
Advances in gelatin bioinks to optimize bioprinted cell functions

Saad Asim1, Tanveer A. Tabish2, Usman Liaqat3, Ibrahim T. Ozbolat4,5,6,7, Muhammad 
Rizwan1,8,*

1Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 
USA

2Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United 
Kingdom

3Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), 
National University of Sciences & Technology (NUST), Pakistan

4Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA.

5Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA

6Department of Neurosurgery, Penn State, Hershey, PA 16802, USA

7Department of Medical Oncology, Cukurova University, Adana 01330, Turkey

8Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA

Abstract

Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically-

cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently 

crosslinked to stabilize bioprinted structures, yet the covalently-crosslinked matrix is unable to 

recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby 

limiting the functions of bioprinted cells. To some extent, a double network bioink can provide 

a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are 

being designed using reversible crosslinking methods that can emulate the dynamic mechanical 

properties of the ECM. In this review, we analyze the progress in developing gelatin bioink 

formulations for 3D cell culture, and critically analyze the bioprinting and crosslinking techniques, 

with a focus on strategies to optimize the functions of bioprinted cells. We discuss new 

crosslinking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of 

the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin 

bioink. Finally, we present our perspective on the areas of future research and argue that the 

next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and 

bioprinted constructs should be validated against currently established 3D cell culture standards to 

achieve improved therapeutic outcomes.
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Gelatin bioinks are widely utilized; yet the cell functions in the bioprinted gelatin are often 

limited. In this review, we summarize the progress in gelatin bioinks for 3D bioprinting, and 

critically analyze the compositions and crosslinking techniques, with a focus on optimizing the 

bioprinted cell functions. We discuss new crosslinking chemistries that recapitulate the stress-

relaxing microenvironment of the tissue and improve cell functions, yet are less explored in gelatin 

bioinks.
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1. Introduction

The current treatment options to replace damaged tissues and organs rely on donor tissue/

organ transplantation. The number of available transplantable donor organs is not sufficient 

to meet the increasing demand due to increased life expectancy [1]. To address the organ 

shortage, tissue engineering has emerged as an alternative strategy, which promises to 

provide lab-grown engineered tissues for transplantation [2–4]. Various technologies have 

been explored for manufacturing bioartificial organs [5, 6]. Two key features that are 

difficult to replicate in engineered tissues using conventional approaches are the organization 

of multiple cell types and the development of a vascular system, which are critical for the 

physiological function of the tissue. To tackle these challenges, 3D bioprinting has emerged 
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as a viable technology that provides precise control over the spatial distribution of cells 

and other biologics in a volumetric space with high reproducibility [7, 8]. This results in 

formation of patterns that are prescribed using computer-aided design (CAD) tools [9]. The 

3D bioprinting technology has shown unprecedented advantages in situations where spatial 

control is essential, thus allowing to bridge the divergence between native and engineered 

tissue constructs.

Bioink - a mixture of prepolymer and cells - provides a structure for bioprinted constructs 

and allows cells to survive, proliferate, and grow. One of the challenges in bioink 

development is maintaining cytocompatibility while fulfilling the physical and mechanical 

requirements for 3D bioprinting, such as extrudability and shear thinning [10, 11]. For 

example, in extrusion-based bioprinting (EBB), bioinks play a vital role in dispersing cells 

prior to bioprinting, maintaining structural integrity during bioprinting, and supporting 

the spreading and functionality of encapsulated cells post-bioprinting [12, 13]. An ideal 

bioink should be highly compatible to accommodate living cells, provide high resolution 

during bioprinting, and possess properties such as high mechanical integrity, stability, non-

immunogenicity, shear-thinning behavior, extrudability, and cell adhesion [14]. Bioprinting 

techniques primarily use hydrogels as bioinks, because, hydrogels mimic ECM due to their 

hydrophilic polymer network and water content [15]. Hydrogels can retain their structure 

because of crosslinking via chemical or physical bonds while controlling water absorption 

[16]. The amount of water that the polymeric network of hydrogels can absorb can be 

several times greater than their dry weight due to the presence of hydrophilic functional 

groups such as NH2, -COOH, -OH, -CONH2, -CONH, and -SO3H [17]. This high-water 

intake allows for the encapsulation of cells without inflicting damage. Moreover, this highly 

hydrated network allows for the exchange of nutrients and gases, making them an attractive 

option for developing bioinks.

Gelatin, a collagen-derived protein, undergoes physical gelation below room temperature, is 

shear thinning, contains cell-adhesive ligands, and can be enzymatically cleaved by cells. 

Due to these characteristics, gelatin bioinks have attracted tremendous attention to develop 

tissues [18–22]. To date, various gelatin-based bioinks have been formulated to identify 

bioinks supporting specific cell types [23–26]. Gelatin-based bioinks have been employed in 

various bioprinting techniques (extrusion, droplet, and light/laser-based) and with different 

types of encapsulated cells (i.e., primary cells, stem cells, and cancer cells). Gelatin bioink 

is most stabilized using acrylate-based photopolymerization to crosslink gelatin chains. In 

recent years, other crosslinking chemistries, such as click chemistry, have been demonstrated 

to crosslink gelatin [27–29]. Another common theme is to mix natural biomaterials with 

gelatin to form double-network bioprinted constructs with improved printability and cell 

functions. However, improving the complex functions of encapsulated cells such as self-

organization, differentiation, and migration, remains a challenge. This review outlines recent 

advances in the development of gelatin bioink formulations for 3D bioprinting with a 

focus on efforts to improve bioink properties and cell functions. We review progress in 

double-network gelatin hydrogels and chemical crosslinking methods for gelatin which have 

the potential to make the cellular microenvironment more biomimetic, thereby improving 

cell-matrix interactions and cell functions. Finally, we highlight the challenges associated 
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with the development of gelatin-based hydrogels, discuss overlooked aspects, and provide an 

outlook to advance this field.

2. Gelatin as a bioink for 3D bioprinting

Gelatin is a low-cost biodegradable protein with molecular weight ranging from 15000 – to 

400,000 daltons [30, 31]. It is obtained via thermal denaturation or controlled hydrolysis of 

collagen, a key fibrous protein in the human ECM (Figure 1a) [32–35]. Gelatin possesses 

a similar molecular composition as that of collagen, but has a less-ordered macromolecular 

structure and retains important binding moieties for cell adhesion such as the tripeptide 

Arg-Gly-Asp (RGD) sequence. In addition, it shows less antigenicity compared to collagen 

and contains peptide sequences that can be cleaved by the matrix metalloproteinases 

(MMPs) enzymes [36–38]. Due to the MMP-sensitive nature of gelatin, it can be degraded 

by the MMP enzymes secreted by encapsulated cells, facilitating remodeling of the 

microenvironment. Moreover, gelatin displays viscoelastic properties which promote cell 

migration, differentiation, and proliferation [39, 40]. Due to these characteristics, gelatin is 

one of the most widely used natural biomaterials in bioprinting (Figure 1b).

Amino acid analysis indicate that gelatin is mostly comprised of glycine (34.7%), proline 

(15%), alanine (13%), glutamic acid (8.6%), aspartic acid (5.2%), arginine (5.2%), and 

lysine (3.1%) residues (Figure 1c) [41]. Due to the presence of carboxylic functional 

groups on aspartic acid, glutamic acid, and amine functional group on lysine, gelatin is 

highly amenable to chemical modifications to produce chemically crosslinked bioinks. The 

carboxylic and amine groups present in gelatin are mostly used to introduce crosslinking 

moieties on gelatin chains. However, the availability of these reactive functional groups can 

vary depending on the type of gelatin (Figure 1d) [42–45]. Therefore, quantification of these 

functional groups is important because it influences the rate of polymerization, mechanical 

stability, and resulting stiffness of the bioink [46, 47].

Gelatin is a thermo-sensitive biomaterial that undergoes sol-gel transition. When cooled 

to below room temperature, gelatin can form partial triple helical structures, which upon 

heating, reverts to solution due to disruption of hydrogen bonds [48, 49]. Proline and 

hydroxyproline residues play a key role in the physical and rheological properties of 

gelatin [50, 51]. These properties of gelatin can be leveraged to improve the strength of 

gelatin-based bioinks by using sequential crosslinking strategies (physical gelation followed 

by covalent crosslinking) [52].For example, as a gelatin bioink solution is cooled from 37 

to 4°C, the viscosity will gradually increase due to the formation of triple helices [53]. 

