (b) AMGL (c) MSE (d) OPMC (e) RMSC

(f) SCbest (g) AWP (h)  CoregSC (i) scAI (j) scHoML

Figure 5. tSNE plots of different methods in obtaining low-dimensional embeddings for pbmc_10X data. Subfigures (a) to (j) represent the different

methods indicated by the subtitles.

(a) simulation

data1-scRNA-seq

(b) simulation

data1-scATAC-seq

(c) simulation

data2-scRNA-seq

(d) simulation

data2-scATAC-seq

(e) mESC-DNA

(f) mESC-RNA (g) pbmc_inhouse-ADT (h) pbmc_inhouse-RNA (i) pbmc_10X-ADT (j) pbmc_10X-RNA

Figure 6. tSNE plots for original multi-omics data. Subfigures (a) to (j) represent the different methods indicated by the subtitles.
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further processing. We therefore have included all the cases
when each modal is regarded as reference modal in the com-
parison. It can be shown in Figs 7 and 8 that the projected
low-dimensional modals cannot compete with scHoML in
tSNE showing. When all the modals are noisy, the common
low-dimensional space learned by UnionCom is also noisy.
However, if some modals show high data quality in the multi-
omics data, UnionCom can guarantee a relative clear repre-
sentation of the multi-omics data.

• Heterogeneity analysis
We further hope to dissect the heterogeneity analysis
results provided by scHoML. It is interesting to see that,
for pbmc_10X data, the original data contains 1112
CD8þ T cells as a single cluster. However, scHoML
divides the 1112 cells into two major clusters, with one
cluster containing 766 cells, the other cluster containing
322 cells. Hence, we conduct statistical analysis to com-
pare the differences between the two subclusters. In the
ADT-based data, we did one-sided two-sample
Kolmogorov–Smirnov goodness-of-fit hypothesis test on
the two populations generated by scHoML, and select the
representative markers which rejects the null hypothesis
that F1ðxÞ ¼ F2ðxÞ as the corresponding true (but un-
known) population CDFs at the 5% significance level.

The representative markers in subcluster 1 (766 cells) in-
clude “TIGIT,” “CD3þ,” “CD4þ,” and “CD8þ,” which
are reported marker genes for annotating exhausted
CD8þ T cells (Deng et al. 2021). A further analysis on the
representative genes for cluster one through one-sided
two-sample Kolmogorov–Smirnov goodness-of-fit hypoth-
esis test leads to a filtration of top-ranked genes “CCL5,”
“HLA-DRB1,” “GZMH,” “HLA-DPA1,” and “NKG7.”
It is well-established (Ren et al. 2021) that for CD8þ T
cells, the major pTRTs were exhausted T cells and exhib-
ited high heterogeneity. And in our dataset, we success-
fully identify the subcluster that is consistent with cluster
C7 harboring a low frequency of terminal Tex cells and
high frequency of “CD8þZNF683þCXCR6þ” Trm cells,
dominated by naive T cells. It demonstrates the capability
of scHoML in identifying the heterogeneity pattern em-
bedded in the noisy single-cell multi-omics data.

• Cellular state identification
We conduct statistical analysis to compare the differences
between specific cluster and the remaining clusters by
scHoML, to investigate the potential of scHoML in cellu-
lar state identification. We performed t-test of the hypoth-
esis that the two independent samples generated by the
specific cluster and the remaining clusters come from dis-
tributions with equal means, and returns the result of the

data1-scRNA-seq scATAC-seq–reference data2-scRNA-seq

(a) simulation (b) simulation data1- (c) simulation (d) simulation data2-

scATAC-seq–reference

(e) mESC-scRNA-seq

(f) mESC-scATAC-seq–

reference

(g) pbmc_inhouse-ADT (h) pbmc_inhouse-

RNA–reference

(i) pbmc_10X-ADT (j) pbmc_10X-RNA–

reference

Figure 7. tSNE plots for embedding data by UnionCom: Case 1. Subfigures (a) to (j) represent the different methods indicated by the subtitles.

