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Abstract

We develop a framework for the design of optimized alchemical transformation pathways in free 

energy simulations using non-linear mixing and a new functional form for so-called “softcore” 

potentials. We describe the implementation and testing of this framework in the GPU-accelerated 

AMBER software suite. The new optimized alchemical transformation pathways integrate a 

number of important features, including: 1) the use of smoothstep functions to stabilize behavior 

near the transformation end points, 2) consistent power scaling of Coulomb and Lennard-Jones 

(LJ) interactions with unitless control parameters to maintain balance of electrostatic attractions 

and exchange repulsions, 3) pairwise form based on the LJ contact radius for the effective 

interaction distance with separation-shifted scaling, and 4) rigorous smoothing of the potential at 

the non-bonded cut-off boundary. The new softcore potential form is combined with smoothly 

transforming non-linear λ weights for mixing specific potential energy terms, along with flexible 

λ-scheduling features, to enable robust and stable alchemical transformation pathways. The 

resulting pathways are demonstrated and tested, and shown to be superior to the traditional 

methods in terms of numerical stability and minimal variance of the free energy estimates for all 

cases considered. The framework presented here can be used to design new alchemical enhanced 

sampling methods, and leveraged in robust free energy workflows for large ligand datasets.
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1 Introduction

Alchemical free energy simulations are an integral part of computer aided drug design, 

particularly at the stage of lead refinement where they are used to rank the binding affinity 

of compounds to their targets, and in some cases make predictions about selectivity and 

off-target effects.1-8 As a result, there is great activity in the field to develop a wide 

range of methods for which to improve the accuracy, robustness and throughput of these 

simulations.2,9-13 Alchemical free energy methods leverage the property that the free energy 

is a state function to enable non-physical thermodynamic pathways to be constructed that 

are amenable to computation. So while, in principle, the free energy is independent of 

transformation pathway, in practice the choice of pathway is crucial. For example, whereas 

the direct calculation of the binding free energy of a ligand along a physical pathway can 

be considerably challenging and computationally intensive to achieve with high precision 

(although there has been much progress in this area14-16), it is often easier to compute the 

“alchemical” transformation between two similar ligands, both in the bound and unbound 

states, to arrive at the desired free energy difference (Fig. 1). In this way, the relative binding 

free energy17 (RBFE) can be computed with sampling requirements that are often less 

intensive and more precise than the calculation of an absolute binding free energy (ABFE) 

whether along a physical pathway that would provide additional information about binding 

kinetics, or alchemical pathway where the ligand is “annihilated” in the bound state and 

in solution. Analogously, the relative and absolute solvation free energy (RSFE and ASFE, 

respectively) can be computed considering transformations in the gas phase and in solution. 

These cycles are illustrated in Figure 1.

Alchemical free energy simulations typically require atoms to be created and/or annihilated 

during the transformation process - or more precisely, transformed into a so-called “dummy 

atoms”.18 Dummy atoms are placeholders that are designed to interact with the real atoms 

of the physical system only through select bonded interactions such that they do not 

alter the relative free energy (i.e., they do not introduce a net potential of mean force 

on any of the real atoms). Transformations of real atoms into dummy atoms can be 

especially challenging if there is poor phase space overlap of neighboring states along the 

transformation coordinate.18-22 This issue is not restricted to only transformations of real 

atoms into dummy atoms (which is an extreme case), it can also occur in transformations 

between two real atoms that have significantly different force field parameters.
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A number of strategies have been explored to develop robust, stable transformation 

pathways in alchemical free energy simulations, including use of so-called “softcore 

potentials” with separation-shifted scaling,23-25 parameter interpolation,26 short-range 

switching,27 or capping the short-range interactions,28,29 and non-linear mixing of the 

endpoint potentials. 30-34 Recent studies have shown that adverse effects of these 

problematic transitions can lead to large variance and in some cases order/disorder 

transitions along the alchemical path that can hinder sampling and convergence of free 

energy estimates.29 Very recently, a λ-enveloping distribution sampling method,35-37 

which is related to approaches to optimize minimum variance pathways in alchemical 

transformations,38-40 has been explored as an alternative coupling scheme to more 

conventional λ-intermediate states.

There are many strategies for performing free energy simulations,2,4 and in turn choosing 

appropriate alchemical transformation pathways. In the present work we will develop 

robust alchemical pathways (including new softcore potentials) that are particularly 

useful for “concerted” alchemical transformations (sometimes referred to as “one-step” or 

“unified” procedures) where all non-bonded terms (e.g., electrostatic and Lennard-Jones) 

terms occur synchronously. This differs from “stepwise” transformations (sometimes 

referred to as “multistep” or “split” procedures) where transformation of electrostatic 

and Lennard-Jones terms occur asynchronously; for example, in a 3-step “decharge/LJ/

recharge” transformation. Concerted transformations are particularly useful in relative 

binding free energy calculations as they avoid weakly bound states that may require 

additional restraints. Nonetheless, the methods presented here are not restricted to purely 

concerted transformations, and as will be shown below, have been integrated into a powerful 

λ-scheduling framework in AMBER that enables the design of customized alchemical 

transformations for different energy terms that are seamlessly integrated with existing 

enhanced sampling tools such as replica exchange.

In the present work, we develop new highly robust alchemical transformation pathways 

that are designed to overcome commonly encountered classes of problems23,27,30,31,33 

designated here as endpoint catastrophes, particle collapses, and large gradient-jumps. This 

work builds on our previously developed smoothstep softcore potentials,41 but introduces 

a number of important improvements, including: 1) consistent power scaling of Coulomb 

(Coul) and Lennard-Jones (LJ) interactions with unitless control parameters to maintain 

balance of electrostatic attractions and exchange repulsions, 2) introduction of a pairwise 

form based on the LJ contact radius for the effective interaction distance with separation-

shifted scaling, and 3) rigorous smoothing of the softcore potential at the non-bonded cut-off 

boundary. We test the new alchemical transformation pathway on a number of systems in 

both the context of thermodynamic integration (TI) and free energy perturbation (FEP), and 

compare results to other commonly used pathways and softcore potentials.

The remainder of the manuscript is organized as follows. Section 2 outlines the key 

theoretical background. Section 3 provides details of the computational methods. Section 4 

presents results and discussion for a series of test cases and comparison with other methods. 

Section 5 concludes with a summary of main points and direction for next developments. 

The methods presented here are available for beta testing in the Drug Discovery Boost 
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upgrade to the AMBER software suite, and will be integrated into the next official AMBER 

release.

2 Theory

This section summarizes the theoretical background for the alchemical transformation 

pathway framework and provides implementation-level details. In particular, we develop 

alchemical transformation pathways that combine non-linear mixing of different potential 

energy terms and a new smoothstep softcore potential to enable robust, stable free 

energies to be computed. Section 2.1 summarizes the necessary theoretical background and 

establishes a notational convention that enables precise definition of specific energy terms, 

transforming regions and interacting sets of atoms that form the λ-dependent potential 

energy and transformation pathway. Section 2.2 describes flexible, stable forms and λ-

scheduling of the weight functions used to mix different potential energy terms. Section 

2.3 describes the new functional form for the softcore potentials. Together, the weights 

along with the softcore potentials form the foundation of the new alchemical transformation 

pathways that are developed and tested in the Results and Discussion.

2.1 Background and notation

This section presents the necessary theoretical background as well as develops a notation 

that enables precise identification of the energy terms and interacting sets of atoms that 

form the basis of different alchemical transformation pathways. The discussion of the 

alchemical transformation pathway here will be in the context of thermodynamic integration 

(TI)42,43 using a hybrid single-dual-topology34 implementation in AMBER22. Nonetheless, 

the improvement in phase space overlap between states along the pathway are transferable to 

other FEP methods with traditional BAR,44,45 MBAR46,47 and formally equivalent unbinned 

weighted histogram analysis methods (UWHAM),48 as well as their recent extensions that 

enable large-scale network-wide analysis using a constrained variational approach (BARnet 

and MBARnet).49

In practice, TI and FEP methods generally require taking incremental steps along a 

alchemical transformation pathway parameterized by a coordinate λ that varies between 

0 and 1. The end states at λ values of 0 and 1 are generally physical “real states”, i.e., 

chemically distinct molecules with distinct compositions. Alternatively, the continuum of 

states for 0 < λ < 1 are non-physical “alchemical states”. The free energy change, ΔA0→1, 

between states “0” and “1” can be achieved through integration of the thermodynamic 

derivative as:

ΔA0 1 = ∫
0

1

dλ ⋅ dA
dλ = ∫

0

1

dλ ⋅ ∂U(rN; λ)
∂λ λ

≈ ∑
k = 1

M
wk ⋅ ∂U(rN; λ)

∂λ λk
(1)

where rN = r1, r2 … rN represent the Cartesian positions of each particle, the second 

integral involves the derivative of the potential energy U with respect to the parameter λ 
that smoothly connects the end states λ = 0 and λ = 1, and the sum indicates numerical 

integration over M quadrature points (λk, for k = 1, … M) with associated weights wk. 

While the free energy is a state function, and formally is invariant to the pathway connecting 
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states, in practical simulations the thermodynamic averages in eq 1 are extremely sensitive 

to the pathway, and similar issues arise for FEP methods. The λ-dependent total potential 

energy U (rN; λ) can be written as

U(rN; λ) = ∑
t

W 0, t(λ) ⋅ U0, t(rN; λ) + W 1, t(λ) ⋅ U1, t(rN; λ) (2)

where the individual state energies, U0(rN; λ) and U1(rN; λ) are given in terms of their 

energy term components (indexed by t) as

U0(rN; λ) = ∑
t

U0, t(rN; λ) (3)

and similarly for U1(rN; λ). In eq 3, the subscript t sums over different potential energy 

terms summarized in Table 1. These individual state energy terms in general can have an 

explicit non-linear λ-dependence that arises from the form of the softcore potential that is 

used, as will be described in section 2.3. In addition, in the expression for the λ-dependent 

total potential energy U(rN; λ), each of the energy terms U0/1,t(rN; λ) has a λ-dependent 

weight (“mixing term”) associated with it, W0/1,t(λ), the form of which will be described in 

more detail in section 2.2 below.

Each of the energy terms in Table 1, with the exception of Urec, involves a straight-

forward summation over the relevant sets of atoms to compute 2-body, 3-body or 4-body 

interactions. In the case of free energy simulations, we need to further distinguish between 

contributions to the energy that are made from different non-overlapping sets of atoms. 

