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Abstract

Purpose: In laparoscopic liver surgery (LLS), pre-operative information can be overlaid onto 

the intra-operative scene by registering a 3D pre-operative model to the intra-operative partial 

surface reconstructed from the laparoscopic video. To assist with this task, we explore the use 

of learning-based feature descriptors, which, to our best knowledge, have not been explored for 

use in laparoscopic liver registration. Furthermore, a dataset to train and evaluate the use of 

learning-based descriptors does not exist.

Methods: We present the LiverMatch dataset consisting of 16 preoperative models and their 

simulated intra-operative 3D surfaces. We also propose the LiverMatch network designed for this 

task, which outputs per-point feature descriptors, visibility scores, and matched points.

Results: We compare the proposed LiverMatch network with a network closest to LiverMatch, 

and a histogram-based 3D descriptor on the testing split of the LiverMatch dataset, which includes 

two unseen pre-operative models and 1400 intra-operative surfaces. Results suggest that our 

LiverMatch network can predict more accurate and dense matches than the other two methods 

and can be seamlessly integrated with a RANSAC-ICP-based registration algorithm to achieve an 

accurate initial alignment.

Conclusion: The use of learning-based feature descriptors in laparoscopic liver registration 

(LLR) is promising, as it can help achieve an accurate initial rigid alignment, which, in turn, 

serves as an initialization for subsequent non-rigid registration.
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1 Introduction

In LLS, pre-operative CT or MRI scans offer precise information about vascular and tumor 

sites. However, during an intervention, it is challenging for the surgeon to mentally fuse 

the pre-operative images with the intra-operative laparoscopic images. To mitigate this 

challenge, image guidance systems [1, 2] help surgeons by overlaying the pre-operative 

information onto the intraoperative scene. One of the crucial components of an image 

guidance system is the registration, which estimates the transformation between pre- and 

intraoperative data. In LLR, both 3D-2D [3] and 3D-3D registration [4] methods can 

be employed; for 3D-3D registration, specifically, the intra-operative 3D surfaces are 

reconstructed from intra-operative videos [4] and utilized to constrain the registration 

solutions.

Registration methods can yield rigid or non-rigid alignment. The rigid registration uses 

manually or automatically detected landmarks to globally align the 3D pre-operative volume 

data to the intra-operative 3D surface. To better capture soft tissue deformations, non-rigid 

registration methods are often needed for final alignment. Non-rigid registration techniques 

entail two fundamental components: surface matching and volumetric model warping. 

The former identifies a match between the pre-and the intra-operative surfaces. The latter 

component uses the surface displacements to deform the volumetric model, so that tumor 

locations or vascular structures identified in the pre-operative model are correctly mapped 

to the intra-operative scene [2, 5]. The volumetric model can also be used as a constraint 

in the surface matching or after the surface matching estimation. Non-rigid deformations 

allow many potential solutions; therefore, constraints are needed to limit solutions. Various 

constraints have been explored to solve the registration problem, including anatomical 

landmarks [6], contours [2, 7], as well as biomechanics-based constraints [5, 8].

The use of 3D feature descriptors is beneficial because they can provide automatic 

initialization and constraints for rigid and non-rigid registration. However, feature 

descriptors pose several challenges. At first, liver surfaces are very smooth compared to 

natural scenes, making local features difficult to capture. Second, feature descriptors may 

not be able to capture global characteristics of the liver because intra-operative data only 

shows parts of the liver surface. Furthermore, deformations and surface reconstruction noise 

may negatively affect extracted features as they distort the shapes.

Several handcrafted features [9, 10] have been studied in liver registration. Although 

learning-based 3D feature descriptors have been proposed in the computer vision field [11, 

12], they are not designed for LLR and, to our best knowledge, have not been applied 

in LLR. Most learning-based methods assume the scene is rigid [12]; while a few tackle 

non-rigid cases [11], they assume the superior surface is visible. These two assumptions 

are often challenged because the liver is globally deformed, and only a small part can be 

seen in intra-operative data. Pfeiffer et al.[13] proposed a learning-based biomechanical 

model to estimate the displacement field of a volume mesh to an intra-operative point cloud. 