Thus, flow behavior and extrudability of the gelatin solution can be optimized by tuning the 

temperature [18–21, 49, 54–56]. As the gelatin liquifies at 37°C, it can also be used as a 

sacrificial ink for the creation of channels or porous structures within bioprinted constructs 

for enhancing nutrient delivery and cell growth [57, 58]. Collectively, these characteristics 

widen the applications for gelatin in the development of bioinks for 3D bioprinting. Table 1 

below highlights the advantages, limitations, and properties of gelatin as a bioink material 

compared to other widely used natural bioinks.
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2.1 Gelatin as a support bath for bioprinting

The appealing viscoelastic properties of gelatin have not only widened its use as a bioink 

but also as a support bath to allow gel-in-gel bioprinting of soft and low-viscosity bioinks 

while providing an environment that maintains cell viability [99]. The idea of using gelatin 

as a support bath for the deposition of bioinks in complex 3D constructs was first introduced 

by Hinton and colleagues in 2015 [100]. Due to the shear thinning property of gelatin, the 

support bath acts as a rigid body at low shear stresses and flows like a viscous fluid at 

high shear stresses. Therefore, gelatin makes an ideal material for support baths because a 

syringe needle can be easily inserted and traversed extruding a bioink. As the needle moves 

forward, the gelatin solidifies in its wake and holds the extruded material in place. Moreover, 

the thermo-responsive nature of gelatin makes it easy to wash away the bath and retrieve 

the bioprinted structure. Several researchers have already made use of these gelatin support 

baths to bioprint constructs [101, 102]. Kupfer et al. used gelatin microspheres to support 

the bioprinting of chambered cardiac mimics using low-viscosity gelatin methacrylate bioink 

[103]. Bao et al. used sodium bicarbonate laden-gelatin slurries as a phase separation 

inducing matrix (PSIM) to embed a cell-laden chitosan bioink [104]. While gelatin provided 

support to the bioprinted structure, the reaction between sodium carbonate and the chitosan 

bioink resulted in micropore formation, which created a hierarchical porous structure within 

the printed construct. Gelatin was washed away later by incubating the bioprinted scaffold at 

37°C. Likewise, Montalbano et al. used gelatin to bioprint bone-like scaffolds using collagen 

and mesoporous bioactive glass [105]. Since collagen gels at 37°C (sol-gel transition) and 

gelatin melts at 37°C (gel-sol transition), gelation of the scaffold and removal of the support 

bath both occur when incubated at 37°C, simultaneously accomplishing two tasks with one 

stimulus.

3. Improving gelatin bioink properties and cell encapsulation using photo-

crosslinking

The use of unmodified gelatin for bioinks results in tissue constructs that suffer from poor 

stability and structural fidelity. The unmodified gelatin decreases in weight by 50% after 

10h of incubation, and complete dissolution within 24h [39]. Therefore, the use of gelatin 

as a primary bioink requires additional crosslinking to maintain the cellularized structures 

post-bioprinting. To address this problem, gelatin may be chemically modified to achieve 

the crosslinking of its chains, thereby improving stability. However, chemical crosslinking, 

achieved through stable covalent bonds, may limit the ability of encapsulated cells to 

remodel the microenvironment which is required for their continued growth. This section 

discusses the developments in photochemically-crosslinked gelatin bioinks and highlights 

the challenges associated with improving cell functions.

3.1. Photopolymerization of gelatin using methacryloyl crosslinking

One of the most commonly used strategies to stabilize bioprinted gelatin constructs is 

by methacrylation of the lysine residues; these polymerize to form covalently-crosslinked 

gelatin methacryloyl (GelMA) in the presence of a photoinitiator and UV-light [43, 

106–113]. The GelMA retains cell adhesive properties because the RGD motifs are not 
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chemically modified during methacrylation [114–116]. GelMA properties can be tuned 

by changing its concentration, degree of modification, photoinitiator concentration, and 

exposure time to UV-light [43, 117–120]. Hoorick et. al. functionalized both the primary 

amines and carboxylic acid of gelatin [42], resulting in the formation of both methacrylate 

and methacrylamide functionalities in gelatin. This combination of modifications allowed 

gelatin to have faster crosslinking kinetics compared to other derivates. In addition to this, 

the resulting superior mechanical integrity and lower swelling ratios improves shape fidelity 

and higher resolution of bioprinted constructs [121].

In general, a higher concentration of GelMA is easier to print [122]. Yet, higher 

concentrations of GelMA reduces the proliferation and spreading of encapsulated cells 

due to the confinement in a dense polymer network, resulting in reduced pore size and 

diffusion of nutrients [123–127]. Increasing the concentration of GelMA also requires large 

shear force to eject the bioink, which further reduces cell viability [128]. To overcome 

this drawback, pore forming GelMA-based bioink formulations have been developed 

recently [129]. Such formulations rely on aqueous two-phase emulsion, which contain 

two immiscible aqueous phases of GelMA/cell mixture with encapsulating droplets of 

polyethylene oxide (PEO). The different volumetric ratios of PEO/GelMA can be used to 

control pore size, leading to the formation of porous bioprinted tissue constructs [130].

Several research groups have developed strategies to improve the bioprinting of low 

concentration GelMA bioinks to improve cell functions. For example, GelMA bioinks 

can physically crosslink when cooled to 4°C prior to bioprinting [131]. These physically 

crosslinked gels are shear-thinning, thereby allowing direct extrusion of GelMA at a low 

concentration. Alternatively, unmodified gelatin can be mixed with GelMA to temporarily 

increase the viscosity of the bioink [127]. The gelatin is then washed away from the 

bioprinted construct, leaving behind a GelMA polymer network that is conducive for faster 

cell growth. In another strategy, Liu et al. demonstrated the use of an alginate sheath 

as a template to provide support for the bioprinting of a GelMA bioink, followed by 

UV-light exposure to initiate crosslinking [132]. Alginate can also be used to provide 

temporary structural support to maintain the shape of low concentration GelMA bioinks 

during printing, which can later be removed to leave behind the desired shape [133].

Even though studies have shown successful outcomes in the EBB of tissue constructs, 

GelMA bioinks often require an alteration to viscosity, or the addition of other bioprintable 

materials to overcome the poor printability of low-viscosity GelMA bioinks [134–136]. 

Other bioprinting methods (e.g., light and droplet -based bioprinting) that are less restricted 

by bioink viscosity have emerged as strong alternatives for high resolution bioprinting 

of GelMA bioinks [137–142]. Using volumetric bioprinting, Gehlen et al. successfully 

bioprinted constructs with 2.5 w/v% and 5 w/v % GelMA bioinks within 30 seconds 

that both exhibited high cell viability (90%) [143]. Optical tuning of GelMA bioinks 

using iodixanol has recently been found to be a key factor for improving the resolution 

in volumetric bioprinting [144]. Using a GelMA/iodixanol combination, complex organoid-

laden perfusable liver tissue constructs were fabricated using volumetric bioprinting (Figure 

2a). The liver organoids maintained their self-organization in bioprinted constructs and 

expressed key markers for liver cells (HNF4a, MDR1, CK19). The metabolic activity in 
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volumetric bioprinted organoids was higher compared to organoids grown using the casting 

method or EBB, yet lower than the organoids grown in Matrigel control, indicating room 

for further improvement in cellular functions (Figures 2b–c). Chen et. al. leveraged acoustic 

bioprinting process, where viscosity does not significantly affect the bioprintability [145] 

to bioprint low concentration GelMA bioinks (5% w/v) at high cell densities ( > 1.6 × 107 

cells per mL) while maintaining cell viability [146] (Figure 2d). Because the approach is 

nozzle-free, clogging is not an issue as with EBB. Organization of multiple cell types in 

various patterns was demonstrated using acoustic bioprinting, indicating the potential of 

this approach for low concentration inks. Table 2 further highlights some other examples 

of emerging light and droplet based bioprinting techniques that have utilized GelMA to 

fabricate high fidelity constructs.

In bioprinting applications, in order to preserve spatial resolution and stabilize the 

3D constructs, additional crosslinking is applied post-fabrication [147–151]. However, 

methacryloyl chemistry is not an ideal strategy to preserve spatial resolution [46, 152]. 

As chain growth polymerization takes place, crosslinking is slow because of dissolved 

oxygen acting as a radical scavenger [153]. Increasing the UV intensity can overcome this 

oxygen inhibition, but it may also result in potential stress and damage to cells [154–156]. 

Notwithstanding these challenges, GelMA is considered a cost-effective, bio-active, and 

bio-compatible bioink material.

3.2. Thiol-ene click chemistry in gelatin bioinks

An alternative crosslinking mechanism to stabilize gelatin is based on the dimerization of 

thiols with reactive carbon-carbon double bond (“enes”), known as thiol-ene click chemistry. 

This chemistry follows a step-growth radical mechanism requiring low radical initiator 

concentration, with high conversion of functional groups and low polymerization shrinkage 

and stress [162, 163]. Thiol-ene chemistry has been used to develop thiol–ene clickable 

bioinks for various biofabrication applications [164–166].