Specifically, we need to subdivide the system into two main subdivisions: one region is 

alchemically transforming, whereas the remainder of the system is immutable (I), i.e., not 

transforming. Within the hybrid single-dual-topology, the immutable region is represented 

by a single “topology” and set of coordinates. The transforming region of the system is 

represented by a formal dual topology and separate sets of coordinates for each state, 

and is further subdivided into constrained coordinate/common core (CC) and the separable-

coordinate/softcore (SC) regions (in previous work13 we used the the abbreviations TC and 

TS, but feel that SC and CC are more straight forward). The SC, CC and I regions are 

illustrated in Fig. 2. The CC region has corresponding atoms in each topology constrained 

to have the same positions in order to facilitate phase space overlap between states during 

the alchemical transformation. The SC region, on the other hand, has separable independent 

coordinates for each topology that can adopt different conformations and do not directly 

interact with one another.

For example, if two drug molecules involved in an alchemical transformation (e.g., as shown 

in Fig. 2) share a common chemical core of atoms such as an aromatic ring and differ 

only by certain attached substituents for which atoms between the topologies cannot easily 

be mapped, then the CC region would contain the atoms of the common aromatic ring 

and the SC region would contain the atoms of the different substituents. In the alchemical 

transformation of λ : 0 → 1, the SC atoms of state “0” are “turned off” by mutating the 

real atoms of state “0” into so-called “dummy atoms”,18 while at the same time the SC 

atoms of state “1” are being “turned on” in a synchronous counter-transformation. The 
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dummy atoms do not interact with their environment, with the exception of certain bonded 

interactions that must obey the constraint conditions that they introduce no net potential 

of mean force onto any non-dummy atom. Often this separable dual-coordinate approach 

requires the introduction of “softcore potentials”,24,41 i.e., explicit non-linear λ-dependent 

terms to “soften” the interaction of these atoms with their surroundings. These are most 

often employed for non-bonded interactions such as LJ and Ele (or in the case of PME 

electrostatics, often just the Udir term), but other forms have also been developed for bonds 

and other energy terms.23,24,33

Thus the system can be divided into non-overlapping regions described in Table 2: I 

(immutable), CC (transforming constrained/common core) and SC (transforming separable/

softcore). The I region has the same atomic coordinates, parameters and internal potential 

energy for both states 0 and 1. The CC region can have different parameters between states 

0 and 1, but the coordinates of mapped atoms are constrained to be the same. The SC region 

also can have different parameters between states 0 and 1, but unlike the CC region each 

state has its own separable set of atomic coordinates.

To facilitate development of the framework for enabling improved alchemical transformation 

pathways, we now introduce a system whereby we use subscripts to indicate the state (“0” 

or “1”) and (optionally) the specific term in the potential energy as described in Table 1, and 

superscripts to indicate the specific atoms involved in the energy term interaction. The state 

of the system and specific energy terms follow the general form U{0 ∕ 1}, t
X  or U{0 ∕ 1}, t

X ∕ Y  where the 

state is indicated as either 0 or 1, the energy term is designated an appropriate abbreviation 

index (t) as indicated in Table 1, and the superscript “X” indicates an internal potential 

energy for region “X” and “X/Y” indicates the interaction energy between regions “X” and 

“Y” as indicated in Table 2.

Using this notation, the individual state “0” energy, U0 (rN; λ) can be expanded as

U0(rN; λ) = ∑
t

U0, t
SC(rN; λ) + U0, t

SC ∕ (CC + I)(rN; λ) + U0, t
(CC + I)(rN; λ) (4)

and similarly for U1(rN; λ). Note that U0(rN; λ) is the potential energy of the state “0” 

topology written as (possibly) having an explicit λ dependence (e.g., through a softcore 

potential or parameter interpolation26 form). The general expanded form of the λ-dependent 

total potential energy U(rN; λ) can be written as

U(rN; λ) = ∑
t

W 0, t
SC(λ) ⋅ U0, t

SC(rN; λ) + W 1, t
SC(λ) ⋅ U1, t

SC(rN; λ)

+ ∑
t

W 0, t
SC ∕ (CC + I)(λ) ⋅ U0, t

SC ∕ (CC + I)(rN; λ) + W 1, t
SC ∕ (CC + I)(λ) ⋅ U1, t

SC ∕ (CC + I)(rN; λ)

+ ∑
t

W 0, t
(CC + I)(λ) ⋅ U0, t

(CC + I)(rN; λ) + W 1, t
(CC + 1I)(λ) ⋅ U1, t

(CC + I)(rN; λ)
(5)

The above equation is general in the sense that it assumes a possible explicit non-linear 

λ-dependence for any of the energy terms. In the framework presented here that has 

been implemented into the AMBER Drug Discovery Boost package to AMBER22 (and 
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will be officially available in the a future AMBER release), only the terms that involve 

non-bonded interaction involving the SC region will potentially use softcore potentials, 

and hence have an explicit non-linear λ dependence. Further, as mentioned previously, in 

the current presentation, the PME reciprocal space term is not decomposed into regional 

contributions. With these conditions, the specific λ-dependent total potential energy U(rN; 

λ) can be written as

U(rN; λ) = W 0, rec(λ) ⋅ U0, rec(rN) + W 1, rec(λ) ⋅ U1, rec(rN)
+ ∑

t ≠ rec
W 0, t

(CC + I)(λ) ⋅ U0, t
(CC + I)(rN) + W 1, t

(CC + I)(λ) ⋅ U1, t
(CC + I)(rN)

+ ∑
t ≠ rec

W 0, t
SC ∕ (CC + I)(λ) ⋅ U0, t

SC ∕ (CC + I)(rN; λ) + W 1, t
SC ∕ (CC + I)(λ) ⋅ U1, t

SC ∕ (CC + I)(rN;

λ)
+ ∑

t ≠ rec
W 0, t

SC(λ) ⋅ U0, t
SC(rN; λ) + W 1, t

SC(λ) ⋅ U1, t
SC(rN; λ)

(6)

2.2 λ-dependent weight functions for scaling potential energy components

This section describes the λ-dependent weight functions and the control flags that allow 

their manipulation in free energy simulations in AMBER. The next subsection 2.2.1 

introduces the family of smoothstep functions and describe their most relevant properties 

that will be exploited to develop the λ-dependent weight functions in the following 

subsection 2.2.2. In subsection 2.2.3, these weight functions are then generalized to operate 

on specific sub-ranges of λ between 0 and 1 to form a flexible λ-scheduling framework.

2.2.1 Smoothstep functions—Consider the family of smoothstep functions of orders 

P (P = 0, 1, 2, …) defined as the polynomial functions (up to P = 4 shown):

for 0 ≤ x ≤ 1 :
S0(x) = x,
S1(x) = − 2x3 + 3x2,
S2(x) = 6x5 − 15x4 + 10x3,
S3(x) = − 20x7 + 70x6 − 84x5 + 35x4,
S4(x) = 70x9 − 315x8 + 540x7 − 420x6 + 126x5,

and
SP(x ≤ 0) = 0; SP(x ≥ 1) = 1, ∀ P ∈ ℕ

(7)

The smoothstep functions are monotonically increasing functions that have desirable 0 and 1 

endpoint values and vanishing endpoint derivative properties:

dkSP(x)
dxk

x = 0

= dkSP(x)
dxk

x = 1

= 0 ∀ k ∈ ℕ, 0 < k ≤ P (8)

In addition, the smoothstep functions obey the symmetry condition

SP(1 − x) = 1 − SP(x) (9)
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A smoothstep function with a higher order will have a smoother function curve and smaller 

derivatives near 0 and 1 but a larger derivative in between. The zero-order (P = 0) smooth-

step function is in fact simply linear with constant slope, including at the endpoints, which 

can lead to endpoint catastrophe problems. As illustrated in previous work,41 the second 

order smoothstep function (P = 2) overall offers a good balance between smooth vanishing 

derivatives at the endpoints, and modest derivatives for intermediate values of λ. AMBER22 

offers the flexibility to choose different smoothstep functions through the λ-scheduling 

mechanism described below.

2.2.2 Form of the λ-dependent weight functions—We now describe a general 

form for the weight functions W(λ), where we only retain the 0 and 1 subscript to indicate 

the state. The weight functions are defined in term of the smoothstep functions as

W 0(λ) = 1 − SP(λ) = SP(1 − λ) (10)

W 1(λ) = SP(λ) (11)

In the above equation, we drop the explicit superscripts and subscripts in eq 6 that can 

be controlled by different flags available to the user in AMBER22. Previous work has 

illustrated that use of smoothstep functions of order greater than 0 (i.e., a weight function 

that goes beyond the simple linear λ-dependence and has vanishing derivatives at the 

endpoints), affords improvement of the the transformation pathway, particularly at the 

endpoints where large variation in < ∂U/∂λ >λ can occur.41 These weight functions both 

operate within the range 0 ≤ λ ≤ 1 (they have constant endpoint values outside of this range), 

and satisfy the normalization condition:

W 0(λ) + W 1(λ) = 1 (12)

and the symmetry condition:

W 0(1 − λ) = W 1(λ) (13)

2.2.3 λ-scheduling of weight functions—In some cases, it is desirable to have the 

flexibility to apply more complicated λ schedules that operate over a subinterval of λ values 

between 0 and 1. The generalized λ scheduling weight for W0 can be defined so that it is 

changing only within the interval λmin ≤ λ ≤ λmax as

W 0(λ) = 1 − SP(z(λ))

z(λ)

= 0, if λ ≤ λmin

= λ − λmin

λmax − λmin
, if λmin ≤ λ ≤ λmax

= 1, if λmax ≤ λ

(14)

where 0 ≤ λmin ≤ λmax ≤ 1. In the current framework, the complementary weight function 

W1(λ) can be selected to either satisfy the normalization condition (eq 12), or the symmetry 
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condition (eq 13) above. Only if the interval z(λ) is centered at λ = 0.5 are both the 

normalization and symmetry conditions simultaneously satisfied. The Drug Discovery Boost 

package in AMBER22 allows flexible λ scheduling of this form for different energy 

components. The detailed usage can be found in the updated AMBER22 manual.50

2.3 New softcore potential form

With a flexible form of the weight functions in eq 6 described, we now turn to a presentation 

of a new functional form for the softcore potentials that provide the explicit λ-dependence 

in the potential energy terms in eq 4. In the current framework, softcore potentials are 

developed for both the LJ and non-bonded electrostatic interactions (i.e., the direct/real 

space component of the PME method). Hence, the main terms that are affected by the 

softcore potentials are those contained in the non-bonded interactions between the SC and 

(CC+I) regions, i.e., those terms present in Unb
SC ∕ (CC + I). Formally, these terms can also be 

present in the internal energy of the SC region, if these terms are being “turned off” to form 

the “dummy state”. In principle, the internal potential energy interactions in the dummy state 

are arbitrary so long as they are treated consistently in different legs of the thermodynamic 

cycle that are subtracted. However, in practice, choice of the interactions in the dummy state 

are important, and should be selected to minimize the volume of phase space needed to 

sample the dummy state while at the same time avoiding sampling traps (multiple distinct 

free energy basins separated by high barriers) that could lead to inconsistent results. In fact, 

with the proper choice of potential energy interactions in the dummy state, together with 

well-established generalized ensemble methods such as Hamiltonian replica exchange51-53 

can lead to powerful new alchemical enhanced sampling methods. These issues will be 

explored in next paper in this series.54 For the present paper, the dummy state was created 

by scaling (i.e., “turning off”) electrostatic interactions, and in some cases also torsion angle 

and 1-4 LJ terms, but keeping other bonded and normal LJ terms in place. Hence, the 

new form of the softcore potential will affect mainly the Unb
SC ∕ (CC + I) term, which, as results 

presented later in the paper will show, has a profound affect on the free energy estimates.