However, this method requires a coarse alignment, often performed manually. Although 

several public datasets [4, 6] have been released, there is still no large public dataset or 

benchmark available to train and evaluate learning-based methods.
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This work 1 explores the use of learning-based 3D feature descriptors for 3D-3D LLR 

through the following contributions: 1. We describe the generation of a large LiverMatch 

dataset for studying learning-based 3D feature descriptors in LLR. 2. We propose a 

learning-based 3D feature descriptor network called LiverMatch for 3D-3D laparoscopic 

liver registration, which uses a Transformer to obtain self-global and cross-global geometry 

information from super-points while also predicting per-point feature descriptors from the 

original point clouds. Furthermore, the network also predicts visibility scores, which help 

the network focus on the visible pre-operative surface. 3. We evaluate the network relative 

to another network closest to our proposed network and against a traditional registration 

method on the dataset.

2 Methods

2.1 Problem Setting

We define the point cloud extracted from the surface vertices of a pre-operative liver model 

as a source point cloud, S ∈ ℝn × 3. The simulated intra-operative point cloud is referred to as 

the target point cloud T ∈ ℝm × 3, and it is assumed to be generated via a stereoscopic video 

reconstruction, where n and m are the numbers of points, and n > m. Hence, the solution to 

the pre- to intra-operative registration problem is identifying matches between S and T.

2.2 LiverMatch Dataset

For this work, the source point clouds are generated from 16 liver models from the 

3D-IRCADb-01 dataset2 [14]. The 3D-IRCADb-01 dataset consists of 20 liver models 

segmented from CT scans. Four liver models (No. 11, 18, 19, and 20) were excluded 

from this study due to inherent mesh errors. The target, intra-operative point clouds are 

generated by simulating various deformations of the 3D pre-operative liver surfaces, then 

extracting different surface regions following deformation. Fig. 1 illustrates an example of 

the generation of the S and T point clouds.

Deformation simulation.—We followed the approach described in [13] to generate 

deformation fields using a neo-Hookean hyperelastic material model with a random Young’s 

modulus (2 kPa to 5 kPa) and a Poisson’s ratio of 0.35. We applied up to three forces of 3 

N maximum magnitude to random surface regions. In addition, random zero-displacement 

boundary conditions were also prescribed to areas of radius ranging from 15 - 20 mm. These 

parameters, along with the CT-derived liver geometry and material properties, were input 

into a finite element solver, which yielded the deformed models. For this study, we selected 

the deformed regions featuring a 7–15 mm displacement, mimicking deformations similar to 

those studied using in vitro phantoms in [6].

Target point cloud generation.—The following four steps were used to simulate the 

target point clouds: First, we cropped the anterior liver surfaces following the simulated 

deformations and extracted vertices that served as the raw target point cloud. Second, to 

1 https://github.com/zixinyang9109/LiverMatch 
2 https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/ 
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mimic different visual fields of view of the intra-operative liver surface, we randomly 

cropped the raw target point clouds using different visibility ratios (m ∕ n). Specifically, we 

randomly generated a direction vector to represent a 3D infinite line using the target point 

cloud centroid as the origin. We then calculate the shortest distances from each point in the 

point cloud to this line and sample the closest points. The number of sampled points would 

lead to a visibility ratio between 0.20 and 0.24, similar to the visibility ratio of 0.22 achieved 

in the in vitro phantom study [6], which we mimicked in our study. Thirdly, random noise 

was applied on the cropped point clouds with a maximum magnitude of 2 mm, mimicking 

accuracy levels similar to those achieved by the state-of-the-art stereo matching methods 

[15]. Lastly, we randomly generated Euler angles ranging from 0 to 2π to rotate the point 

clouds and translate them by up to 20 mm.

2.3 LiverMatch Network

The overview of our LiverMatch network is illustrated in Fig. 2. The network uses the 

source and target point clouds as input and outputs point-wise feature descriptors, visibility 

scores, and matches.

2.3.1 Encoder—Given S and T, the encoder extracts super-points S′ and T′ along with 

their associated features xS′ and xT′. In this network, we use the encoder of the kernel point 

fully convolutional neural network (KP-FCNN) [16]. The encoder consists of ResNet-like 

blocks and pooling layers based on kernel point convolution (KPConv), which extracts the 

feature of a point from its neighboring points.

2.3.2 Transformer—The features xS′ and xT′ only carry information from their close 

neighborhood points. To overcome the limitation, the single-head Transformer [17], 

consisting of a self-attention layer and a cross-attention layer, is applied to update xS′

and xT′ with self-global and cross-global geometry information. The self-attention layer 

allows points from the same point cloud to communicate, while the cross-attention layer 

allows points from different point clouds to share information. After the transformer, the 

features will become conditioned features with self- and global-geometry information. Here, 

we show an example of updating a source feature xi
S′ ∈ ℝd × 1 using the self-attention and 

cross-attention layer:

In the self-attention layer, the query vector q, the key vector k, and the value vector v are first 

comupted as:

qi = W qxi
S′, kj = W kxj

S′, vj = W vxj
S′, (1)

where W q, W k, W v ∈ ℝd × d are learned projection matrices, and xj
S′ is another source feature. 