Among the “ene” functionalities utilized for thiol-ene crosslinking, norbornene is the 

most common for being resistant to pH induced thiol-Michael addition and competitive 

homo-polymerization [29, 167]. Thiol-norbornene gelatin is formed by reacting norbornene 

modified gelatin with thiol containing macromolecules in the presence of free radicals 

[162, 168–170]. A light-mediated addition of free radicals occurs in the presence of a photo-

initiator (Figure 3a). Free radicals interact with thiol groups to form thiyl radicals, which 

subsequently react with double bonds of norbornene. Due to the presence of highly strained 

double bonds in norbornene, chain transfer kinetics are faster [171]. This, in combination 

with the rapid hydrogen abstraction rate, results in brisk photo-crosslinking reactions [162, 

165]. As a result, these hydrogels can be processed at low photo-intensities, which has been 

shown to significantly increase the viability and proliferation of adipose-derived stem cells 

[172]. Thiol-ene gelatin crosslinking is also faster compared to methacrylate polymerization, 

and yields better stability of the 3D printed objects, possibly due to the low susceptibility to 

oxygen inhibition, which significantly slows the methacrylate polymerization [28, 162, 172, 

173]. When thiol-ene chemistry is used, cell viability of human umbilical vein endothelial 

cells (HUVECs) is higher at Day 7 relative to cells cultured in a GelMA bioink (Figure 3b) 
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[174], potentially due to a decrease in oxidative stress in cells [175, 176]. Gockler et al. 

demonstrated that the curing time of thiol-ene crosslinking can be significantly decreased 

by choosing the right thiol crosslinker [177]. For example, the curing time of gelatin 

norbornene was drastically lower when thiolated gelatin (GelS) was used as crosslinker 

versus DTT (dithiothreitol) (Figure 3c). Control over functionalization was demonstrated 

by synthesizing hydrogel of different crosslinking densities, which resulted in different 

mass swelling ratios. Importantly, the toxicity of the degradation products was lower for 

GelNB / GelS gels compared to GelMA (Figure 3d). In summary, studies to date, although 

limited, indicate that thiol-ene photo-crosslinking is superior compared to methacrylate 

polymerization in terms of printability and cell functions.

3.3. Visible light crosslinking of gelatin

Due to concerns related to the use of UV-light and its unintended harmful effects on cells, 

visible-light crosslinkable gelatin bioinks have been developed. Furfuryl-gelatin is one such 

example in which gelatin is derivatized by incorporating furfuryl groups, which can be 

crosslinked via visible-light irradiation. To date, two modification strategies to introduce 

furfuryl groups on gelatin have been reported in literature. The first approach involves the 

primary amines of gelatin to be reacted with furfuryl isocyanate (FI), yielding gelatin – FI 

with ~99% coupling between furan and gelatin’s amino groups [179]. The second approach 

involves the use of carbodiimide crosslinking to link carboxylic acid groups in gelatin with 

the primary amine of furfuryl amine (FA) to yield gelatin – FA, followed by crosslinking 

using visible light [180]. Son et al. reported a novel bioink based on furfuryl - gelatin 

prepared by incorporating furfuryl groups on gelatin followed by mixing with rose bengal 

[181] or riboflavin [182] and visible-light exposure to initiate crosslinking. However, a 

viscosity enhancer such as hyaluronic acid was required to provide the necessary viscosity 

and shear-thinning properties to the bioink. Although these derivatives have the potential 

to develop different gelatin bioinks, more work still needs to be conducted to determine 

new modification strategies to yield furfuryl side groups on gelatin. Furthermore, the effect 

different strategies had on the resulting properties and crosslinking kinetics for gelatin 

needs to be studied. For example, compared to gelatin – FI, gelatin – FA exhibits faster 

crosslinking kinetics with higher flexibility and elasticity [180].

4. Improving bioink properties and 3D cell functions using gelatin - based 

double network hydrogels

ECM contains multiple proteins and glycosaminoglycans, which play a key role in 

modulating cell functions. Bioinks comprising of a single biomaterial may not fully meet 

all the functional and mechanical requirements of cells to form tissue constructs. Therefore, 

to further achieve biomimicry, other biomaterials such as alginate, hyaluronic acid, and 

chitosan, are added to develop double-network bioinks. The response of double-network 

hydrogels to external stimuli, such as pH, temperature, electric, and magnetic fields, can 

be utilized to recapitulate the dynamic characteristics of the ECM required for cell-matrix 

interactions and cell spreading [183].The following section highlights recent developments 

in gelatin-based double network bioink formulations for the 3D printing of constructs.
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4.1. Gelatin - Alginate

Alginate is a naturally occurring polysaccharide isolated from brown algae and comprises 

of block co-polymers composed of 1, 4-linked β-D-mannuronic acid (M) and α-L-guluronic 

acid (G) residues [184, 185]. It has low cell adhesion, yet is extensively used in combination 

with gelatin due to its biocompatibility, fast ionic crosslinking (e.g., using Ca2+), and easily 

tunable mechanical properties via physico-chemical modifications [186–188]. For example, 

a gelatin – alginate bioink has recently been used to fabricate an in-vitro model of the 

human heart using cardiac spheroids created from human cardiac myocytes, fibroblasts, and 

endothelial cells (ECs) [189]. The bioink recapitulated the stiffness of human myocardium 

which allowed cardiac spheroids to maintain their structure and viability for up to 30 

days after bioprinting. Similarly, Othman et al. utilized the same multicomponent hydrogel 

to bioprint HeLA spheroids in a hexagonal shaped scaffold which exhibited in-vivo like 

mechanical properties with a high cell viability of ~95% [190]. Kang et al. bioprinted a 

multilayered scaffold using gelatin-alginate bioink for hair follicle (HF) regeneration [191]. 

The hierarchical and grid structure of bioprinted scaffolds resulted in appropriate orientation 

and growth of HFs in-vivo.

Alginate is often oxidized to produce alginate di-aldehyde (ADA) which allows chemical 

crosslinking with gelatin [192–195]. As exogenous aldehydes can damage cells through 

oxidative stress, the presence of gelatin in ADA – Gel hydrogels can reduce this stress 

by binding to the aldehyde groups present in ADA [196]. Alginate and gelatin ratios, and 

the bioprinting parameters, can influence the properties of these double-network hydrogels 

[197–199]. While most of these studies have focused on increasing alginate amount 

to improve mechanical properties in gelatin, Mahmoud et al. highlighted that excessive 

amounts of alginate can lead to decreased bioactivity in the resulting EBB double-network 

bioink [200]. As alginate provides mechanical and structural stability to support EBB for 

low-viscosity gelatin hydrogels, it is not necessarily required once the construct is stabilized 

post-bioprinting. Alginate can be removed from the bioprinted constructs using monovalent 

ion exchange, or by using Ca2+ chelator, which breaks the eggbox like configuration 

between G blocks in the alginate polymer chain (Figure 4a) [133]. Using these approaches 

a >50% drop in alginate intensity can be achieved over a period of 3 days (Figure 4b). It 

is important to note that if oxidized alginate is employed, this approach cannot be used to 

remove alginate from the matrix because of the chemical coupling of alginate with gelatin 

chains.

In above-mentioned studies, gelatin – alginate-based double-network bioinks had static, 

irreversible networks which restricted the movement of cells. To circumvent this issue, 

Ren et al. introduced reversible bonds within covalently crosslinked GelMA-alginate: they 

grafted β-cyclodextrin (βCD) on alginate, and mixed N-adamantyl acrylamide (Ad-AAm) as 

a guest molecule in GelMA-alginate-βCD [201]. Frequency sweep measurements confirmed 

the presence of covalent and non-covalent interactions as all hybrid hydrogels (AAG1, 

AAG2, AAG3, AAG5) showed frequency responsiveness with increasing βCD % (from 

lowest in AAG1 to highest in AAG5) while GelMA (referred to as AAG7) showed 

constant modulus (Figure 4c (i)). As the amount of GelMA increases (40 mg in AAG4, 

80mg in AAG5 and 120mg in AAG6), and as a result the number of covalent crosslinks, 
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the hybrid hydrogels exhibited a reduced response to frequency and increase to storage 

modulus (Figure 4c (ii)). When the concentration was decreased to 25% of the original, 

the hybrid hydrogel exhibited increased frequency responsiveness and decreased storage 

modulus (Figure 4c (iii)). With a similar objective in mind, Zhu et al. leveraged reversible 

covalent chemistry to develop a multifunctional bioink based on oxidized alginate and 

gelatin [202]. The use of amine-functionalized copper (Cu)-doped mesoporous bioactive 

glass nanoparticles introduced cell adhesive ligands, which in combination with a reversible 

dynamic microenvironment, resulted in accelerated cell spreading with a viability of 

over 90%. Furthermore, due to cell mechanosensing in the dynamic matrix and ion 

stimulation from the incorporated nanoparticles, osteogenic differentiation and angiogenesis 

of embedded mouse bone marrow-derived stroma cells was also promoted. Collectively, 

these studies indicate the improved potential of physio-chemical modifications to bioink 

properties when alginate-gelatin based dual-component bioink is used for 3D bioprinting.