The LJ, Coulomb and PME direct-space interactions for a set of interacting point particles i 
and j separated by a distance rij are given by

ULJ(rij) = 4ϵij
σij

rij

12
− σij

rij

6
(15)

UCoul(rij) = qiqj

4πϵ0

1
rij

(16)

and

Udir(rij) = qiqj

4πϵ0

er fc(κrij)
rij

(17)

where σij and ϵij are the pairwise LJ contact distance and well depth, respectively, and qi and 

qj are the partial charges of particles i and j, respectively, er f c() is the complementary error 

function and κ is the Ewald coefficient.
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To soften these pairwise particle-particle interactions, a parametric form for the separation-

shifted scaling is used to modify the effective interaction distance. A commonly used 

form23,24 is given by

rij
LJ(λ; α) = rij

n + λασij
n 1 ∕ n (18)

and

rij
Coul(λ; β) = rij

m + λβ 1 ∕ m (19)

where n and m are positive integers and α and β are adjustable positive semi-definite 

parameters (note that α is unitless whereas β has units of distance raised to the power of m). 

The value of n = 6 and m = 2 are often used, and have been the default values in AMBER 

until the present work. We will demonstrate later in the manuscript how this softcore 

potential can lead to numerical instabilities, and discuss ongoing efforts and progress to 

improve the methods.

We introduce the following modified form of the separation-shifted scaling that leads to 

considerable improvement:

rij
LJ∗(λ; αLJ) = rij

n + αLJ ⋅ fSW(rij)S2(λ)σij
n 1 ∕ n (20)

and

rij
Coul∗(λ; αCoul) = rij

m + αCoul ⋅ fSW(rij)S2(λ)σij
m 1 ∕ m

(21)

where αLJ and αCoul are the corresponding unitless parameters, S2 is the 2nd-order smooth-

step function in eq 7, and fSW(rij) is a switching function designed to smoothly return to the 

normal rij, and thus long-ranged behavior, by the end of the cutoff

fSW(rij) ≡ 1 − S2
rij − Rcut, i

Rcut, f − Rcut, i
(22)

where Rcut,i is the distance that the switching function begins switching and Rcut,f is the 

final distance where the switching ends (returning the effective interaction distance to be rij). 

Henceforth, we will set Rcut,f = Rcut, and Rcut,i = Rcut − 2 Å, respectively.

The form of the new softcore potential is thus

ULJ(rij; λ) = ULJ rij
LJ∗(λ; αLJ) (23)

UCoul(rij; λ) = UCoul rij
Coul∗(λ; αCoul) (24)

and

Udir(rij; λ) = Udir rij
Coul∗(λ; αCoul) (25)
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Most free energy simulations in the condensed phase are performed under periodic boundary 

conditions and use the PME method55,56 to treat long-ranged electrostatic interactions, in 

which case the electrostatic softcore potentials described here apply to the Udir term (eq 25). 

If, on the other hand, PME electrostatics is not used, then the electrostatic softcore potential 

apply to the UCoul term (eq 24).

3 Methods

Throughout the manuscript, we will explore alchemical free energy calculations using 

concerted transformation pathways. The new alchemical transformation pathway and 

softcore potential developed here will be compared to several previously developed methods, 

including the softcore potential method of Steinbrecher, Joung and Case24 with default 

parameters used in AMBER18, as well as modified parameters developed by Ebert and 

Labute,57 and a modified smoothstep softcore potential41 used in AMBER20. The present 

method builds on the latter, but deviates in functional form to include a universal pairwise 

interaction with consistent power scaling of Coulomb and Lennard-Jones interactions with 

unitless control parameters and rigorous smoothing of the potential at the non-bonded 

cut-off boundary. All simulations in the present work were performed with the pmemd.cuda 

module of AMBER Drug Discovery Boost package (AMBER DD Boost)13 as a modified 

software patch to AMBER20 that now has been fully implemented and is available in 

AMBER22.50

3.1 Three example molecular systems

We examine transformations involving three small molecules as test systems. The first test 

case (denoted “DPT/0”) involves the vanishing transformation of 3,4-diphenyltoluene, a 

bulky hydrophobic molecule, into a dummy state. The second test case (denoted “Na+/0”) 

involves the vanishing transformation of Na+, a small ion strongly interacting with its 

environment, into a dummy state. The third test case (denoted “L51c/h”) involves the 

alchemical transformation between two factor Xa ligands, L51c → L51h in solution, 

which involves the migration of charged functional groups from one region of the ligand 

to another.58 The hydration free energy simulations for DPT/0, Na+/0 and L51c/h were 

modeled using the GAFF force field11,59 with the AM1-BCC charges60,61 and solvated with 

TIP3P62 waters (DPT/0, Na+/0 and L51c/h systems contained 2114, 6101 and 1511 water 

molecules, respectively). All the initial structures for gaseous simulations were prepared 

by stripping water from those equilibrated structures in the aqueous phase with a periodic 

box. Alchemical free energy calculations were performed for different softcore potential 

methods using single-step concerted transformations in a series of 21 alchemical states 

equally spaced along the λ dimension ranging from 0 to 1 (Δλ = 0.05). The system in 

each transformation was first energy minimized with 1000 steps which the steepest descent 

method was used, then the initial conformations for each λ window (total 21 windows) were 

sequentially generated with 5 ps pre-equilibration with NVT ensemble. Each window was 

run in the NVT ensemble at 298 K through Langevin thermostat with a friction constant 

of 5.0 ps−1 for 5.2 ns with the first 200 ps discarded prior to analysis, in order to get 5 

ns of production sampling. The long-range electrostatics were evaluated with the particle 

mesh Ewald (PME) method.55,56 A cutoff of 10 Å was used for non-bonded interactions, 
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including the direct space PME terms and particles interacting through softcore potentials. 

All simulations were performed using a 1 fs integration time step, and only the bonds 

and angle involving hydrogens of water molecules were constrained with the SHAKE 

algorithm.63,64

3.2 Relative hydration and binding free energy simulations

We examine six possible transformations between four ligands (L66, L67, L74 and L75) 

that target binding to protein tyrosine phosphatase 1B (PTP1B)65,66 with softcore regions for 

each transformation selected using a variant of the maximum common substructure search 

algorithm67 as implemented in the Cheminformatics software RDKit.68 Specifically, an 

“extended” MCS atom-mapping algorithm we developed is used that builds on the original 

MCS algorithm and excludes from the “maximum overlap” region atoms that differ either 

in chemical identity or hybridization, and further enforces the condition that for each ligand, 

the same softcore and common core regions are used consistently for every transformation in 

the network involving that ligand. We refer to this atom-mapping procedures as MCS-Enw. 

Initial structures were taken from the published data66 and simulations were prepared using 

the AMBER ff14SB,69 GAFF270 force fields. Ligands and ligand-protein complexes were 

solvated using TIP4P-Ew71 water and an initial buffer size of 20 and 16 Å, respectively. 

Any remaining net charge of the system was first neutralized and then solvated as 0.15 M 

ion concentration by addition of Na+ or Cl− as appropriate. A minimization with Cartesian 

restraints relative to the starting structure were applied to all ligand and protein heavy 

atoms with force constant of 5 kcal/mol/Å2, and followed by another minimization without 

any restraint at λ=0. After two steps of minimization (5000 steps of steepest descent for 

each minimization), two short 5 ps equilibration were performed and followed by 500 ps 

equilibration with NPT ensemble. The system then was heated at a fixed volume with 300 

k. After the heating stage, a 500 ps equilibration with NPT ensemble was performed and 

followed by 2 ns annealing. The annealing was heated to 600 K in the first 50 ps, then stayed 

with 600 K for another 100 ps, and eventually cooled down to 300 K in the last 50 ps. After 

the annealing stage, the restraint on the ligand and protein heavy atoms was reduced to zero 

in five steps over 1 ns. After the above procedure was performed at λ=0, the sequentially 

minimization, equilibration and heating were performed, which mean the initial structure for 

each λ window was taken from the equilibrated structure of the last λ window. For each 

λ window, the minimized with 5000 steps which the steepest descent method was used, 

then two short 5 ps equilibration were performed and followed by 500 ps equilibration with 

NPT ensemble and heated to 300 K. Alchemical free energy calculations were performed for 

different softcore potential methods using single-step concerted transformations in a series 

of 21 alchemical states equally spaced along the λ dimension ranging from 0 to 1 (Δλ 
=0.05). Each window was run independently (with different initial velocities) 4 times in the 

NPT ensemble at 300 K through Langevin thermostat with a friction constant of 2.0 ps−1 

for 5 ns with the first half of data discarded prior to analysis. The long-range electrostatics 

were evaluated with the particle mesh Ewald (PME) method.55,56 A cutoff of 10 Å was used 

for non-bonded interactions, including the direct space PME terms and particles interacting 

through softcore potentials. Only the bonds involving hydrogen were constrained with the 

SHAKE algorithm63,64 except the atoms of ligands, and all simulations were performed 

using a 1 fs integration time step.
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3.3 Absolute hydration free energy simulations

We examine absolute hydration free energy calculations for four molecules taken or 

modified from FreeSolv database.72 Initial structures were taken from FreeSolv72 and 

simulations were prepared using the AMBER ff14SB,69 GAFF force field11,59 with the 

AM1-BCC charges.60,61 The systems were solvated with TIP3P62 water and an initial buffer 

size of 20 Å. The equilibration procedure was in the same way as for relative binding 

free energy simulations. Alchemical free energy calculations were performed for different 

softcore potential methods using concerted scheme in a series of 21 alchemical states 

equally spaced along the λ dimension ranging from 0 to 1 (Δλ =0.05). Each window 

was run independently (with different initial velocities) 4 times in the NPT ensemble at 

300 K through Langevin theromostat with a friction constant of 2.0 ps−1 for 2.7 ns with 

the first 0.2 ns of data discarded prior to analysis. The long-range electrostatics were 

evaluated with the particle mesh Ewald (PME) method.55,56 A cutoff of 10 Å was used 

for non-bonded interactions, including the direct space PME terms and particles interacting 

through softcore potentials. Only the bonds involving hydrogen were constrained with the 

SHAKE algorithm63,64 except the atoms of ligands, and all simulations were performed 

using a 1 fs integration time step.

