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Abstract

Coronary microvascular disease (CMD) causes myocardial ischemia in a variety of clinical 

scenarios. Clinical practice guidelines support routine testing for CMD in patients with ischemia 

with non-obstructive coronary artery disease (INOCA). Invasive testing to identify CMD requires 

Doppler or thermodilution measures of flow to determine the coronary flow reserve and measures 

of microvascular resistance. Acetylcholine coronary reactivity testing identifies concomitant 

endothelial dysfunction, microvascular spasm, or epicardial coronary spasm. Comprehensive 

testing may improve symptoms, quality of life, and patient satisfaction by establishing a diagnosis 

and guiding targeted medical therapy and lifestyle measures. Beyond INOCA, testing for 

CMD may play a role in patients with acute myocardial infarction, angina following coronary 
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revascularization, heart failure with preserved ejection fraction, Takotsubo syndrome, and after 

heart transplantation. Additional education and provider awareness of CMD and its role in 

cardiovascular disease is needed to improve patient-centered outcomes of ischemic heart disease.
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Background

Although the focus over the past century has been on the diagnosis and treatment of 

epicardial coronary artery disease (CAD), coronary microvascular disease (CMD) is an 

important cause of ischemic symptoms and contributor to adverse outcomes.1–3 Increasing 

awareness of CMD has led to renewed interest in the diagnosis. This review describes the 

clinical implications of CMD and relevant invasive methods for CMD assessment in the 

cardiac catheterization laboratory.

Anatomy and Physiology of the Coronary Microcirculation

The coronary vasculature is divided into three compartments (Figure 1): large epicardial 

conductive vessels, intermediate size pre-arterioles, and small intramyocardial arterioles 

and capillaries that are too small to image in vivo.4 Large conductive epicardial vessels 

(caliber >500 μm) account for only ~5% of coronary resistance to blood flow. Coronary pre-

arterioles (100–500 μm) maintain stable pressures in the setting of variability in coronary 

perfusion pressures and account for 20% of the resistance to coronary flow. Small caliber 

intramyocardial coronary arterioles are responsible for 60% of coronary resistance to flow, 

and capillaries account for the remaining 15% of coronary resistance.4 At rest, coronary 

arterioles have a high resting tone, but they can vasodilate via endothelium-independent 

pathways in response to metabolic signaling from the myocardium in the setting of increased 

oxygen demand. As a result of arteriolar vasodilation and decreased coronary resistance, 

the healthy coronary circulation can increase blood flow and oxygen delivery >5-fold above 

baseline under physiologic conditions in the setting of maximal hyperemia.

Pathobiology of Coronary Microvascular Disease

CMD represents a spectrum of functional and structural abnormalities that may be 

isolated or present in combination with abnormalities in the epicardial vessels or 

myocardial disorders.4 Examples of epicardial disorders include atherosclerotic CAD, 

muscle bridges, or coronary spasm. Thus, a proposed CMD classification scheme includes 

the following subtypes: (1) primary CMD in the absence of myocardial disease or 

obstructive CAD, (2) CMD in primary myocardial diseases, (3) CMD in obstructive CAD 
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post myocardial infarction (MI), and (4) iatrogenic CMD associated with reperfusion injury 

and microvascular distal embolization following coronary revascularization.4

Mechanisms of CMD may be multifactorial. Functional etiologies of CMD include 

impaired relaxation, or in the case of microvascular spasm, transient vasoconstriction 

of the microcirculatory arterioles. This may be caused by endothelial dysfunction with 

insufficient nitric oxide (NO) production, or due to direct endothelin- or rho-kinase mediated 

constriction of microcirculatory vascular smooth muscle.4–7 In other cases, CMD may be 

characterized by an abnormal loss of microcirculatory tone in resting conditions, with little 

capacity for further vasodilation. Structural causes of CMD may include microvascular 

remodeling with narrowing of the lumen due to intimal and medial smooth muscle cell 

hypertrophy, fibrosis of the intramyocardial arterioles and capillaries, perivascular fibrosis 

(from inflammation or injury), intravascular platelet plugging, or capillary rarefaction, all 

of which may be associated with traditional risk factors for atherosclerosis. Inflammation, 

platelet dysfunction, hormonal imbalances and autonomic dysfunction have also been 

proposed as contributory factors. Extrinsic (extraluminal) microcirculatory compression 

from myocyte hypertrophy, infiltrative cardiomyopathies, or elevated left ventricular end 

diastolic pressures, may also effectively cause resistance to microcirculatory flow that may 

manifest as CMD. Potential mechanisms of CMD are depicted in Figure 1.