4.2. Gelatin – Fibrinogen

Fibrinogen is a soluble macromolecule that has been used in combination with gelatin to 

improve mechanical properties, rheological properties, and cellular interactions due to its 

differential effects on cellular functions [203]. Moreover, it possesses binding sites for a 

plethora of proteins such as fibronectin, von Willebrand factor, albumin, thrombospondin, 

fibroblast growth factor-2, and interleukin. It also supports endothelial and cardiomyocyte 

cell attachment through RGD-specific and non-specific binding sites [204]. De Malo et al. 

reported a bioink composed of gelatin, GelMA, and fibrinogen, which provided a suitable 

environment for osteocytes as indicated by their high cell viability (~84%) after 1 week 

of incubation [205]. Recently, Li et al. also utilized a similar combination to develop a 

fast stress-relaxing bioink for volumetric muscle loss using gel-in-gel printing strategy 

[206]. A combination of visible-light crosslinkable furfuryl gelatin and fibrinogen bioink has 

been shown to improve the proliferation of human cardiomyocytes and fibroblasts [207]. 

This bioink was further utilized for coculturing and coupling of cardiac fibroblasts with 

cardiomyocytes [207]. Freeman et al. used a gelatin – fibrinogen blend for the bioprinting 

of tissue-engineered vascular grafts [208]. Gelatin was heat-treated, and its concentration 

was varied simultaneously to control the viscosity of the composite bioink which enabled it 

to hold its shape against gravity during bioprinting. However, the addition of cells liquified 

the bioink thereby reducing its bioprintability and impairing the gelation of heat-treated 

gelatin which disrupted the overall microstructure. Furthermore, increasing the amount of 

heat-treated gelatin (5 to 10 wt %) for a shorter heat-treatment time (1h) decreased the cell 

viability from ~88% to ~69%.

While several researchers have tuned alginate amount in gelatin – fibrinogen bioinks to 

improve printability [209–213], Somasekhar et al. improved the bioprintability by varying 

the gelatin amount in gelatin-fibrinogen-alginate bioink containing HUVECs [214]. Gelatin 

was kept in its un-crosslinked form so that it could leach out of the matrix post-bioprinting 

to create porous structures, which allowed the spreading of cells, while fibrinogenwas 

retained in the matrix and improved cell attachment. Higher gelatin ratios (1:9 instead of 

2:3 alginate: gelatin) for both 5% and 10% w/v bioink concentrations resulted in higher cell 
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viability during culture. This was attributed to cellular remodeling and porous nature of the 

scaffold resulting from the removal of un-crosslinked gelatin [215].

4.3. Gelatin – Chitosan

Chitosan, a natural polysaccharide, is being explored for bioprinting applications due to 

its biocompatibility and biodegradability [216]. Chitosan contains protonated amino groups 

making it a positively charged polyelectrolyte. This results in electrostatic interactions 

with charged carboxylic acid groups in gelatin, resulting in a stable polyelectrolytic 

complex [217, 218]. Therefore, it is often combined with gelatin to form hybrid hydrogel 

bioinks that exhibit good biocompatibility, high shape fidelity, and bioprintability at room 

temperature [219]. Yet, the polyelectrolytic complex may not be stable for a long-term 

3D cell culture which is often required in tissue engineering. Thus, several groups have 

engineered gelatin-chitosan bioink formulations consisting of GelMA and methacrylated 

chitosan [220, 221]. This strategy results in a more stable double-network formation due to 

the chemical coupling of gelatin and chitosan chains during photo-curing, which increases 

the crosslinking degree and storage modulus. Bone marrow derived stem cells (BMSCs) 

remained viable, proliferated, and were distributed homogenously in the gelatin-chitosan 

bioink. Furthermore, cells formed aggregates and expressed chondrogenesis markers, 

indicating a primitive sign for cell – cell interactions [222].

Recently, granular hydrogels have emerged as an attractive candidate for 3D bioprinting due 

to their dynamic, self-healing properties [223]. Wang et al. combined GelMA with granular 

hydrogel composed of hydroxypropyl chitosan microspheres to form a compound bioink 

containing adipose derived stem cells (ASCs) [224]. The bioink was then 3D bioprinted 

to make cylindrical rings. The granular hydrogel showed superior storage modulus, self-

healing ability, and significantly higher proliferation of ASCs. Due to the advantage of 

dynamic structures, Chen et al. used slow stable crosslinking of gelatin/ 4-arm poly(ethylene 

glycol) succinimidyl glutarate (PEG-SG) and fast dynamic crosslinking of aldehyde 

hyaluronic acid (AHA)/N-carboxymethyl chitosan (CMC) to develop a structurally-stable 

hydrogel bioink with high permeability [225]. Compared with Gel – Alg constructs 

containing same cells (fibroblasts, C2C12 myoblast, Ne-4C neural stem cells), AHA/CMC 

gel showed higher proliferation and viability of ~94%.

4.4. Gelatin – Hyaluronic Acid (HA)

Hyaluronic acid (HA), a glycosaminoglycan, is a key component of the ECM and is 

involved in cell matrix interactions through CD44 HA receptors on the cell membrane 

[226–231]. HA has been used for bioprinting applications but its use has been limited 

due to its non-cell-adhesive nature and poor mechanical properties [232]. To circumvent 

this issue, gelatin - hyaluronic acid combinations have been reported as bioinks for 3D 

printing [233, 234]. Hossain Rakin et al. used a methacrylated hyaluronic acid (MeHA) 

- GelMA combination to develop a hybrid bioink [235]. MeHA, with a high degree of 

substitution, enabled rapid photocrosslinking while GelMA was added to improve cell 

adhesion. Similarly, Jiang et al. used the same two prepolymers to bioprint multilayered 

scaffolds with spatially differentiated adipose-derived mesenchymal stem cells (ADMSCs), 

which improved tendon to bone interface regeneration [236]. Skardal et al. reported 
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bioprinting tubular tissue constructs using a combination of methacrylated ethanolamide 

gelatin (GE-MA) and methacrylated hyaluronic acid (HA-MA) [237]. The hydrogel was 

biocompatible and supported cell attachment and proliferation for HepG2 C3A, Int-407, and 

NIH 3T3 cells in-vitro. Moreover, cells were able to gradually remodel the environment and 

secret ECM as they matured into a viable tissue. Enzymatic crosslinking can also be used to 

develop hyaluronic acid – gelatin composite hydrogels, where covalent crosslinking between 

HA and gelatin occur via oxidative coupling of phenolic moieties in both conjugates [234]. 

Due to the synergistic biological effect of gelatin and HA, this hybrid hydrogel results in 

excellent cellular activity and viability (81%) of human dermal fibroblasts.

HA is an essential component of the tumor ECM, where HA is known to regulate 

proliferation of cancer cells, metastasis, and tumor growth [238]. The expression of CD44 

receptor is also upregulated in cancer cells. Thus, gelatin-HA based bioinks are particularly 

suitable to create a niche for cancer research and to model cancer growth in-vitro. Future 

research studies may focus on this frontier to fully utilize the synergistic combination of 

gelatin and HA in composite bioinks.

4.5. Gelatin – Silk Fibroin (SF)

Silk fibroin (SF), a protein containing repeating patterns of Gly-Ser-Gly-Ala-Gly-Ala 

residues has been used to develop a plethora of bioinks due to its natural degradability, 

mechanical strength, and rheological properties [61, 239–243]. Gelatin and silk interact 

via entanglement and physical crosslinking, leading to the formation of stable bioprinted 

constructs without the need for a crosslinker. The bioink also supported the growth and 

proliferation of encapsulated chondrocytes [244]. In another study, to further improve the 

functions of encapsulated cells, an enzymatically-crosslinked gelatin and SF were used to 

prepare microporous 3D environment for the differentiation of stem cells in bioprinted 

constructs [245]. Importantly, upon implantation in the rabbit cartilage defect model, the 

bioprinted cells regenerated cartilage tissue, indicating translational potential for gelatin-silk 

formulations [245]. In contrast, Yang et al. used visible-light crosslinking for methacrylated 

gelatin and methacrylated-SF bioinks [246], where encapsulated BMSCs and HUVECs 

displayed over 98% viability. The incorporation of hydroxyapatite in a gelatin-SF composite 

bioink has been shown to mimic collagen fibers in the natural articular cartilage [247]. 