3.4 Benchmark reference calculations using alchemical enhanced sampling (ACES)

To generate the benchmark reference number for test systems, we introduced the alchemical 

enhanced sampling method (ACES) that will be described in detail elsewhere.13,54 Initial 

structures and the equilibration procedure were performed in the same way as for relative 

binding free energy simulations, but were repeated 16 independent runs and with non-

uniform λ scheduling which led to 25 λ windows (0, 0.176834, 0.229764, 0.269379, 

0.302697, 0.33229, 0.359436, 0.384886, 0.40913, 0.432518, 0.455318, 0.477748, 0.5, 

0.522252, 0.544682, 0.567482, 0.59087, 0.615114, 0.640564, 0.66771, 0.697303, 0.730621, 

0.770236, 0.823166, 1). These 25 λ points correspond to uniform spacing of the S2(λ) 

smoothstep function (eq 7) that is used for the non-linear mixing weights in eq 6. As 

the S2(λ) function has vanishing gradients at the λ=0 and 1 end-points, this schedule has 

greatest density of points at λ=0.5 rather than at the end-points. Optimal λ spacing for 

the new alchemical transformation pathway will be explored in more detail in future work. 

The benchmark reference calculations were sampled with 4 times as many independent 

trials as for the other production calculations (16 as opposed to 4 independent trials). There 

are two main requirements to perform efficient ACES calculations in AMBER22. The first 

requirement is the targeted conformational barriers are reduced or eliminated in the “dummy 

state”, which can be achieved by the use of the “gti_add_sc” control flag equal to 5. 

The second requirement is the conformations in the “dummy state” need to be efficiently 

propagated to the real state endpoint, which can be achieved by using the Hamiltonian 

replica exchange73-77 framework in AMBER. Alchemical free energy calculations were 

performed using concerted transformations in 25 alchemical states. Each window was run 

in NPT ensemble at 300 K through Langevin thermostat with a friction constant of 2.0 ps−1 

for 5 ns with the first half of data discarded prior to analysis. The long-range electrostatics 

were evaluated with the particle mesh Ewald (PME) method.55,56 A cutoff of 10 Å was used 

for non-bonded interactions, including the direct space PME terms and particles interacting 
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through softcore potentials. Only the bonds involving hydrogen were constrained with the 

SHAKE algorithm63,64 except the atoms of ligands, and all simulations were performed 

using a 1 fs integration time step.

3.5 Simulations to examine stability and energy conservation

We examine the alchemical transformation from Mg2+ to Ca2+ in aqueous solution. The 

system was prepared using the AMBER ff14SB,69 GAFF force field,11,59 and solvated using 

TIP3P62 waters with initial buffer size of 20 Å. Any remaining net charge of the system was 

first neutralized and then solvated as 0.15 M ion concentration by addition of Na+ or Cl− 

as appropriate. Alchemical free energy calculations were performed for different softcore 

potential methods using single-step concerted transformations in a series of 21 alchemical 

states equally spaced along the λ dimension ranging from 0 to 1 (Δλ = 0.05). The system 

for each λ window was first energy minimized with 1000 steps which the steepest descent 

method was used, then followed by 5 ps heating stage. After the heating, the 2 ns pre-

equilibration with NPT ensemble at 298 K through Langevin thermostat with a friction 

constant of 5.0 ps−1 was performed. Each window was run in the NVE ensemble at 298 K 

for 5.2 ns with the first 0.2 ns discarded prior to analysis to get 5 ns of production sampling. 

A cutoff of 10 Å was used for non-bonded interactions, including the direct space PME 

terms and particles interacting through softcore potentials. All simulations were performed 

using a 1 fs integration time step, and only the bonds and angle involving hydrogens of 

water molecules were constrained with the SHAKE algorithm.63,64 The SHAKE tolerance 

was set to 10−8.

4 Results and Discussion

We present results for the development and validation of a new framework for improved 

alchemical transformation pathways in AMBER, and provide discussion in the context 

of comparisons with other existing methods and identification new directions for further 

advance. The next section (section 4.1) uses simple 2-particle models to illustrate examples 

of the endpoint catastrophe, particle collapse and large gradient-jumps that the new softcore 

potential developed in Section 4.2 is designed to address. Section 4.3 compares the methods 

developed in the current work to several established methods in the literature using three 

example molecular systems in solution. Section 4.4 provides validation tests against RSFE 

and RBFE calculations for a set of 4 ligands that target the protein tyrosine phosphatase 

1B (PTP1B), and another validation tests against ASFE calculations for 4 small molecules 

that represent more stringent edge cases, with focus on comparison to highly converged 

benchmark reference calculations and theoretical cycle closure conditions. Section 4.5 ends 

the results and discussion with an analysis of energy fluctuations and conservation in the 

simulations using different alchemical transformation pathways. Finally, the manuscript 

concludes with a summary of key results, and outlook for the future.

Notation for specifying alternative alchemical transformation pathways.

Through the remainder of the manuscript, we will make comparisons to several alternative 

alchemical transformation pathways (eq 2) that differ by their λ-dependent weight functions 

(section 2.2) and softcore potentials (section 2.3). The notation will take the general 
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form: SX[n,m,α,β], where “X” indicates the order of the smoothstep function used in 

the λ-dependent weight function (i.e., mixing term). Specifically, S0 indicates linear (i.e., 

0th-order smoothstep function) and S2 indicates a 2nd-order smoothstep weight functions/

mixing terms, respectively. The integers n and m are positive integers and α and β are 

adjustable positive semi-definite parameters that control the behavior of the separation-

shifted scaling of the effective interaction distance for the Lennard-Jones and Coulomb 

interactions in eqs 18 and 19. In the present work, we introduce a new functional form 

for the softcore potential that uses separation-shifted scaling of eqs 20 and 21 that contain 

unitless αLJ and αCoul parameters, and we will distinguish this softcore potential form 

by the label “S2*”. The 5 alchemical transformation pathways compared in the current 

work are thus designated as: S0 Linear, S0[6,2,0.5,12], S0[6,2,0.2,17.3], S2[6,2,0.2,50] and 

S2*[2,2,0.5,1] (present work), and are summarized in Table 3.

4.1 Endpoint catastrophes, particle collapses, and large gradient-jumps

We examine three problems that commonly occur in alchemical simulations with concerted 

transformations that involve simultaneous changes in both nonbonded Lennard-Jones 

and Coulombic electrostatic interactions: endpoint catastrophe, particle collapse, and 

large gradient-jump. These problems have been discussed elsewhere.13,41 The endpoint 
catastrophe is the sharp divergence of the free energy that is prone to occur at the 

thermodynamic endpoints (λ becomes close to 0 or 1) and can largely be avoided by 

use of appropriate softcore potentials.23,24 However, under certain circumstances, the use 

of softcore potentials can lead to large amplitude fluctuations or phase transition behavior 

along the λ dimension and result in new artificial minimum at intermediate λ states29 due 

to an imbalance of Coulomb attraction and exchange repulsion.24 This is referred to as the 

particle collapse problem, and can be treated by increasing the softcore exchange repulsions 

and/or decreasing the the Coulomb attractions at short distances across the range of λ 
values to correct for unstable imbalance. Nonetheless, this treatment for particle collapse 

can lead to large gradient-jumps, i.e., large amplitude fluctuations of the thermodynamic 

derivatives that are sensitive to the parameters that control the balance of Coulomb attraction 

and exchange repulsion.41 Note that while the behavior of endpoint catastrophe and large 
gradient-jumps might appear similar, their origins are different. The endpoint catastrophes 
are due to poor phase space overlap and often occur with linear alchemical transformations, 

and usually can be corrected with the use of softcore potentials. The large gradient-jumps 
can occur even with the use of softcore potentials, and often happen when large β values 

are required to adjust the softcore parameter ratio to solve the Coulomb-exchange imbalance 

problem. As will be seen later, the proposed non-linear mixing and new functional form of 

the softcore potential alleviates all of these problems.

In order to provide simple illustrative examples, we examine transformations involving 

2-body model systems for which accurate 1D profiles can be computed (integrated) 

numerically. Specifically, we consider cases of the annihilation of a Na+ ion interacting 

with a TIP3P water oxygen, the transformation of a Li+/Cl− ion pair into a Cs+/Cl− ion pair, 

and the annihilation of a large spherical hydrophobic R group interacting with a TIP3P water 

oxygen. These are designated as “Na+ → 0”, “Li+ → Cs+”, and “R → 0”, respectively. 
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Interactions were constrained to remain with a 10 Å interaction distance, and the interaction 

parameters for each model are summarized in Table 4.

For the annihilation models, an additional quadratic “surface tension” term (1/2)k · r2 is 

added (k=1.0 kcal/mol/Å2) to capture the effect that a real solution opposes formation of 

an empty cavity. Note that the purely heuristic value of k chosen for illustration here for 

2-particle systems is much different than those used in conjunction with implicit solvent 

models of many-particle systems that are typically two orders of magnitude smaller.79 

As these are 2-body interaction models, this allows a simple 1D representation of the 

λ-dependent potential energy, U(r; λ), and it’s derivative with respect to λ, dU(r; λ)/dλ, 

as well as the Boltzmann probability distribution, P(r; λ) ~ Exp[−βU(r; λ)] at T=298.15 

K. Examination of the probability distribution, it’s sensitivity to λ and overlap with dU(r; 
λ)/dλ provides insight into the stability of the transformation pathway and its integration. 