The similarity between q and k is measured by:

aij = softmax(qikj
T ∕ d) . (2)

Similarly to the approach described in [12], xi
S′ is updated by:
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xi
S′ = xi

S′ + FC(Concat[qi, ∑
j

aijvj]), (3)

where FC( ⋅ ) denotes a fully connected layer. The same operation is applied to every source 

feature and target feature.

In the cross-attention layer, k, v are calculated from the other point cloud. For example, to 

update the xi
S′, Eq. 1 becomes:

qi = W qxi
S′, kj = W kxj

T′, vj = W vxj
T′, (4)

where xj
T′ is the feature of the target point cloud. The formations with cross attention are the 

same after replacing the contents for q, k, and v.

2.3.3 Feature Decoding—The conditioned features, along with spatial locations, are 

then fed to the decoder of KP-FCNN backbone [16] to obtain point-wise feature descriptors 

xS and xT. Following the decoder, we used a 1D-convolution to decode the xS into visibility 

scores ov. As only partial points in S have correspondences, encoding visibility scores helps 

the network focus on visible points. We clamp the visibility scores within 0 to 1 and create a 

visibility mask Ov = [ov > 0.9].

2.3.4 Matching—We first calculate a scoring matrix S and then convert it into a 

confidence matrix M via the dual-softmax operation [11, 18]:

S(i, j) = xi
S ⋅ (xj

T)T , (5)

M(i, j) = Softmax(S(i, : )) ⋅ Softmax(S(: , j)), (6)

where · denotes matrix multiplication. Matches are selected from the confidence matrix M
via the mutual nearest neighbor criteria: for a pair of matched indexes (i, j), confidence value 

ℳ(i, j) should be the maximum value of S(i, ⋅ ) and S( ⋅ , j) at the same time. In the end, we 

use the visibility mask Ov to exclude invisible source points.

2.3.5 Loss Functions—The total loss L of the network is the sum of two loses: 

L = LM + Lv, where LM is the matching loss, and Lv is the visibility loss:

Matching Loss.: We use the focal loss [19] with the default parameters α = 0.25 and γ = 2 to 

supervise the confidence matrix M:

LM = − 1
m ∑

(i, j) ∈ Kgt

α(1 − M(i, j))γ log M(i, j), (7)

where Kgt is the set of ground-truth matches with same number m as the target point cloud.

Visibility loss.: We use the binary cross entropy to supervise the visibility scores ov:
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Lv = − 1
n ∑

i = 1

n
o vi log(ovi) + (1 − o vi) log(1 − ovi), (8)

where ov is the ground truth label, adopting a value of 1 when a source point is visible and 0 

otherwise, and n is the number of source points.

3 Experiments

We obtained 700 simulated deformations for each liver model. Our proposed network 

was tested using the No. 1 and No. 2 liver datasets and trained on the remaining 14 

datasets. The training data was generated on the fly using presimulated deformations and 

our intra-operative surface generation methods. We generated one target point cloud for each 

deformation, hence yielding a total of 9800 deformations for training and 1400 for testing. 

The model was implemented using PyTorch. We used the SGD optimizer with 35 training 

epochs, taking 22 hours, and a batch size of 1. Experiments were conducted on a TITAN Xp 

GPU and an Intel(R) Core(TM) i5-7500 CPU.

3.1 Evaluation Metrics

Given a visible source point S(i), if the predicted correspondence T(j) is correct, it will lie 

within a radius σ from the ground truth correspondence T(j ), according to [11, 12]:

‖T(j ) − T(j))‖ < σ . (9)

Based on the above definition, an inlier ratio (IR) and a match score (MS) can be calculated 

to evaluate predicted matches, where higher values indicate a better match.

IR calculates the ratio of the number of inliers ninlier to the number of predicted matches np:

IR = ninlier

np
. (10)

MS indicates the ratio of the number of inliers to the number of target cloud points m:

MS = ninlier

m . (11)

If a registration method is employed to estimate displacement vectors for each source point, 

the registration error (RE) is measured as the root mean square error between the ground 

truth displacement vectors Vgt and predicted displacement vectors Vpred:

RE = ∑i
n ‖Vgt(i) − Vpred(i)‖2

n , (12)

Yang et al. Page 6

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2023 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where n is the number of source points, Vgt is the sum of deformation and rigid 

transformation.