Increasing the silk content reduced the degradation rate due to an increased number of 

hydrogen bonds being formed within the molecules. The increased hydrogen bonding led to 

a rearrangement of peptide chains, transforming the random coiled structure into crystallized 

regions, thereby enhancing the intermolecular interaction and reducing the degradation 

rate. This also reduced the swelling property of the hydrogel due to a smaller number of 

polar OH groups available to accommodate water. Bioink with 10% SF exhibited the best 

bioprinting performance and mechanical properties with a tensile elastic modulus of ~11 

MPa and a compressive elastic modulus of ~1 MPa. Together, the limited number of studies 

thus far indicates that both the bioprintability and cellular functions can be improved by 

incorporating silk in the gelatin bioink.
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5. Improving cell function in gelatin bioinks using reversible crosslinking

Current strategies to crosslink and stabilize gelatin or gelatin-based bioinks are mostly based 

on covalent crosslinking such as methacrylate polymerization and thiol-ene coupling. These 

strategies are based on permanent covalent bonds, which restrict the spreading and growth of 

encapsulated cells due to cellular confinement (Figure 5a) [248, 249]. Moreover, to improve 

the mechanical properties in the bioprinted construct, a high density of covalent crosslinks is 

employed to ensure print fidelity and stability. However, these crosslinks are irreversible 

and high crosslinking density further restricts cellular activities (spreading, migration, 

differentiation), as well as the diffusion of nutrients/bioactive molecules through the scaffold 

[250, 251]. Encapsulated cells rely on the remodeling of the surrounding microenvironment, 

either through enzymatic cleaving or physical rearrangement of the matrix, to perform 

their functions [252–254]. Recent studies indicate that matrix viscoelasticity strongly 

influences cell functions [255]. Viscoelasticity refers to the ability of the matrix to resist 

deformation under applied stress (elastic nature), and simultaneously dissipate energy in a 

time-dependent manner (viscous nature) [256]. Viscoelasticity is often measured in terms 

of the stress relaxation rate when the hydrogel is subjected to a constant compressive load. 

Natural tissues, such as adipose tissue, brain, or liver, are viscoelastic and demonstrate stress 

relaxing behavior over a timescale from tens to hundreds of seconds (Figure 5b) [257–262]. 

Thus, viscoelasticity is an important characteristic to emulate in engineered bioinks.

Crosslinks that are reversible, such as hydrogen bonding, imine bonding, or hydrazone 

bonding, improve the viscoelasticity of the matrix. These reversible crosslinks can be either 

covalent crosslinks or supramolecular physical interactions (Figure 5c). In either case, the 

crosslinked network junctions can undergo frequent cycles of association and dissociation, 

which provides a way to dissipate energy and give rise to stress relaxation behavior. Cells 

encapsulated in a viscoelastic matrix can physically remodel the matrix by transiently 

breaking the crosslinks using contractile forces, which is difficult to perform in a matrix 

stabilized by rigid, covalent crosslinks such as methacrylate bonds. Several researchers have 

reported the effect that matrix viscoelasticity has on cellular activity [263–268]. Recently, 

gelatin-based matrices have been developed using reversible crosslinks that show stress-

relaxing behavior [269–272]. The following section highlights these reversible physical and 

covalent crosslinking strategies that are, or can be, applied either alone or in combination 

with irreversible covalent crosslinking chemistries to develop gelatin-based bioinks (Figure 

5d).

5.1. Improving bioprinted cell functions using physical crosslinking

Physical crosslinking results in reversible intermolecular interactions such as hydrophobic 

interactions, hydrogen bonds, host-guest interactions, polymerized entanglements, and ionic/

electrostatic interactions [274–276]. These interactions are ubiquitous in nature; hydrogen 

bonding keeps enzymes and DNA in equilibrium with their bound and unbound states while 

electrostatic and hydrophobic interactions assist in the localization of biomolecules [277, 

278]. The physical crosslinking strategy is more biocompatible due to the absence of any 

chemical crosslinkers [279]. Physical crosslinking can provide tissue-like viscoelasticity 

to hydrogels [273, 280]. Electrostatic/ionic interactions have been extensively applied 
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to develop gelatin-based bioinks, where crosslinking occurs between two molecules 

of opposing electric charges [214]. Duan et al. 3D printed heterogenous aortic valve 

conduits with a gelatin and alginate hydrogel, which was ionically crosslinked with CaCl2 

[281]. The encapsulated aortic root sinus smooth muscle cells (SMCs) and aortic valve 

leaflet interstitial cells (VICs) showed over 80% viability. Moreover, SMCs expressed 

elevated alpha-smooth muscle actin, while VICs expressed elevated vimentin, indicating 

the maintenance of cellular phenotypes.

Host-guest interactions is another strategy to obtain affinity-based crosslinking of the gelatin 

chains [59, 282]. Host molecules such as cucurbiturils and cyclodextrins generally possess 

large cavity volume to encapsulate the guest [283]. Usually, the external property of the 

host molecules causes interactions to occur with the surrounding solvent, while the guest 

inclusion is facilitated by the internal features of their cavities via hydrogen-bonding 

interactions, electrostatic interaction, hydrophobic interactions, specific molecular shape, 

or size matching (Figure 6a). Dai et. al. reported a novel host-guest modulated gelatin 

hydrogel that combined dopamine modified GelMA (MeHG DN), dopamine modified 

gelatin (HG DN), and acrylate β-cyclodextrin [284]. Acrylate β-cyclodextrin was used as 

a host molecule to be crosslinked by host-guest interactions with dopamine side groups. 

These complexes acted as reversible bonds to provide the final hydrogel with excellent 

resilience and toughness. MeHG DN hydrogels displayed 3.4 times higher compressive 

modulus compared to pure GelMA and HG DN hydrogels (Figure 6b (i)). This was 

attributed to host-guest crosslinking which absorbed energy and resisted fracture, while 

methacrylate crosslinks hindered fracture propagation, thus increasing the threshold stress 

of the hydrogel (Figure 6b (ii)). Both HG DN and MEHG DN hydrogels demonstrated 

temperature-dependent viscosity and shear-thinning behavior, making them suitable for EBB 

(Figure 6b (iii–iv). Wang et al. used cyclodextrin-adamantine guest-host interaction to mimic 

the stiffness of the soft tissues on GelMA [285].

Another strategy of physical gelation is to use hydrogen bonding. The combination of 

hydrogel bonding and covalent bonding has been shown to improve organoid formation in 

viscoelastic hydrogels [286–288]. Xu et al. showed that the quadruple hydrogen bonding in 

gelatin introduces self-healing capability [289]. However, it is yet to be seen if bioprinting 

can be achieved using such formulations. Presumably, a combination of covalent bonding (to 

increase stability) and quadruple hydrogen bonding (to increase viscoelasticity) can provide 

bioinks with increased cellular proliferation and functions.

5.2. Improving bioprinted cell functions using reversible covalent crosslinking

One of the challenges associated with physically crosslinked matrices is the lack of long-

term stability which limits the potential duration of 3D culture. For example, host-guest 

crosslinking matrices are only stable for up to a few days in cell culture. To overcome this 

issue, reversible covalent crosslinks are being developed to provide both improved stability 

and viscoelasticity. Reversible covalent crosslinking results in the formation of reversable 

covalent bonds under mild and controllable conditions [15, 290]. The dynamic properties of 

these bonds are acquired from a shift in the chemical equilibrium of reversible reactions; at 

equilibrium, a definite number of chemical crosslinking groups are present in the crosslinked 

Asim et al. Page 14

Adv Healthc Mater. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



state, which maintain the 3D structure. The dynamic nature of the crosslinking increases 

the viscoelasticity of the hydrogel, thereby recapitulating the features of the ECM [291]. 

Some of the common reversible crosslinking methods that can be potentially applied to form 

gelatin-based bioinks to improve cell functions are listed in Table 3 and are discussed below.

5.2.1. Gelatin crosslinking using imine bonding—Gelatin naturally contains amine 

functional groups on lysine residues. These amine groups can be reacted with aldehyde 

groups, which is known as imine crosslinking and results in a crosslinked gelatin hydrogel 

[193, 292]. The rate of imine crosslinking can be controlled by tuning pH [293, 294]. 

Imine bonds are highly reversible and as a result produce a viscoelastic hydrogel. Alginate 

and dextran are examples of crosslinkers that can be oxidized to generate aldehyde 

functionalities which can react with gelatin [193, 295, 296]. Musilova et al. achieved imine-

crosslinked bioinks by combining oxidized dextran with gelatin from three different sources 

[297]. These bioinks displayed strong shear-thinning behavior with excellent viscoelastic 

properties, thereby enabling EBB. No cytotoxicity was observed in any of the gelatin-based 

bioinks, and fibroblasts cells were distributed homogenously without any disruption of the 

cell structure. To enhance crosslinking and provide a better environment for cellular growth, 

Somasekharan et al. covalently crosslinked oxidized alginate with amine groups on gelatin 

and platelet rich plasma [298]. This imine-crosslinked, bioprinted construct demonstrated a 

highly interconnected porous structure that is required to promote cell growth and migration 

with over 80% cell viability.

It is important to note that imine bonds have the fastest bond exchange dynamics, and thus, 

result in the highest viscoelasticity of the matrix (fast stress-relaxation rates). However, 

imine crosslinking is also less stable due to the fast hydrolysis rate. Thus, imine crosslinked 

matrices are typically limited to short-term cell culture (<7 days) [299, 300]. This can be 

improved either by forming a double-crosslinked network such as those discussed in Section 

4, or by introducing additional covalent crosslinks such as thiol-ene or oxime crosslinking 

[168, 301, 302]. Therefore, imine crosslinking is a potential strategy to tune the properties of 

gelatin-based bioinks.