The illustrative examples are shown in Fig. 3, and examine specific λ states where problems 

are observed to occur, and compare results for three transformation pathways (see Table 

3): S0 Linear, or “linear mixing” (no softcore potential), as well as a traditional softcore 

potential S0[6,2,0.5,12]24 and with updated/modified parameters S0[6,2,0.2,17.3].57 Also 

shown for completeness is the new softcore potential and non-linear mixing scheme, 

designated S2*[2,2,0.5,1], that will be developed below in the sections that follow.

The endpoint catastrophe is illustrated in Fig. 3(a) for the Na+ → 0 transformation at λ=1 

using the linear mixing scheme. In the linear mixing scheme, the dU(r; λ)/dλ is independent 

of λ (although it does depend on r, it is the same function of r for all λ values), and blows 

up at the origin (r=0); however, at the λ=1 endpoint (with the Na+ fully annihilated), the 

probability of OW is at a maximum at the origin, causing the ⟨∂U/∂λ⟩λ to diverge. This 

behavior is easily handled by the use of a softcore potential that results in a dU(r; λ)/dλ 
profile that stably approaches a constant value at r=0, as shown in Fig. 3(b,c).

However, the use of softcore potentials can also become problematic under different 

circumstances, as illustrated by the Li+ → Cs+ transformation at λ=0.1 in Fig. 3(e,f,g). 

Unlike the linear mixing scheme shown in Fig. 3(d), the S0[6,2,0.5,12] softcore potential 

forms an intermediate λ potential that produces a deep artificial minima at r=0 causing the 

Cl− probability to collapse on the Li+/Cs+ transforming particle (Fig. 3f). This produces a 

spike in ⟨∂U/∂λ⟩λ. The origin of this particle collapse (which is exhibited over the range 

0.1 ≤ λ ≤ 0.9) is that the Coulomb attraction is able to overcome the exchange-repulsion at 

these intermediate λ points. Adjustment of the relative α and β parameters so as to make 

the Lennard-Jones exchange-repulsion “harder’ (i.e., soften more slowly) by lowering the α 
value from 0.5 to 0.2, while at the same time making the Coulomb attraction term “softer” 

by raising the β value from 12 to 17.3 Å2 leads to the S0[6,2,0.2,17.3] curve in Fig. 3(g), 

which does not exhibit particle collapse. As will be shown later, this softcore potential does 

not guarantee elimination of particle collapse in all cases, but does reduce the occurrence in 

practice.

Unfortunately, the re-balancing of the exchange and Coulomb terms can lead to other 

adverse effects, as illustrated in Fig. 3(i,j,k) for the annihilation of the bulky R group. 

This transformation is dominated by the exchange-repulsion term, which is sensitive to the 
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α parameter, especially with softcore potentials that have a large value of n=6 in eq 18. 

Whereas the S0[6,2,0.5,12] softcore potential is reasonably well-behaved near the endpoint 

at λ=0.99 (Fig. 3j), the decrease in the α parameter for the S0[6,2,0.2,17.3] softcore 

potential leads to large values of the dU(r; λ)/dλ for small r and a resulting sharp increase 

in the magnitude of ⟨∂U/∂λ⟩λ as λ → 1 (Fig. 3k). This is known as a large gradient-jump, 

and although less severe, has similarities to the endpoint catastrophe that can occur with 

the S0 Linear transformation (Fig. 3i) despite that the S0[6,2,0.2,17.3] transformation uses a 

softcore potential.

In this way, the form of the traditional S0 alchemical transformations cannot simultaneously 

eliminate the endpoint catastrophe, particle collapse and large gradient-jump problems. 

Recent work to extend the alchemical transformation to use a smoothstep softcore 

potential,41 S2[6,2,0.2,50] further improves the ability to handle these problems, but does 

not eliminate them for some edge cases. As is illustrated in Fig. 3(d,h,l) and will be 

shown more extensively below, the new form of the alchemical transformation pathway 

S2*[2,2,0.5,1] developed in the sections that follow has been designed to overcome these 

and other issues in a highly robust fashion, and has resolved the instability issues of all edge 

cases encountered thus far for the previous smoothstep softcore potential.41 Nonetheless, 

there will likely be cases that are found where the new alchemical transformation is not 

well-suited, and recourse must be taken into more conservative approaches that involve 

λ-scheduling or stepwise decoupling of electrostatic and LJ terms, possibly with additional 

restraints.

4.2 New smoothstep softcore potential with balanced Coulomb and exchange

We recently reported a new form of softcore potential that utilized a smoothstep function 

to enable stabilization of alchemical transformations,41 while otherwise maintaining the 

functional form of the more traditional softcore potential of eqs 18 and 19. In the current 

work, we revise the functional form to introduce a new form of the softcore potential in eqs 

20 and 21. Two features of the new functional form are: 1) a pairwise σij term is introduced 

to both Coulomb and LJ terms, and are controlled by unitless α parameters, and 2) smooth 

switching of rij
LJ∗(λ; αLJ) and rij

Coul∗(λ; αCoul) at the cut-off boundary is introduced so as to 

eliminate discontinuities of the energy and forces and improve the stability of simulations.

One of the main considerations was to introduce a balanced scaling of the Coulomb and LJ 

exchange terms throughout the range of λ [0 to 1]. In this way, if the real particle-particle 

interaction potential at λ=0, before scaling, is able to prevent the particles from collapsing 

onto one another, then by ensuring that the the separation-shifted scaling of the exchange 

interaction is less than or equal to that of the Coulomb interaction, collapse at small r values 

can generally be prevented. This implies the condition:

rij
Coul(λ) > rij

LJ(λ) ∀ λ ∈ [0, 1] (26)

One of the issues with the original softcore potential was that both the functional form 

in eqs 18 and 19 and the n and m scaling powers were different, making it the case that 

at some intermediate λ values the rij
Coul(λ) and rij

LJ(λ) curves would cross (Fig. 4), allowing 
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the possibility that Coulomb attraction could overcome the exchange repulsion. In the new 

softcore potential developed in this work, the functional form of the the separation-shifted 

scaling for LJ and Coulomb interactions of eqs 20 and 21 are the same when n=m. For this 

case, the only requirement is that

rij
Coul∗(λ; αCoul) > rij

LJ∗(λ; αLJ) ∀ λ ∈ [0, 1] if αCoul > αLJ for n = m (27)

We experimented extensively with several values of n = m and combinations of the unitless 

αLJ and αCoul parameters, and found that a very robust balance was achieved with n = m 
= 2 and αLJ = 0.5 and αCoul = 1.0 (see Figure S1 and Tables S1-S3 of the Supporting 

Information for comparisons). For these values of the parameters, rCout*(λ) > rLJ*(λ) (and 

are non-intersecting) over the entire range of λ [0,1] (Fig. 4, rightmost panel). We designate 

this softcore potential S2*[2,2,0.5,1].

Figure 5 illustrates the potential energy curves for the interaction of a Na+ ion with a TIP3P 

water oxygen as a function of separation distance r for several values of λ in the Na+ → 0 

transformation (Table 4). With the S0[6,2,0.5,12] softcore potential, there are deep minima 

at the origin for even small λ values that exacerbate the particle collapse problem. With the 

modified S0[6,2,0.2,17.3] softcore potential, the potential is more repulsive for small values 

of λ, but still may have spurious minima that arise at the origin for λ=0.25. The original 

smoothstep softcore potential S2[6,2,0.2,50] remains repulsive to slightly larger values of 

λ, but has behavior somewhat similar to the S0[6,2,0.2,17.3] potential, again producing 

spurious minima, which is due to the introduction of the softcore potential, at intermediate 

λ=0.5 values and a deep minimum at r=0. The new smoothstep softcore potential introduced 

in the current work, S2*[2,2,0.5,1], eliminates these spurious and deep minimum at the 

origin, having a much more gradual reduction of the repulsive exchange interactions. In 

following sections we compare the behavior of the 4 softcore potentials in alchemical free 

energy simulations of increasing complexity using various assessment metrics discussed in 

the next section.

4.3 Comparison of ⟨∂U/∂λ⟩λ profiles for different alchemical transformation pathways

Figure 6 ⟨∂U/∂λ⟩λ compares profiles for alchemical free energy simulations of three 

example molecular systems in aqueous solution using the concerted scheme and the 

alchemical transformation pathways summarized in Table 3: the annihilation of a bulky 

hydrophobic molecule (diphenyltoluene), the annihilation of a small ion (Na+), and the 

transformation of a charged region in a large ligand (Factor Xa ligand80 L51c to L51h). 

These are abbreviated DPT/0, Na+/0 and L51c/h, respectively. These real systems loosely 

mirror, in a very qualitative sense, the simple 2-particle model systems used for illustration 

purposes in section 4.1.

Overall, the S0[6,2,0.5,12] pathway performs worst for the Na+/0 transformation, since there 

is strong Coulomb attraction that overpowers the poorly balanced exchange interactions, 

similar to the particle collapse observed for the 2-particle Li+ → Cs+ model system in Fig. 

3(e). The S0[6,2,0.2,17.3], on the other hand, better balances the Coulomb and exchange, 
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but at the consequence of exhibiting large gradient-jumps for the DPT/0 transformation, 

similar to problems observed in the 2-particle R → 0 model system in Fig. 3(i).