3.2 Results

Matching evaluation.—We compared our network with the Predator network [12], the 

closest method to our proposed framework. To adapt the network to deformable scenes, 

we used ground truth matches to supervise its loss functions instead of the ground truth 

rigid transformations. The top-k sampling method in Predator was used to select the best 

candidate source points to match the target points. Finally, the feature descriptors of selected 

source points and target points were matched with the same matching method we used in 

LiverMatch.

Table 1 shows the evaluation of our proposed method against the Predator network in terms 

of IR and MS for a series of inlier radii ranging from 0 to 5 mm. For a 0 inlier radius, 

both the IR and MS measure exact matches. Nevertheless, with increasing inlier radius, our 

method yields higher IR and MS values than the Predator network (p < 0.05), implying our 

proposed method can predict denser and more accurate matches than the Predator network.

Ablation study.—We conducted an ablation study on the Transformer and the visibility 

scores of LiverMatch. When the Transformer was replaced with the graph convolution 

neural net used in Predator, the IR and MS decreased by 4.96% and 2.16%, respectively, for 

σ = 0. Furthermore, when the visibility scores were removed from the network, both IR and 

MS dropped by 6.22% and 3.12%, respectively, also for σ = 0.

Registration evaluation.—We investigated the integration of learning-based point cloud 

matching with a RANSAC ICP (iterative closest point) rigid registration algorithm. Table 

2 summarizes the registration results achieved using the Fast Point Feature Histograms 

(FPFH) descriptors [20], the learning-based matching point cloud descriptors (Predator and 

our LiverMatch ), and ground truth matches. As FPFH requires heavily down-sampled point 

clouds, we used a voxel size of 5 mm to downsample the source and target point clouds. 

However, ground truth correspondences were lost after voxelization, so we could not report 

the IR and MS scores for FPFH. We used the Open3D implementations3 of RANSAC ICP 

that accepts correspondences and FPFH.

As shown in Table 2, the integration of RANSAC-ICP with learning-based matching point 

cloud descriptors (via Predator and LiverMatch) outperforms the FPFH approach. Moreover, 

our proposed LiverMatch framework yields the lowest registration error (4.83 ± 3.11 mm), 

which is comparable to the ground truth registration error of 3.89 ± 2.08 mm and indicates 

a statistically significant (p < 0.05) registration improvement over both Predator and FPFH. 

The achieved registration results are based on a rigid ICP registration and suggest that 

a non-rigid registration is needed to further reduce registration error. Lastly, LiverMatch 

yielded a mean feature extraction time of 0.07 s which was comparable to the mean feature 

3 http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html 
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extraction time of FPFH (0.06 s) and much shorter than that of the Predator network (0.27 

s).

Fig. 3 illustrates two cases of the point cloud matching and registration results. The target 

point cloud is occluded in the first case (first two rows). For this challenging case, the 

learning-based methods can still predict accurate and dense matches. However, FPFH does 

not yield correct matches, resulting in high registration errors for both cases.

4 Discussion

To generate the LiverMatch dataset, we set limits on the deformation displacements, 

visibility ratios, and anisotropic noise magnitude. However, the robustness of learning-based 

methods to the above factors is still the subject of our ongoing research. Furthermore, 

the 3D descriptors are based on surface geometry, and, hence, anisotropic noise during 

surface reconstruction may negatively affect the descriptors. . However, this noise may be 

minimized, as demonstrated using the pipelines described in [2, 13] and existing software 

tools in [4, 9]. Moreover, as shown in our recent experiment (included in the Supplemental 

Material), we used a noise/surface reconstruction error on the order of σ = 2 mm, similar 

to that yielded by the methods described in [15], and yet our method was able to 

buffer these reconstruction noise/error and achieve reasonable registration error. If the 

reconstruction error were substantial, it can be viewed as another type of deformation, which 

may inevitably jeopardize the registration accuracy of any 3D-3D registration approaches; 

hence, a sufficiently accurate 3D surface reconstruction is the prerequisite for any 3D-3D 

approaches.

Moreover, it should be noted that the matches may need to be judged via different evaluation 

metrics, if noise increases, as noise changes the shape of the surface, and therefore the 

simulated ground truth matches may no longer be correct, which may, in turn, falsely impact 

the evaluation results, but not the actual performance of the proposed method.

Lastly, our experiments suggest that our LiverMatch network can find accurate and dense 

matches between pre-and intra-operative point clouds. Furthermore, the predicted matches 

can be integrated into rigid-registration methods to achieve fast and accurate rigid alignment.