5.2.3. Gelatin crosslinking using Diels-Alder click reaction—Diels Alder is a 

thermo-reversible [4+2] cycloaddition reaction between a dienophile (e.g., maleimide) and 

diene (e.g. furan) [309, 310]. Reversibility of the reaction occurs at low temperatures 

through retro DA reactions. The reaction does not require light, initiators, or other catalysts, 

and produces high yield without generating any side products. To achieve Diels-Alder 

crosslinking, gelatin can be modified with furans and crosslinked using either a maleimide 

crosslinker such as PEG-bis-maleimide, or by mixing with maleimide-modified biopolymers 

[311, 312]. The Diels-Alder crosslinked gelatin hydrogel showed a storage modulus similar 

to that of liver and breast gland tissue and possessed pH responsive properties. Although the 

hydrogel showed promising properties for biomedical applications, it has not been utilized 

for cell encapsulation or bioprinting of 3D constructs. Magli et al. functionalized both 

gelatin and chitosan by methyl furan to develop a bioink [313]. Star-PEG maleimide was 

utilized as dienophile to enable crosslinking by Diels – Alder cycloaddition and embedded 
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glioblastoma cells not only remained viable post-bioprinting, but continued to proliferate in 

the hydrogel.

Importantly, the Diels – Alder reaction proceeds slowly at physiological pH levels which 

could result in the sedimentation of encapsulated cells [314, 315]. To enable rapid 

crosslinking via Diels – Alder chemistry, Madl et al. reported an alternative Diels-Alder 

reaction pair (fulvene–maleimide) to develop hydrogels under physiological conditions 

[316]. Fulvene–maleimide gels crosslinked ~10 times faster and exhibit cell adhesive ligands 

to support the culture of human MSCs due to the use of a RGD-based crosslinker coupled 

with elastin- like protein. Furan can also be substituted with methyl furan, a more electron 

rich diene which allows cell encapsulation via fast gelation at neutral pH [317, 318]. These 

recent developments are promising and make Diels-Alder reactions more suitable for cell 

encapsulation and bioprinting.

5.2.4. Gelatin crosslinking using hydrazone bonding—Hydrazone crosslinking 

belongs to pseudo click reactions (moderate orthogonality) which result from the reaction 

between hydrazide and aldehyde or ketone groups. The reaction has high yields and 

lacks harmful side products [319]. Formation of hydrazone is generally carried out at a 

pH of 4.5 and 5.0. Higher or lower pH results in decreased yield and slower kinetics 

[320].Taking advantage of the dynamic nature, Wang et al. developed a bioink using GelMA 

and hyaluronic acid, which were crosslinked using a combination of dynamic hydrazone 

bonding and photocrosslinking [305]. The dynamic hyaluronic acid network provided 

shear-thinning and self-healing properties, while post-extrusion photocrosslinking of GelMA 

reinforced the double-network hydrogel, enhancing the overall mechanical properties of 

the scaffold. BMSCs remained viable and proliferated, migrated, and aggregated to form 

an interconnected multicellular network, highlighting conducive cell-matrix interactions 

possibly caused by the presence of a hydrazone bonding that allowed matrix remodeling. 

Similar strategies have been used in other studies as well where hydrazone and thiol-ene 

crosslinking were combined in the same gelatin matrix to gain insights into how cells 

respond to sequential crosslinking reactions, which enable temporal modulation of the 

matrix [306, 307]. This temporal change in the physicochemical matrix properties can be 

used to study various cell – cell and cell – matrix interactions in bioprinted gelatin. Studies 

thus far indicate that the physiochemical microenvironment of 3D bioprinted cells can be 

tuned using hydrazone crosslinked gelatin.

5.2.5. Gelatin crosslinking using disulfide linkages—Disulfide linkages can also 

be used to crosslink a gelatin matrix [321, 322]. These crosslinks are also reversible. For 

example, the presence of excess thiols or the use of oxidative triggers (e.g., hydrogen 

peroxide), increase the thiol-disulfide exchange. The pKa value also affects the thiol–

disulfide exchange rate, which can be tailored using electron-withdrawing groups [323]. 

These disulfide groups are reductively cleavable and allow fast gelatin kinetics, thus 

enabling cell encapsulation [324–326]. Due to the reversible nature of this chemistry, 

thiolated gelatin hydrogels may be a suitable candidate for bioink development [327, 328]. 

Due to the lack of cysteine amino acids in gelatin that contain thiols, the thiol groups need 

to be introduced to enable disulfide crosslinking. This can be accomplished by reacting 
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primary amines with n-acetylhomocysteinethiolactone or Traut’s reagent to yield gel-SH 

[329]. Other possible thiolation strategies for gelatin includes the reaction of carboxylic 

acid with cysteamine [330], or by reacting carboxylic acids with 3,3-dithiobis (propionic 

hydrazide) followed by the cleaving of disulfides using dithiothreitol (DTT), which results 

in thiolated gelatin [331]. Shu et al. reported disulfide crosslinked HA-gelatin hydrogel 

films that improved cellular growth. Although this crosslinking strategy has not yet been 

widely adopted for gelatin-based hydrogels, it has been used to prepare other biomaterial 

hydrogels for cell encapsulation [322, 332, 333]. Notably, although the disulfide linkages are 

reversible, its effect on the viscoelastic properties of hydrogels are less explored. Moreover, 

the use of oxidative triggers such as hydrogen peroxide can potentially induce cellular 

damage, which should be studied, as well as the presence of free thiols and their effect on 

cells [327].

5.2.6. Gelatin crosslinking using boronate ester bonding—Boronate ester bonds 

are reversible covalent bonds formed via the combination of cis-1,2 or cis-1,3 diols and 

boronic acid to form a cyclic ester. The reaction occurs under physiological conditions 

without any catalyst [334]. The properties of the dynamic covalent network formed by 

boronate ester crosslinks are regulated by temperature, pH, and the specific molecular 

structure of the boronic acid-diol binding pair [335]. Due to the fast reaction kinetics of 

boronate ester bonds, dynamic hydrogels can form quickly, and show rapid self-healing 

ability [336, 337]. Xie et al. reported a composite self-healing hydrogel by utilizing phenyl 

boronic acid (PBA) modified gelatin and polyvinyl alcohol for wound healing applications 

[271]. Step strain-sweep measurements confirmed the reversibility of the crosslinks (Figure 

7a). Moreover, the hydrogels demonstrated self-healing behavior (Figure 7b). Gelatin 

functionalized with different amounts of PBA showed different degradation rates (Figure 

7c). Similarly, Nguyen et al. crosslinked gelatin and PVA using dual crosslinking (boronate 

ester and thiol-ene crosslinking), and demonstrated that the addition of PVA to gelatin 

increased viscoelasticity due to the formation of reversible boronate-ester linkages between 

PVA and gelatin [270] (Figure 7d). The viscoelastic nature of the matrix resulted in growth 

and cytokine secretion of embedded MLO-A5 pre-osteocytes. In another study, human 

MSCs were shown to spread faster in boronate-ester crosslinked viscoelastic gelatin-PVA 

matrix, thereby emphasizing the importance of reversible crosslinking chemistry to improve 

3D culture conditions for encapsulated cells (Figure 7e) [306]. Recently, Hu et al. also 

utilized this crosslinking chemistry to develop shear-thinning, viscoelastic gels using gelatin 

for treating brain lesions [338]. Although, researchers have started using this strategy to 

develop dynamically crosslinked gelatin hydrogels, it has not yet been explored for the 

development of gelatin-based bioinks with tunable viscoelasticity.

6. Challenges and future outlook

Formation of a functional tissue requires a balance between cell-based and cell-ECM 

interactions [339]. The composition and mechanical properties of the ECM drastically 

influence cellular growth and other functions [340, 341].The current gelatin bioinks should 

be designed by considering the cellular needs to improve cell functions. Designing gelatin-

based bioinks capable of supporting cell attachment, proliferation, and spreading with 
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long term functionality post-bioprinting still remains challenging [342]. Notwithstanding 

the tremendous progress that has been made so far, cell-matrix interactions and cellular 

functions can be further improved in bioprinted gelatin constructs by choosing the right 

composition and crosslinking strategy that mimic the native ECM dynamics [15, 343]. 

To date, researchers have focused on improving the bioprintability and stability of gelatin-

based bioinks using chemical crosslinking strategies that result in static bonds, which 

inhibit cellular functions [344]. As these covalent crosslinks are permanent, encapsulated 

cell functions are hampered due to the confining microenvironment [15]. Cell-mediated 

enzymatic [345, 346] or hydrolytic degradation [347, 348] is required to allow cell 

migration and spreading. To some extent, gelatin allows for matrix remodeling due to 

being enzymatically cleavable, however, it should be combined with dynamic crosslinking to 

achieve optimum performance.