In addition, there are several instances where the ⟨∂U/∂λ⟩λ profiles exhibit instabilities at 

intermediate or end points, as indicated in Fig. 6 by the yellow circles. These instabilities 

arise from intervals for which there is anomalously poor phase space overlap19 and large 

standard error of the free energy estimate per λ-interval. An additional consideration for 

TI is the ability to accurately integrate the ⟨∂U/∂λ⟩λ profiles, and this can be estimated 

using quadrature stability analysis, and in particular the estimated quadrature RMSE index 

QRMSE that measures the sensitivity of the free energy to numerical integration using 

fewer discrete points (see Supporting Information for detailed discussion of quadrature 

stability). Specifically, QRMSE estimates the error of integrating the ⟨∂U/∂λ⟩λ profile 

using a cubic spline representation with roughly 1/e (~36.8%) fewer points. The larger 

the value of QRMSE, the greater the estimated thermodynamic integration error of the 

⟨∂U/∂λ⟩λ profile. Table 5 compares the TI standard errors and quadrature stability indexes 

for each transformation pathway (Table 3) for the the DPT/0, Na+/0 and L51c/h model 

transformations. In all cases except one, the standard error estimates were below 0.2 

kcal/mol (the exception being the L51c/h transformation using S0[6,2,0.5,12] with std. 

err. of 0.95 kcal/mol). The quadrature stability indexes, QRMSE, on the other hand, with 

the new S2*[2,2,0.5,1] softcore potential/transformation pathway having universally the 

smallest values, ranging from 0.21-0.7 kcal/mol, whereas the other transformation pathways 

ranged from 0.5-7.6 kcal/mol. The smaller quadrature stability indexes for S2*[2,2,0.5,1] 

qualitatively reflect the generally improved smoothness of the ⟨∂U/∂λ⟩λ profiles in Fig. 6. In 

the following section, the various transformation pathways will be examined in the context 

of relative solvation and binding free energies of ligand networks.

4.4 Validation against solvation and relative binding free energies

In the previous sections, we analyzed in detail both 2-particle numerical models as well 

as a set of real model transformations in aqueous solution. Here we turn toward more 

complex systems and real-world applications. The goal here is not to evaluate the accuracy 

of the force field or to address challenging sampling issues (the examples were chosen 

so as to avoid such issues), but rather how the alchemical transformation pathway itself 

affects the accuracy of the free energy estimate. To achieve this goal, we will focus 

attention on comparisons to benchmark reference calculations to assess the reliability of 

different alchemical transformation pathways. We first establish a baseline by examining a 

well-studied set of ligand transformations in gaseous, aqueous and complex environments 

for which the established methods typically do not fail, in order to establish that the new 

methods also perform well. Next we examine more challenging transformations that involve 

absolute hydration free energies of bulky hydrophobic, polar, and anionic/cationic systems 

where other methods are observed to break down.

Well-studied ligand transformations in gaseous, aqueous and protein complex 
environments—We first examine transformations between four ligands (L66, L67, L74 

and L75) that target the protein tyrosine phosphatase 1B (PTP1B)65,66 (Fig. 7). A 

thermodynamic graph is constructed that involves all 6 possible alchemical transformation 
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between ligands, producing 6 edges to the complete thermodynamic graph (Fig. 7). We will 

consider transformations within this thermodynamic graph in three different environments: 

gas phase, aqueous solution, and complexed to PTP1B. This will enable cycles to be 

constructed for both RSFE and RBFE (Fig. 1). In addition, we perform benchmark reference 

calculations using new alchemical advanced enhanced sampling techniques, as well as 

increased number of λ sampling windows and number of independent runs in order to 

increase the level of precision of the TI/BAR/MBAR free energy estimates (see Methods for 

details). Note that we report our benchmark reference data using the BAR analysis method 

as we find this to be generally the most robust protocol for the data set considered here, and 

avoids errors that arise from numerical quadrature with TI.

Table 6 summarizes relative hydration free energy values from TI for 6 alchemical 

transformations between ligands. All of the error estimates are quite small with respect 

to the reference calculations (less than 0.2 kcal/mol), and all except for the S0[6,2,0.2,17.3] 

pathway have errors below 0.1 kcal/mol. The situation is overall similar for the relative 

binding free energy values shown in Table 7, with TI error estimates all below 0.2 kcal/mol. 

An independent assessment of reliability of the calculations can be ascertained through 

analysis of theoretical cycle closure conditions that the exact results must strictly obey. 

The cycle closure errors for the RSFE calculations using TI are around 0.1 kcal/mol or 

less for all methods with the exception of S0[6,2,0.2,17.3] which has TI cycle closure 

errors greater than 0.3 kcal/mol. The corresponding cycle closure errors for the RBFE 

calculations using TI are generally less than 0.3 kcal/mol, with the S2[6,2,0.2,50] being 

particularly small (less than 0.1 kcal/mol). In general, the cycle closure errors are even 

smaller with BAR and MBAR analysis (see Tables S4 and S5 of the Supporting Information 

for further details). Table 8 compares the TI standard errors and quadrature stability 

indexes for each transformation pathways for the 6 transformations. In most cases, the 

standard error estimates are below 0.2 kcal/mol, except the L67→L74 and L67→L75 

using the S0[6,2,0.5,12] pathway. The S2*[2,2,0.5,1] pathway generally has the smallest 

quadrature stability indexes, in particular QRMSE, ranging from 0.06-0.38 kcal/mol, whereas 

the other alchemical transformation pathways ranged from 0.21-5.17 kcal/mol. Overall, 

the new S2*[2,2,0.5,1] performs very well and appears to be stable and robust for these 

transformations.

Absolute hydration free energies of bulky hydrophobic, polar, and anionic/
cationic systems—Next, we examine the absolute hydration free energies for 

phenanthrene, 7-cyclopentanylindole (7-CPI), phenoxide ion and anilinium ion. These 

systems represent more stringent edge cases that combine large steric annihilation with 

neutral, negative and positive charged systems. Similarly to the PTP1B ligands, we also 

perform benchmark reference calculation in order to make error estimates using new 

alchemical enhanced sampling techniques, as well as increased number of λ sampling 

windows and number of independent trials.

Figure 8 compares ⟨∂U/∂λ⟩λ profiles for alchemical free energy simulations of these four 

molecular systems in solution using the concerted scheme and the alchemical transformation 

pathways summarized in Table 3. Overall, the S0[6,2,0.5,12] pathway performs worst for 

the annihilation of phenoxide ion, similar to the particle collapse observed for the 2-particle 
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Li+ → Cs+ model system in Fig. 3(e). Specifically, for the phenoxide ion, the profile is not 

smooth for λ values around 0.25. The origin of this issue is the particle collapse problem, 

where the softened exchange repulsions cannot balance the attractive softcore Coulomb 

attractions of the charged particles, causing them to collapse on top of one another. The 

S0[6,2,0.2,17.3] causes large gradient-jumps particularly for the larger phenanthrene and 

7-cyclopentanylindole transformations, similar to problems observed in the 2-particle R → 
0 model system in Fig. 3(i). The S2[6,2,0.2,50] exhibits instabilities between intermediate 

λ=0.90 and 0.95 for the annihilation of phenanthrene and 7-cyclopentanylindole due to poor 

phase space overlap. The S2*[2,2,0.5,1] overall performs best and achieve stable ⟨∂U/∂λ⟩λ 
curves, as reflected also by improved quadrature stability (QRMSE is smallest, with the minor 

exception of the 7-CPI case where S0[6,2,0.5,12] is slightly lower).

Table 9 summarizes absolute hydration free energy values for four molecular systems 

calculated with different alchemical transformation pathways. The bold numbers are the 

error estimates between the free energy values with respect to the ACES reference results. 

The annihilation of phenoxide ion shows by far the largest error (8.01 kcal/mol) with 

S0[6,2,0.5,12]. The large difference matches the irregularity of the ⟨∂U/∂λ⟩λ profile, which 

has a sharp kink around λ=0.25. The S0[6,2,0.5,12] results are overall the worst, with 

average estimates error of 2.03 kcal/mol. The S0[6,2,0.2,17.3] has the next highest average 

estimated error of 0.49 kcal/mol, followed by S2[6,2,0.2,50] which is significantly reduced 

(0.09 kcal/mol). The S2*[2,2,0.5,1] has the smallest estimated error of 0.05 kcal/mol, 

with the highest value (0.07 kcal/mol) being for phenanthrene. This suggests that the new 

S2*[2,2,0.5,1] is robust in its ability to stably carry out these more challenging absolute 

hydration free energy simulations and provide reliable free energy estimates.

4.5 Energy stability and conservation

In order to examine the stability of the simulations (i.e., total energy fluctuations and 

conservation) using different functional forms and parameters for the various softcore 

potentials, we perform simulations for Mg2+ → Ca2+ (both ions treated using softcore 

potentials) with single precision model (SPFP) and the NVE ensemble at λ =0.5 using 

four different softcore potentials. Note that for λ=0.5, the value of the λ-dependent weight 

functions W(λ) in eq 2 are all the same (0.5). The time evolution of the total energy and 

1-ps energy drift is compared in Fig 9. In the 1-ps time domain, the distributions of energy 

drift values are normal (symmetric about the mean, unimodal and Gaussian-like) for all of 

the softcore potentials, and also similar to the end state simulations (data not shown). A 

statistically significant difference, however, is that the mean value is considerably larger 

for the S0[6,2,0.5,12] and S0[6,2,0.2,17.3] softcore potentials (0.19 and 0.12 kcal/mol, 

respectively) with respect to the smoothstep softcore potentials that have mean values of 

0.01 kcal/mol or less. These differences are more evident by looking at the time evolution 

of the total energy, which illustrates there is a persistent, steady energy drift over 5 ns that 

gives rise to the mean values in the 1-ps histograms. This drift persists for simulations 

extended to 20 ns with very similar slope (data not shown). Formally, only the new 

S2*[2,2,0.5,1] softcore potential is rigorously smooth at the cut-off boundary and conserves 

energy. However, it appears that for the present example, the S2[6,2,0.2,50] simulation also 

conserves energy quite well. A more detailed preliminary analysis indicates that the origin 
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of the trends in energy conservation derives mainly from short-ranged interactions, and 

relatively minimally from the lack of continuity (in cases other than S2*[2,2,0.5,1]) of the 

softcore potentials at the cut-off boundary. Specifically, instabilities can arise when “hard” 

collisions that occur for potentials where the short-ranged LJ are steeply changing due to 

the large exponent n=6 in eq 18, and this behavior is exacerbated when these repulsions 

are countered by strong Coulomb interactions (i.e., smaller β values in eq 19). Thus, the 

magnitude of the energy drift is negligible for the new S2*[2,2,0.5,1] softcore potential, 

and for the other softcore potentials follows the trend S0[6,2,0.5,12] > S0[6,2,0.5,17.3] 

> S2[6,2,0.2,50] in accord with the increasing β values. It should be noted that none 

of the energy drifts are severe, and do not greatly impact results when used with an 

appropriate thermostat. Nonetheless, it is important to examine closely these issues, and 

engineer stable softcore potentials from the start in the design of next-generation alchemical 

transformation pathways. As a final comment, we note that we observed virtually no 

performance difference using the various softcore potentials discussed in the current work 

(see Table S6 of the Supporting Information).