We tested the Predator and our LiverMatch network on “unseen” liver datasets and their 

simulated target point clouds. However, the performance of these methods in the clinical 

setting is still unclear, as it has not been assessed. In addition, whether the learning-based 

feature descriptors trained on arbitrary objects can generalize to different organs, as 

speculated in [13], has yet to be further investigated.

On the other hand, Li and Harada [11] proposed a network that includes a Transformer 

that features a repositioning technique; however, when implementing their approach, the 

training loss did not converge when the network was trained on our LiverMatch dataset, 

and, furthermore, the network cannot predict per-point features on original, native resolution 

point clouds.

Yang et al. Page 8

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2023 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also demonstrated the integration of point cloud matching from learning-based feature 

descriptors with a rigid ICP registration algorithm. It demonstrated rapid feature extraction 

and comparable results to ground truth registration. We will further investigate the 

integration of point cloud matching with a non-rigid registration method. Specifically, we 

will research a non-rigid registration method that can handle dense matches, outliers, and 

noisy target surfaces, to more closely mimic typical clinical datasets.

Nevertheless, while acknowledging several limitations and ongoing research efforts 

discussed here, to our knowledge, this paper constitutes the first investigation of using 

learning-based feature descriptors for laparoscopic liver registration, and shows several 

promising results, including compelling matching performances, extraction times, and 

registration results upon integration with rigid ICP.

5 Conclusion

In this paper, we have presented the generation of the LiverMatch dataset to enable us to 

study the use of learning-based matching descriptors for laparoscopic liver registration, as 

well as introduced the LiverMatch network that was shown to yield accurate and dense 

pre- to intra-operative surface matches. Our results suggest that the use of learning-based 

descriptor matching in conjunction with laparoscopic liver registration is promising, as it not 

only offers a rapid and accurate rigid alignment of the pre-and intra-operative liver surfaces 

but also has the potential to assist with non-rigid registration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic description of the generation of the source (S) and target (T ) point clouds based 

on 16 liver surface models from the 3D-IRCADb-01 dataset.
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Fig. 2. 
LiverMatch network overview: 1) Encoder - down-samples input point clouds and extract 

associated features; 2) Transformer - updates features to conditioned features with 

self-global geometry and cross-global geometry information. 3) Decoder - up-samples 

conditioned features to obtain per-point features. 4) Matching - calculates a confidence 

matrix to select matches. An additional 1D convolution decodes the xS to visibility scores.
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Fig. 3. 
Visualization of matches and registration results of FPFH, Predator, and LiverMatch on two 

pairs of the source point cloud (blue) and target point cloud (red). The first two rows show 

the results for the same pair of source and target point clouds, while the last two show the 

results for another pair of source and target point clouds. Unmatched points are shown in 

gray (the first and third rows). Note that point clouds in FPFH are down-sampled.
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Table 1

Evaluation of our LiverMatch against Predator network according to the IR and MS evaluation metrics (mean 

± std dev.) for different inlier radii σ. *p < 0.05 indicates a statistically significant difference between the 

LiverMatch and Predator results.

σ(mm) 0 1 2 3 4 5

IR%

*Predator[12] 26.82 ± 4.99 26.94 ± 5.01 27.89 ± 5.10 30.61 ± 5.39 35.36 ± 5.93 41.76 ± 6.60

LiverMatch 37.68 ± 5.91 37.91 ± 5.94 39.58 ± 6.13 43.46 ± 6.61 49.21 ± 7.29 55.69 ± 8.04

MS%

*Predator[12] 6.90 ± 1.84 6.93 ± 1.84 7.17 ± 1.87 7.85 ± 1.95 9.04 ± 2.11 10.65 ± 2.32

LiverMatch 16.95 ± 3.74 17.05 ± 3.75 17.79 ± 3.83 19.50 ± 4.02 22.04 ± 4.30 24.91 ± 4.64
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Table 2

Assessment of mean feature extraction time (seconds) and RE(mm) upon integration of descriptors with 

a RANSAC-ICP registration algorithm. *p < 0.05 indicates a statistically significant improvement in the 

registration achieved using LiverMatch relative to the other descriptor methods.

Feature extraction time (s) Registration method RE (mm)

*FPFH[20] 0.06

RANSAC+ICP

86.28 ± 49.15

*Predator[12] 0.26 8.88 ± 12.19

LiverMatch 0.07 4.83 ± 3.11

Ground Truth - 3.89 ± 2.08
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