Currently, most of gelatin-based bioinks, especially GelMA, utilizes static covalent 

chemistries to enable stable constructs. The reversible covalent crosslinking chemistries for 

developing gelatin-based 3D constructs are underexplored [338, 349]. Scalable constructs 

for mammals, and eventually humans, not only require high mechanical properties and 

structural integrity, but should also provide an ECM mimicking environment to improve 

cell functions. The ECM is a highly dynamic network that exhibits time and frequency 

dependent properties in response to deformation and loading [273]. To incorporate this 

non-enzymatic mode of remodeling, above-mentioned reversible crosslinking strategies 

need to be applied to gelatin-based bioinks to have a sufficient degree of relaxation 

and viscoelasticity. The literature also reports that increasing the viscoelasticity increases 

spreading and proliferation of encapsulated cells. Chaudhuri et al. reported that encapsulated 

human MSCs exhibited enhanced spreading, osteogenic differentiation, and proliferation 

with faster stress relaxation [258]. Lou et al. reported human MSCs growth in viscoelastic 

gels crosslinked via dynamic hydrazone bonds, which modified focal adhesions and 

spreading [265]. This suggests that viscoelasticity is a critical factor that must be considered 

when developing new gelatin-based bioinks. The reversible covalent crosslinks also impart 

shear-thinning and self-healing behavior which may improve the extrudability of the bioinks 

while reducing the amount of pressure required.

How much viscoelasticity is required in a matrix to obtain optimum cell functions following 

bioprinting? This question requires careful consideration of the viscoelasticity (stress 

relaxation rate) of the native tissue, and a rational crosslinking strategy emulating that in 

the bioink. For example, we recently reported that a hydrogel with a stress relaxation rate 

matching that of liver tissue can significantly improve 3D cellular growth and liver organoid 

formation [350]. However, it is yet to be seen if bioprinted cells in a similar composition 

of the hydrogel can form organoids in bioprinted constructs. The time scales of cell action 

and hydrogel rearrangement needs to be matched. This requires further in-depth study of the 

dynamics for 3D cell behavior and kinetics of hydrogel rearrangement. Lastly, the growth 

of cells and organoids in gelatin bioprinted constructs should be benchmarked against the 

commonly used reconstituted basement membrane matrices such as Matrigel, which are 

viscoelastic, to determine the performance.
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Crosslinking strategies involve the chemical modification of gelatin., and The effect of 

such modifications on the bioactivity of gelatin needs careful consideration. Modification 

of amine groups on gelatin can decrease the degradability of gelatin by proteases such as 

MMPs [351–353]. Therefore, in addition to the evaluation of mechanical and rheological 

properties, bioprintability, and cell viability for gelatin-based bioinks, the influence of 

chemical modifications on protease degradability, cell adhesion, and cell signaling should 

also be evaluated. The in-vivo microenvironment contains numerous proteases capable of 

degrading the gelatin matrix. However, in-vitro studies often employ only a single type of 

protease to study the biodegradation of gelatin-based matrices, which does not recapitulate 

the complex in-vivo microenvironment. Thus far, most of the studies on gelatin-based 3D 

constructs has been done in-vitro with limited in-vivo studies [304, 354]. More in-vivo 

studies should be performed as the behavior of these bioprinted constructs in complex 

in-vivo environments is largely unknown.

From a translational point of view, it is important that the bioinks are sterile and lack 

pyrogenicity. As gelatin has a biological origin, it often has a high level of endotoxins 

[355]. Unfortunately, the endotoxin levels in gelatin scaffolds, particularly for in-vivo 

transplantation, are rarely considered or characterized. Endotoxins, drastically affect the 

performance of biomaterials and are known to promote an excessive pro-inflammatory 

environment. Thus, it is critical to develop endotoxin removal strategies for gelatin-based 

constructs, specifically for immunomodulation studies and in-vivo applications. The choice 

of sterilization technique for gelatin is also known to alter its bioprintability, biodegradation, 

and mechanical properties [356]. Therefore, the effect of FDA-approved sterilization 

techniques should be considered when designing new gelatin-based bioinks. This is 

important, as this could alter the mechanical properties of the constructs, which need to 

be defined before conducting any clinical study.

Multiple studies have utilized the approach of blending an auxiliary material or increasing 

the prepolymer concentration of gelatin to improve printability. Although this has proven 

effective in improving shape fidelity, it compromises the cell viability [357]. This is 

one of the key hurdles that has prevented further development of gelatin-based bioinks. 

Furthermore, even though gelatin provides cell supporting motifs to a bioink, its ability 

to shield the cells from shear stress during the extrusion is low [358]. Given that extrusion-

based bioprinting is the most widely used bioprinting modality, more effort is needed to find 

formulations that protect cells during extrusion.

ECM is ubiquitous in the human body, but its quantity varies from organ to organ. 

For example, a healthy liver is mostly populated by cells while the ECM comprises up 

to only 10% of its total volume. In contrast, ECM in the skin constitutes up to 70% 

of total volume [359, 360]. Thus, gelatin-based bioinks require substantially different 

cell densities depending upon the application. High cell densities can greatly affect the 

printability and shape fidelity of the resulting bioprinted constructs [361]. For example, a 

very high cell density can result in nozzle clogging in extrusion-based bioprinting due to 

increased bioink viscosity, and can also affect droplet formation in case of droplet-based 

bioprinting which affects the printing resolution [128, 362]. Furthermore, as currently most 

of gelatin-based bioinks are stabilized by UV crosslinking, the effect of cell density on 
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crosslinking efficiency and viscoelasticity are underexplored. For example, Diamantides 

et al. reported the alterations in rheological properties of collagen bioinks with high cell 

densities [361]. A high cell density (up to 100 × 106 cells/ml) increased the viscoelasticity 

but reduced the storage modulus and slowed down the gelation kinetics of the resulting 

gel. Recently, Martorana et al. demonstrated the effect of different cell lines on rheological 

properties of gellan gum-based bioinks [363]. Human colon tumor cells showed an increase 

in viscoelastic modulus compared to acellular constructs. Therefore, future studies are likely 

to improve the design of gelatin constructs by focusing on the impact of different cell types 

and their densities on the viscoelastic and crosslinking properties of gelatin-based bioinks.

Currently available gelatin-based bioprinted constructs have dense networks with nanoscale 

pores and lack bio-functional heterogeneity found in native tissues. In recent years, the use 

of hydrogel microparticles (microgels) to form granular hydrogel scaffolds have gained 

considerable interest as these scaffolds provide innate porosity (void spaces between 

microparticles), shear-thinning, and self-healing properties [223, 364–366]. Microgels are 

microscale hydrogel particles that when assembled and packed together form granular 

hydrogels with inherent porosity favoring cellular infiltration and growth both in-vitro and 

in-vivo [367]. A key structural aspect of microgels is that the macro-scale porosity and pore 

geometry can be tuned using microgels of different shapes (e.g., polygonal fragments, high 

aspect ratio rods, etc.) and sizes or by varying the packing density [368, 369]. The size of 

these particles in combination with the shear-thinning nature provides an advantage of easy 

extrusion/injection through small orifices resulting in minimal damage to cells. Considering 

the advantages of microgels, researchers have started to develop gelatin-based bioinks to 

bioprint porous scaffolds with improved porosity [370]. Song et al. recently developed a 

gelatin-based composite bioink using gelatin microgels within gelatin solution [371]. Shao 

et al. also utilized gelatin microgels to bioprint GelMA constructs with mesoscale pore 

networks [57]. Embedded osteoblasts and human umbilical vein endothelial cells in large-

scale (>1cm) bioprinted constructs showed greater spreading in comparison to constructs 

without mesoporous network highlighting the importance of porous nature for enhanced 

cell growth. Thus, the microgel approach provides an improved method for designing 

gelatin-based bioinks for 3D bioprinting. Given the unique properties, the use of microgel in 

bioprinting of gelatin is likely to expand significantly in the future.
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Figure 1. 
a) Schematic description of the collagen structure and hydrolysis to gelatin, b) The 

application of gelatin in bioprinting in terms of the number of publications as per Scopus 

database [search string: ABS ( gelatin/hyalur/chitosan/alginate/silk* AND bioprint* OR 

biofabr* )]. c) The amino acids present in gelatin. Adapted with permission [41]. Copyright 

2022, Wiley-VCH Verlag GmBH & Co. d) The amount of carboxylic acid and amine 

functional groups in gelatin type A and type B [42, 43, 45, 59]
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Figure 2. 
a) Schematic showing the 3D bioprinting of organoid laden and perfusable GelMA construct 

using volumetric bioprinting. b) Liver organoids maintained self-organization and expressed 

key liver markers. c) Metabolic activity of liver organoids compared to extrusion bioprinting, 

casting with and without iodixanol and in Matrigel. Adapted with permission [144]. 