5 Conclusion

The current work develops a robust framework for the design of alchemical transformation 

pathways using a new form for the λ-dependent mixing weight functions and smoothstep 

softcore potential. The latter is distinct from previous softcore potentials available in 

AMBER in that it uses smoothstep functions to stabilize behavior near the λ=0 and 

1 end points, consistent power scaling of Coulomb and LJ interactions with unitless 

control parameters to maintain balance of electrostatic attractions and exchange repulsions, 

pairwise form based on the LJ contact radius for the effective interaction distance with 

separation-shifted scaling, and rigorous smoothing of the potential at the non-bonded cut-off 

boundary. The new alchemical transformation pathway is illustrated to overcome commonly 

encountered endpoint catastrophe, particle collapse and large gradient-jump problems in free 

energy simulations, and represents a considerable advance with respect to other alchemical 

transformations and softcore potentials. The current work provides the foundation for more 

robust free energy simulations, including the development of new alchemical enhanced 

sampling methods and new streamlined workflows for high-throughput simulation and 

analysis of ligand libraries and thermodynamic graph networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of a thermodynamic cycle for a relative solvation free energy, RSFE (ΔΔGsolv) 

and relative binding free energy, RBFE (ΔΔGbind) for two ligands (“Ligand 1” and “Ligand 

2”). The green arrows represent the absolute solvation free energy, ASFE (ΔGsolv) and 

absolute binding free energy, ABFE (ΔGbind) of each ligand (indicated by superscripts) that 

involve changing their environment from gas to aqueous phase, or from unbound in the 

aqueous phase to bound in a complex with the protein target, respectively. These quantities 

are experimentally measurable, but are challenging to directly compute as the change in 

the environment can be considerably complicated. The red arrows represent alchemical 

transformations where Ligand 1 is mutated into a similar Ligand 2 in a fixed environment. 

These transformations are frequently more amenable to practical computations. The yellow 

circles in the figures indicate the region of each ligand that undergoes the most significant 

changes in the alchemical transformation, and would likely be modeled using a so-called 

“softcore potential” during the transformation.
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Figure 2: 
Illustration of a transformation between two ligands (L66 and L67) bound to a protein target 

(PTP1B) showing the softcore (SC, blue and red), common core (CC, green) and immutable 

(I, gray) regions. There are two SC regions (red for L67 on the left, and blue for L66 on the 

right) that represent functional groups that are annihilated/created during the transformation 

and involve separate topologies and coordinates. In the end states where the atoms of the 

SC region are transformed into non-interacting “dummy” atoms, their colors are grayed out. 

The middle panel depicts an intermediate λ value for which the SC regions of L66 and 

L67 are partially transformed, as depicted by their partial translucency. The CC region is 

transforming as well (as the force field parameters are changing from those of L67 to L66), 

but the atoms share a common set of coordinates within a single topology in order to reduce 

the amount of phase space sampling. The immutable region is the protein and surrounding 

solvent that are not transforming. The coordinates of the SC, CC and I regions are all treated 

dynamically at every stage of the alchemical transformation which is conducted in a series 

of simulations (“ λ windows”) each at different values of the alchemical transformation 

coordinate λ that varies from 0 to 1 and controls the potential energy.

Tsai et al. Page 29

J Chem Theory Comput. Author manuscript; available in PMC 2024 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Illustrative examples of endpoint catastrophe, particle collapse, and large gradient-jump 

in transformations of the 2-particle model systems summarized in Table 4. The 2-particle 

nature of the models facilitates comparison using 1D plots as a function of interparticle 

separation r. Shown are the potential energy U(r; λ) (blue), derivative dU(r; λ)/dλ (gold) 

and Boltzmann probability P(r; λ) (green) scaled so as to be easier to view on the same plot. 

For the annihilation models (Na+ →0, and R→0), and additional quadratic “surface tension” 

term was added (see Table 4). This surface tension term is meant to capture the effect that 

a real solution would resist formation of an empty cavity, and acts as a weak confining 

potential to keep particles in close proximity in the limit their interactions become very weak 

or vanish. Particles were further constrained to remain with a 10 Å range. These 2-particle 

models were designed to qualitatively mimic the behavior of the three example alchemical 

free energy simulations presented later in the discussion. Top row: Annihilation of Na+ ion 

(interacting with a TIP3P water oxygen) at λ=1.00 illustrating endpoint catastrophe. At 

λ=1.00, the Na+ Coulomb and LJ interactions vanish, and only the weak confining potential 

remains and is shown as the blue curve, as in this case it is the same as U(r; 1). In a real 

condensed phase simulation, the annihilated Na+ would be immersed in the water bath and 

unable to avoid passing on top of the many space-filling water molecules so as to produce 

an endpoint catastrophe. In this simple illustrative 2-particle model, the surface tension term 

produces the same qualitative effect. Middle row: Li+→Cs+ transformation with the ions 

interacting with a TIP3P water oxygen at λ=0.10 illustrating particle collapse. Bottom row: 

Annihilation of large R group (interacting with a TIP3P water oxygen) at λ=0.99 illustrating 

large gradient-jump. The R group is modeled as a 5.0-Å LJ sphere with partial charge of 

0.1∣e∣, and also uses the same surface tension term as for the annihilation of Na+ above. 
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Note: the scale of the y-axis differs for this model by a factor of 10 relative to the ion models 

above.

Tsai et al. Page 31

J Chem Theory Comput. Author manuscript; available in PMC 2024 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Separation-shifted scaling, rCoul(λ) and rLJ(λ), of Coulomb/LJ non-bonded interactions used 

in eqs 18 and 19 and eqs 20 and 21 shown for each of the softcore potentials summarized 

in Table 3. In addition to the endpoints (λ=0, 1), an intermediate value of λ is selected to 

illustrate if/when the curves cross as indicated by a yellow circle. For the new S2*[2,2,0.5,1] 

softcore potential, the rCoul(λ)/rLJ(λ) are non-intersecting over the entire range of λ [0,1].
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Figure 5: 
U(r; λ) potential energy curve for the interaction of a Na+ ion with a TIP3P water oxygen 

as a function of separation distance r for several values of λ in the Na+ → 0 transformation 

(Table 4). U(r; λ) curves are shown for the alchemical transformation pathways/softcore 

potentials summarized in Table 3.
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Figure 6: 
The ⟨∂U/∂λ⟩λ profiles for alchemical free energy simulations of three molecular systems in 

aqueous solution using the concerted scheme and the alchemical transformation pathways 

summarized in Table 3: the annihilation of diphenyltoluene (DPT/0, upper rows), the 

annihilation of Na+ ion (Na+/0, middle rows), and the transformation between Factor Xa 

ligand80 L51c to L51h (L51c/h, bottom rows). The L51c ligand has 65 atoms and L51h has 

58 atoms, and the red-colored atoms shown are the defined softcore regions, whereas the 

atoms common to both ligands are not shown except the connecting carbon shown in black. 

Highlighted by yellow circles are unstable points that are discussed in the text.
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Figure 7: 
Illustration of a thermodynamic graph which involves 4 ligands (L66, L67, L74, and L75) 

that target the PTP1B.65,66 The thermodynamic graph is constructed that involves all 6 

possible alchemical transformation between ligands. The red-colored atoms shown are the 

defined softcore regions chosen in accord with the MCS-Enw atom-mapping algorithm 

described in the Methods section.
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Figure 8: 
The ⟨∂U/∂λ⟩λ profiles for alchemical free energy simulations of four molecular systems in 

aqueous solution using the concerted scheme and the alchemical transformation pathways 

summarized in Table 3: the annihilation of phenanthrene (upper rows), the annihilation of 

7-cyclopentanylindole (7-CPI) (the second rows), the annihilation of phenoxide ion (the 

third rows), and the annihilation of anilinium ion (bottom rows).
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Figure 9: 
The potential energy drift in the relative hydration free energy calculations for Mg2+ → 
Ca2+ with single precision model (SPFP) and the NVE ensemble at λ = 0.5 for the 

alchemical transformation pathways/softcore potentials summarized in Table 3. The left 

column shows the time evolution of the total energy (dashed line indicates the average value 

in 103 kcal/mol, and slope is in kcal/mol/ps), whereas the right column shows the 1-ps 

energy drift histograms with mean values and standard deviations in kcal/mol.
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Table 1:

Definition of potential energy terms and their abbreviations used as subscripts.a

Energy Term Index Description Collective Term

Ubond 7 Bond stretch

Bonded (b)
Ub = Ubond + Uang + Utor

Uang 6 Angle bend

Utor 5 Torsion rotate (proper/improper)

ULJ 4 Lennard-Jones

Non-bonded (nb)
Unb = Udir + U1−4Ele + ULJ + U1−4LJ

U1−4LJ 3 1-4 Lennard-Jones

Udir 2 PME direct/real space

U1−4Ele 1 1-4 Electrostatic

Urec 0 PME reciprocal space

a
Absence of an energy term subscript indicates all energy terms (i.e., summation over all energy terms, index t = 0, … 7). The bonded and 

non-bonded terms are “short” and “inter-mediate” ranged, respectively, and kept track of with array lists, the latter for which is set by a distance 
cut-off and updated dynamically when needed. Note under these definitions, the 1-4 Ele and 1-4 LJ terms are considered part of the non-bonded 
terms, and the total electrostatic energy (UEle) is not purely a “non-bonded” term as it contains also the non-local reciprocal space term. i.e., UEle 
= Udir + U1−4Ele + Urec.
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Table 2:

Energy decomposition terms based on non-overlapping sets of atoms comprising the separable-coordinate/

softcore (SC), constrained coordinate/common core (CC) and immutable (I) regions.a

Energy Region/Interactions Description

USC Internal energy of the SC 
region

Each of the contributing bonded or non-bonded internal energy terms arises from a set of atoms 
that are contained within indicated region; i.e., all atoms of the term belong to the indicated 
region.