(a) simulation data1-

scRNA-seq–reference

(b) simulation

data1-scATAC-seq

(c) simulation data2-

scRNA-seq–reference

(d) simulation

data2-scATAC-seq

(e) mESC-scRNA-seq–

reference

(f) mESC-scATAC-seq (g) pbmc_inhouse-

ADT–reference

(h) pbmc_inhouse-RNA (i) pbmc_10X-ADT–

reference

(j) pbmc_10X-RNA

Figure 8. tSNE plots for embedding data by UnionCom: Case 2. Subfigures (a) to (j) represent the different methods indicated by the subtitles.
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test in H. Here H¼ 0 indicates that the null hypothesis
(“means are equal”) cannot be rejected at the 5% signifi-
cance level. Here H¼ 1 indicates that the null hypothesis
can be rejected at the 5% level. To be specific, when we
consider hypothesis test on cluster 3 and the remaining
clusters, in the ADT data with 14 attributes, we filter the
differentially expressed attributes for cluster 3 through hy-
pothesis testing. They are “CD16,” “CD56,”
“CD45RA,” etc. It is well verified that “CD16” and
“CD56” are classical markers for NK cells (Dege et al.
2020; Harper 2021). A further analysis on the representa-
tive genes for cluster 3 through t-test leads to a filtration
of top-ranked genes “FCGR3A,” “GNLY,” “SPON2,”
“FGFBP2,” and “TKTL1.” “FCGR3A,” according to
UniProtKB/Swiss-Prot, mediates IgG effector functions on
NK cells (Lee et al. 2015). The protein product of
“GNLY” is present in cytotoxic granules of cytotoxic T
lymphocytes and NK cells, revealing the relationship be-
tween “GNLY: and NK cells. These findings indicate the
capability of scHoML in extracting key molecules for
cellular-type/state identification. Besides, we further con-
ducted analysis on the downstream feature selection capa-
bility for the compared methods. The comparison
methods include OPMC, AWP, and scAI, because the
clustering results are relatively stable and robust, which
are more suitable for stable feature selection. Similarly, we
performed t-test on cluster i; i ¼ 1; 2; . . . and the remaining
clusters, in the ADT data with 14 attributes, to annotate
the cluster-specific markers by the compared methods. In
OPMC method, the markers identified using “t-test” for
clusters 1–7 are as follows: cluster 1: “CD8a,” “CD45,”
“CD3,” “CD127,” “TIGIT”; cluster 2: “CD8a,”
“CD45,” “TIGIT,” “PD-1,” “CD3”; cluster 3: “CD19,”
“CD45,” “CD56,” “CD16,” “TIGIT”; cluster 4: “CD3,”
“CD4,” “CD127,” “CD45,” “CD25”; cluster 5:
“CD14”; cluster 6: “CD56,” “CD45,” “CD16,”
“TIGIT,” “CD19”; cluster 7: “CD8,” “CD127,”
“CD45,” “CD3,” “PD-1.” We can see that in the identi-
fied markers, cluster 1 and cluster 2 have many common
markers, indicating that OPMC cannot distinguish the
cells in a clear manner where some clusters share similar
patterns. In AWP method, the markers identified using “t-
test” for clusters 1–7 are as follows: cluster 1: “CD8a,”
“CD127,” “CD3,” “TIGIT,” “PD-1”; cluster 2: “CD4,”
“CD45,” “PD-1,” “CD127”; cluster 3: “CD14”; cluster
4: “CD19,” “CD45,” “CD56,” “CD16,” “TIGIT”; clus-
ter 5: “CD19,” “CD45”; cluster 6: “CD16,” “CD56,”
“CD45,” “TIGIT,” “CD15”; cluster 7: “CD3,” “CD4,”
“CD127,” “CD45,” “CD15.” We can see that the identi-
fied markers in cluster 5 are a subset of markers, meaning
that AWP cannot distinguish the cells in a clear manner as
well. In scAI-hc, the markers identified using “t-test” for
clusters 1–7 are as follows: cluster 1: none; cluster 2:
“CD4,” “CD3,” “CD45,” “CD14,” “CD25,” “CD127,”
“PD-1”; cluster 3: “CD56,” “CD45”; cluster 4: “CD56,”
“CD45,” “CD19,” “CD16,” “TIGIT,” “CD15”; cluster
5: “CD45”; cluster 6: “CD14”; cluster 7: “CD8a,”
“CD127,” “CD3,” “TIGIT,” “PD-1,” “CD45,” “CD15.”
We can see that the identified markers in cluster 5 are a
subset of markers cluster 3, the identified markers in clus-
ter 3 are a subset of markers, cluster 4, cluster 2 and clus-
ter 7 have a lot of common markers, indicating that scAI-
hc cannot help distinguish the cells in a clear manner as

well. In scHoML method, the markers identified using “t-
test” for clusters 1–7 are as follows: cluster 1: “CD19,”
“CD45”; cluster 2: “CD8a,” “CD127,” “CD3,”
“CD45”; cluster 3: “CD16,” “CD56,” “CD45,”
“TIGIT,” “CD15”; cluster 4: “CD3,” “CD4,” “CD127,”
“CD45,” “CD25”; cluster 5: “CD14”; cluster 6: “CD8a,”
“CD45,” “TIGIT,” “PD-1,” “CD3”; cluster 7: “CD19.”
Cluster 7 only contains 0.02% number of cells. We can
see that the identified markers in each cluster have distinct
characteristics, for example, “CD16,” “CD56,” “TIGIT”
in cluster 3 are typical biomarkers for NK cells, demon-
strating the ability of scHoML in identifying meaningful
biomarkers.

6 Conclusions

In this study, we propose a multi-modal high-order neighbor-
hood Laplacian matrix optimization framework for integrat-
ing the multi-omics single-cell data: scMoHL. scHoML can
robustly model the complex data structures and represent the
noisy, sparse multi-omics data in a unified low-dimensional
embedding space. Experiments on simulated datasets as well
as real single-cell multi-omics data reveal that scHoML faith-
fully aligned heterogeneous modalities. The embedded data
can further be utilized for heterogeneity analysis as well as cel-
lular state identification, expecting to shed light on intriguing
studies for revealing significant mechanisms among cells.
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