Copyright 2022, Wiley-VCH Verlag GmBH & Co, d) Optical images and confocal images 

of various patterned cellular structures using acoustic bioprinting (i-vi) (all scale bars: 500 

μm), Viability of acoustic bioprinted cells vs. control group (vii). Adapted with permission 

[146], Copyright 2021, Royal Society of Chemistry.
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Figure 3: 
a) Schematic diagram for thiol-ene crosslinking of gelatin – norbornene. Adapted with 

permission [178], Copyright 2021, Wiley-VCH GmbH. b) Comparison of cell viability 

of HUVECs in GelMA vs GelNB/SH. Adapted with permission [174], Copyright 2021, 

American Chemical Society. c) Low irradiation time required for the curing of GelNB with 

GelS crosslinker compared to DTT crosslinker. d) The effect of the degradation products of 

GelMA, GelNB/DTT and GelNB/GelS on the viability of hepatocarcinoma (HepG2) cells. 

Adapted with permission [177], Copyright 2021, Wiley-VCH GmbH, Weinheim.
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Figure 4. 
a) Schematic representing preparation of GelMA construct using alginate as a sacrificial 

support material. b) Reduction in the intensity of alginate within GelMA when alginate 

is gradually dissolved. Adapted with permission [133], Copyright 2018 WILEY-VCH 

Verlag GmbH & Co, c) Frequency sweep of hybrid hydrogels, i) increasing frequency 

responsiveness in hybrid hydrogels with increasing βCD % (from lowest in AAG1 to highest 

in AAG5, AAG7 represents GelMA only), ii) increased storage modulus and decreased 

frequency responsiveness as a result of increased GelMA amounts (from lowest in AAG4 

to highest in AAG6), iii) Reduced polymer density increases frequency responsiveness but 

reduces storage modulus (AAG-5–75%, AAG-5–50%, and AAG-5–50% represents hybrid 

hydrogel prepared from 75%, 50%, and 25% substances of AAG-5, respectively. Solid 

symbols (G′) & hollow symbols (G′′)), Adapted with permission [201], Copyright 2022, 

Elsevier.
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Figure 5. 
a) Static covalent networks confine cells, restricting their cellular functions. b) Stress 

relaxation rates of different natural tissues. Adapted with permission [273], Copyrights 

2020, Springer Nature. c) schematics representing the reversible covalent and non-covalent 

bonds that can be introduced in gelatin-bioinks to improve viscoelasticity. d) Stress 

relaxation rates of different dynamic bonds (Increasing from left to right).
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Figure 6. 
Guest-host crosslinking: a) A schematic representation of host-guest interactions between 

β-cyclodextrin (host moiety) and adamantane (guest molecule). Adapted with permission 

[59], Copyright 2020, Wiley Periodicals. b) Mechanical characterization of GelMA, HG 

DN and MEHG DN hydrogels. i) Compressive stress – strain curve, ii) change in viscosity 

as function of temperature, iii) tensile stress-strain curve, iv) shear thinning behavior of 

hydrogels (viscosity vs shear rate), Adapted with permission [284], Copyrights 2022, Wiley-

VCH GmbH.
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Figure 7. 
(a i – iii) Step strain-sweeps of composite hydrogels (phenyl boronic acid (PBA) modified 

gelatin and polyvinyl alcohol) with different amounts of PBA (PBA amounts in Gel 3 

> Gel 2 > Gel 1). b) Self-healing behavior of composite hydrogel system, c) In-vitro 

degradation rate of dynamic gels with respect of increasing PBA amount, Adapted with 

permission [271], Copyright 2022, Elsevier. d) A schematic representation of reversible 

boronate-ester-diol bonding between GelNB-BA and PEG4SH. Adapted with permission 

[270], Copyright 2021, American Chemical Society. e) Live/Dead and F-actin staining of 

human MSCs encapsulated in GelNB-BA / PEG4SH hydrogels in the absence or presence 

of PVA, which improved viscoelasticity due to boronate-ester bonding of PVA and gelatin. 

Adapted with permission [306], Copyright 2021, American Chemical Society.
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Table 1:

Comparison of gelatin with other natural polymers as a bioink material for 3D bioprinting

Bioink 
Material

Material 
Class

Common 
bioink 

crosslinking 
strategies

Cell 
binding 
motifs

Enzymatic 
degrad-

ability in-
vivo

Advantages Drawbacks

Gelatin Protein

Covalent, 
enzymatic [60, 

61], and 
physical

✓ ✓ [62]

• Low cost
• Thermoresponsive behavior
• Low antigenicity and high 
biocompatibility [63]

• Poor mechanical integrity
• Poor thermal stability
• Less control over MW

Silk Fibroin 
(SF) Protein Enzymatic [64] 

or physical
✗ [61, 

65] ✓ [66, 67]

• MW can be controlled by 
degumming [68–70]
• Excellent mechanical 
properties [71]
• Genetically modifiable into 
variety of morphologies

• Generates immunogenic 
response [72, 73]
• High cost

Chitosan Poly-
saccharide Ionic [74] ✗ ✓ [75]

• Mucoadhesive [76]
• Antimicrobial [77]
• MW can be controlled by 
different production methods 
[78–80]

• Loses mucoadhesive 
capacity in physiological 
environment [81]
• Insoluble at physiological 
pH [82]
• Enzymatic production of 
chitosan is highly costly

Alginate Poly-
saccharide Ionic [83–85] ✗ ✗ [86]

• Low toxicity
• Range of MWs (60,000 – 
700,000Da) are commercially 
available [87]
• Cheap and renewable source 
of biopolymer [88]

• Low cell attachment due 
to lack of cell binding 
motifs
• Alginates obtained from 
cold water species have 
poor viscosity [89].
• Precipitates at low pH 
[90]

Hyaluronan 
(HA)

Poly-
saccharide

Covalent [91] 
or physical ✗ ✓ [92]

• Excellent biocompatibility 
and biodegradability
• Promotes angiogenesis and 
cell proliferation [93]
• MW of HA can be controlled 
using different production 
methods [94–96]

• Biosynthesis of HA is 
costly
• Bacterial production 
of HA involves risk of 
bacterial endotoxins [97]
• Undergoes fast 
hydrolysis by 
hyaluronidases [98]
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Table 2:

Application of GelMA hydrogels in bioprinting high fidelity constructs using emerging light and droplet based 

bioprinting technologies.

Bioink Name Bioprinting Method Aim / Application Bioprinting 
Resolution Source

GelMA
Digital light processing 
based stereolithography 

(DLP – SLA)

To study the effect of various GelMA synthesis parameters 
on the printability of final bioink and properties of printed 

constructs.
50, 100, 250 μm [142]

GelMA SLA To bioprint precise geometry of the human corneal stroma 
for tissue regeneration. 400–500 μm [141]

GelMA SLA

To design a low-volume novel vat for retrofitting an 
existing additive manufacturing equipment, evaluate the 
effect of the machine and material setup parameters for 

printability.

100 μm [157]

Eosin Y (EY) - 
GelMA

Dynamic Optical 
Projection SLA

To develop a new bioink solution that provides both visible 
light crosslinking and cell adhesion. NA [158]

GelMA + iron-
oxide nano 
particles.

Two-photon 
Polymerization

To develop a magnetically controllable GelMA-based 
biodegradable microrobot f for stem cell delivery. NA [159]

GelMA Two-photon 
Polymerization

To study the biological properties, machinability of 
GelMA hydrogel and the biocompatibility of 3D scaffolds 

fabricated by two-photon polymerization.
250 nm [160]

GelMA Volumetric Bioprinting

To provide a new method to fabricate hetero-cellular 
bone-like tissues by leveraging the advantages of ultrafast 

tomographic Volumetric Bioprinting technique and 3D 
hMSC/HUVEC co-culture.

34 μm [143]

GelMA Acoustic Bioprinting
To develop an acoustic droplet printing (ADP) method to 
fabricate 3D native-like tissues for recapitulating cellular 

function.

Droplet size = 200 
μm, height = 100 

μm
[146]

Saponified-Heat 
Treated GelMA

Therma Inkjet 
Bioprinting

To improve GelMA printability in a thermal inkjet print-
head. NA [161]

Adv Healthc Mater. Author manuscript; available in PMC 2024 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Asim et al. Page 52

Table 3:

Common reversible covalent bonds with different stability and stress relaxation rates used to provide 

viscoelastic nature in gelatin.

Reversible Covalent Bonds Chemical Structure Stability in 
Culture (weeks)

Stress Relaxation Rate 
(τ1/2) (s) Applications in gelatin

Imine Bond 1 < 10 [297, 298, 303]

Diels – Alders Reaction

4

< 1000 Not yet used for gelatin bioinks

Host- Guest Interaction

3

< 30 [272, 304]

Hydrazone Bond

1

> 1000 [305–307]

Di-sulfide Bond
2

> 100 Not yet used for gelatin bioinks

Boronate – Ester Bond

1

< 10 [270, 271, 306, 308]
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