UCC Internal energy of the CC 
region

UI Internal energy of the I region

U(CC+I) Internal energy of the CC+I 
region

USC/(CC+1)
Interaction energy between SC 
and (CC+I) regions:
USC/(CC+I) = USC/CC + USC/I

Each of the contributing bonded or non-bonded interaction energy terms arises from a set of 
atoms that span the SC and combined (CC+I) regions; i.e., some belong to the SC region, while 
others in the same term belong to the (CC+I) region.

a
The three regions are as follows: 1) (SC) Separable coordinate/softcore region that is transforming with λ and is treated with separable coordinates 

within the dual topology framework; 2) (CC) Constrained coordinate/common core region that is transforming with λ but that shares the same 
coordinates within the dual topology framework (making it effectively a single topology); and 3) (I) Immutable (not transforming with λ). Regions 
can be combined as a union of atom sets with the “+” operator; e.g., (SC+CC) combines the SC and CC regions, and (SC+CC+I) would imply all 

regions (and hence atoms) of the system. The energy decomposition involves using the superscripts UX to indicate either an internal energy within 

the region “X”, or an interaction energy UX/Y between regions “X” and “Y”. Thus in its most expanded form, the total potential energy can be 

written as U = USC + UCC + UI + USC/CC + USC/I + UCC/I. Note the absence of subscripts indicates a summation over all energy terms in 
Table 1; however, the superscript notation can also be applied to energy terms individually. It is assumed, for the convenience and simplification of 
our notation, that the SC, Cc and I regions are defined in such a way that no individual 3-body or 4-body term spans all three regions (e.g., there is 
no angle bending term that has one atom in each of the SC, CC and I regions).
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Table 3:

Abbreviations and associated forms of the alchemical transformation pathways. Indicated are the form of the 

dependent weight functions (in terms of smoothstep function SX, where X indicates the order of the 

smoothstep function); and n, m , α and β parameters of eqs 18 and 19 or n, m, αLJ and αCoul parameters of 

eqs 20 and 21. All α parameters are unitless, whereas the β parameter has units of Å2. The S2*[2,2,0.5,1] 

softcore potential differs in functional form from the others, using Eqns 20/21 for the separation-shifted 

scaling of the effective interaction distance with unitless αLJ and αCoul parameters rather than the more 

conventional form shown in eqs 18 and 19.

Abbreviation W(λ) n m α/αLJ β/αCoul Eqns. Ref. Comment

S0 Linear S0 - - - - - - Linear mixing/no softcore

S0[6, 2, 0.5, 12] S0 6 2 0.5 12 18/19 24 Default in AMBER18

S0[6, 2, 0.2, 17.3] S0 6 2 0.2 17.3 18/19 57 Modified for improved stability

S2[6, 2, 0.2, 50] S2 6 2 0.2 50 18/19 41 Default in AMBER20

S2*[2, 2, 0.5, 1] S2 2 2 0.5 1.0 20/21 - Present work, new form
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Table 4:

Summary of parameters used in transformations of illustrative 2-body model systems (taken from Joung and 

Cheatham ion monovalent parameters78 and TIP3P water62). The 1-body parameters (Q in units of ∣e∣, σ in 

units of Å, and ε in units of kcal/mol) for atoms are: Cs+ (Q=1.0, σ=1.888, ε=0.3944318); Li+ (Q=1.0, 

σ=0.808, ε=0.103984); Cl− (Q=−1.0, σ = 2.760, ε=0.0116615); Na+ (Q=1.0, σ=1.226, ε=0.1684375); OW 

(Q=−0.834, σ=1.57535, ε=0.1521). The hydrophobic R group model was chosen as a LJ sphere of σij=5.0 Å 

and εij=1.0 kcal/mol, and Coulomb interaction between a OW atom and a R group charge Q=0.1∣e∣. For the 

annihilation models, and additional quadratic “surface tension” term of the form (1/2)k-r2 was added (force 

constant k in units of kcal/mol·Å2) to capture the effect that a real solution would resist formation of an empty 

cavity. Particles were constrained to remain with a 10 Å range.

λ=0 state → λ=1 state

Transformation Qi·Qj σij εij k Qi·Qj σij εij k

Na+ → 0 −0.834 2.80135 0.16006 1.0 → - - - 1.0

Li+ → Cs+ −1.0 3.568 0.03482 - → −1.0 4.648 0.06782 -

R → 0 −0.0834 5.0 1.0 1.0 → - - - 1.0
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Table 5:

Examination of standard errors for TI free energy estimates and quadrature stability indexes for ⟨∂U/∂λ⟩λ 

profiles for DPT/0, Na+/0 and L51c/h model transformations. For each index, the smallest/largest value for a 

given transformation is highlighted in boldface/italics. All units are in kcal/mol.

S0[6, 2, 0.5, 12] S0[6, 2, 0.2, 17.3] S2[6, 2, 0.2, 50] S2*[2, 2, 0.5, 1]

Transformation Std. Err/QRMSE Std. Err/QRMSE Std. Err/QRMSE Std. Err/QRMSE

DPT/0 0.06 / 0.50 0.14 / 2.44 0.08/2.38 0.09/ 0.44

Na+/0 0.05/7.33 0.08 /7.59 0.05 / 2.29 0.07/ 0.21

L51c/h 0.95 / 3.36 0.18/2.01 0.12 / 2.17 0.18 /0.70
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Table 6:

Relative hydration free energy values (kcal/mol)a for four alchemical transformation pathways/softcore 

potentials

Transformation S0[6, 2, 0.5, 12] S0[6, 2, 0.2, 17.3] S2[6, 2, 0.2, 50] S2*[2, 2, 0.5, 1] Ref.

L66→L75 2.34(07) 2.20(08) 2.40(07) 2.39(06) 2.31(04)

L67→L66 −8.17(07) −8.08(06) −8.07(07) −7.98(08) −8.00(03)

L67→L74 −6.29(07) −6.49(16) −6.21(12) −6.28(10) −6.22(05)

L67→L75 −5.74(08) −5.55(12) −5.80(07) −5.59(10) −5.70(04)

L74→L66 −1.72(06) −1.56(14) −1.76(10) −1.87(10) −1.72(05)

L74→L75 0.51(11) 0.35(19) 0.55(15) 0.59(13) 0.59(05)

MUE 0.07 0.17 0.06 0.06

RMSE 0.08 0.17 0.06 0.08

a
The relative hydration free energy values are obtained by concerted scheme and analyzed using the TI method. Standard errors are shown in 

parentheses (multiplied by 102). Accurate reference values (Ref.) were obtained from ACES calculations, sampled with 16 independent trials (as 
opposed to 4 for other calculations) and 25 λ windows (as opposed to 21 for other calculations), and analyzed with BAR method (see Methods 
section 3.4 for details).
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Table 7:

Relative binding free energy values (kcal/mol) for four alchemical transformation pathways/softcore potentials

Transformation S0[6, 2, 0.5, 12] S0[6, 2, 0.2, 17.3] S2[6, 2, 0.2, 50] S2*[2, 2, 0.5, 1] Ref.

L66→L75 −0.72(09) −0.77(12) −0.82(09) −0.69(17) −0.84(05)

L67→L66 0.83(05) 0.75(06) 0.78(05) 0.72(05) 0.74(03)

L67→L74 −0.24(26) −0.17(18) −0.04(12) 0.15(10) −0.08(06)

L67→L75 −0.32(28) −0.17(14) −0.12(09) −0.05(13) −0.06(05)

L74→L66 0.77(08) 0.84(19) 0.92(14) 0.81(16) 0.88(06)

L74→L75 0.19(15) −0.27(51) 0.01(16) 0.21(14) 0.01(06)

MUE 0.15 0.10 0.03 0.11

RMSE 0.15 0.12 0.04 0.13

a
Relative binding free energy values are obtained by concerted scheme and analyzed using the TI method. Standard errors are shown in parentheses 

(multiplied by 102). Accurate reference values (Ref.) were obtained from ACES calculations, sampled with 16 independent trials (as opposed to 4 
for other calculations) and 25 A windows (as opposed to 21 for other calculations), and analyzed with BAR method (see Methods section 3.4 for 
details).
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Table 8:

Examination of standard errors for TI free energy estimates and quadrature stability indexes for ⟨∂U/∂λ⟩λ 

profiles for PTP1B model transformations in the complex. For each index, the smallest/largest value for a 

given transformation is highlighted in boldface/italics. All units are in kcal/mol.

S0[6, 2, 0.5, 12] S0[6, 2, 0.2, 17.3] S2[6, 2, 0.2, 50] S2*[2, 2, 0.5, 1]

Transformation Std. Err/QRMSE Std. Err/QRMSE Std. Err/QRMSE Std. Err/QRMSE

L66 → L75 0.07/0.42 0.10/0.83 0.06/0.94 0.16/0.13

L67 → L66 0.04/0.34 0.05/1.03 0.04/0.68 0.04/0.06

L67 → L74 0.25/0.21 0.13/0.99 0.09/1.16 0.07/0.25

L67 → L75 0.28/0.25 0.10/1.40 0.08/0.87 0.12/0.08

L74 → L66 0.07/0.47 0.13/1.11 0.11/1.21 0.14/0.38

L74 → L75 0.11/0.25 0.48/5.17 0.11/1.62 0.08/0.14
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Table 9:

Absolute hydration free energy values (kcal/mol)a for four alchemical transformation pathways. The bold 

numbers are the differences between the free energy values with respect to the reference numbers.

Transformation S0[6, 2, 0.5, 12] S0[6, 2, 0.2, 17.3] S2[6, 2, 0.2, 50] S2*[2, 2, 0.5, 1] Ref.

phenanthrene → 0 5.91(02) 0.01 6.36(07) 0.44 5.70(16) 0.22 5.85(05) 0.07 5.92(03)

7CPIb → 0 7.40(06) 0.05 8.20(06) 0.75 7.41(08) 0.04 7.50(05) 0.05 7.45(03)

phenoxide ion → 0 79.50(09) 8.01 71.95(08) 0.46 71.56(05) 0.07 71.51(07) 0.05 71.49(02)

anilinium ion → 0 50.89(06) 0.04 51.14(07) 0.29 50.84(06) 0.01 50.81(06) 0.04 50.85(03)

Avg. Δc 2.03 0.49 0.09 0.05

a
The absolute hydration free energy values are obtained by concerted scheme and analyzed using the TI method. Standard errors are shown in 

parentheses (multiplied by 102). Ref. is the values obtained from ACES calculations, sampled 4X greater with more independent trials and λ 
windows, and analyzed with BAR method (see Methods section 3.4 for details).

b
7-cyclopentanylindole

c
The average free energy differences with respect to the reference,
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