Invasive Approaches to Assess the Microcirculation

Coronary Flow Reserve

Since the coronary microcirculation cannot be visualized by angiography in vivo, invasive 

assessments are based on coronary flow (Table 1). The dynamic capacity of the coronary 

circulation to augment blood flow in response to maximal demand is expressed as the 

coronary flow reserve (CFR), defined as the ratio of maximal achievable coronary blood 

flow during hyperemia to that at rest. As CFR represents an integrated measure of coronary 

epicardial and microvascular flow, CFR is not specific to microcirculation and can be 

significantly affected by epicardial coronary stenoses, resting hemodynamics, and baseline 

coronary blood flow.8 In the absence of epicardial stenosis, impaired CFR <2 to 2.5 is 

a diagnostic hallmark of CMD and a well-established prognostic indicator of adverse long-

term outcomes.2,3,9–11

Invasive evaluation of CFR requires coronary thermodilution or Doppler-based assessments 

of coronary blood flow before and after a hyperemic stimulus. Hyperemia is typically 

induced in the catheterization laboratory by administering an endothelium independent 

(smooth muscle relaxing) agent such as Adenosine or Papaverine (Table 2). Intracoronary 

Doppler, the most established method of assessing coronary flow, uses a piezoelectric 

ultrasound transducer mounted at the tip of a coronary guidewire to measure average peak 

velocity (APV), the time-averaged peak over several cardiac cycles (Figure 2A). Coronary 

guidewires with a Doppler transducer alone (Doppler wire, Philips) or mounted alongside 

a pressure transducer (Combowire, Philips) can be used. Careful wire positioning should 

be guided by the auditory quality and intensity of the Doppler signal, visual appraisal of 

the Doppler envelope, and modification of the signal to noise ratio to optimize the Doppler 

signal. CFR is calculated as APV (during hyperemia)/APV (at rest), without the need to 
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measure cross sectional area, as the latter remains relatively unchanged between conditions. 

Given the learning curve required for optimal Doppler signal acquisition, approximately 

10% of studies yield poor quality data,9 and this method of assessment is best used at centers 

with substantial experience.

Coronary flow can also be estimated using thermodilution techniques based on the indicator-

dilution theory, where the indicator is the temperature difference between room temperature 

saline and blood (Figure 2B). Temperatures are measured using a coronary guidewire with 

two thermistors at a fixed distance apart, with the shaft of the wire itself acting as the 

proximal thermistor (PressureWire X, Abbott Vascular). To allow adequate mixing of saline 

with blood, the distal thermistor should be positioned >60mm from the tip of the guiding 

catheter during thermodilution measurements.12 Thermodilution can be measured with bolus 

or continuous saline infusions.13 For bolus thermodilution, 3 mL of room-temperature saline 

are rapidly injected through the guiding catheter to determine the mean transit time (Tmn). 

Coronary flow can be estimated by dividing the volume of saline by Tmn and, if the volumes 

are assumed to be constant, flow is inversely proportional to Tmn. CFR is calculated as Tmn 

(at rest) / Tmn (during hyperemia). Typically, serial Tmn measurements are made during 

each condition and the mean of 3 recordings (ideally with <10% variability) is used. CFR 

derived from bolus thermodilution correlates moderately well with Doppler-derived CFR, 

although the former overestimates the latter with the progressive discrepancy with increasing 

CFR; a CFR of ~2.5 by coronary thermodilution is likely equivalent to a Doppler CFR 

measurement of ~2.0.9

During continuous thermodilution (Figure 2C), a saline infusion mixes homogenously with 

blood in the coronary segment between the point of infusion and the distal thermistor, 

and volumetric coronary flow can be calculated as Ti/T x Qi x 1.08 (where Ti and T are 

the temperatures of the saline infusate and of the blood mixed with saline (at the distal 

thermistor) respectively, Qi is the rate of infusion of saline and 1.08 is a constant that 

accounts for the density and specific heat of blood and saline). Absolute coronary flow 

measured in this way requires saline infusion through a dedicated monorail microcatheter 

with side-holes (Rayflow, Hexacath). As there are fewer assumptions inherent in this 

technique, absolute flow may be a more accurate estimation of coronary flow than bolus 

thermodilution techniques. When calculating CFR, hyperemia can either be induced with 

adenosine, or by infusing saline at a higher rate, which has been shown to achieve 

comparable hyperemia, although the mechanisms remain unclear (Table 2). Typically, saline 

infusion rates of 10ml/min (for baseline flow) and 20ml/min (for hyperemic flow) are 

used.14

Microvascular Resistance

If distal coronary pressure (Pd) is measured simultaneously with flow, it is also possible 

to measure microvascular resistance (MR), which can be expressed as MR= Pd / flow, 

by analogy to Ohm’s Law. The specific technique used to measure flow determines how 

MR is calculated, namely hyperemic microvascular resistance using Doppler (hMR = Pd/ 

APV at hyperemia), index of microvascular resistance using bolus thermodilution (IMR= 

Pd x Tmn during hyperemia), and absolute resistance during continuous thermodilution 
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(Rmicro = Pd/absolute flow). The microvascular resistance reserve ratio (RRR) is the basal 

resistance divided by hyperemic resistance. An RRR>2.0 is taken as normal.15 Other 

MR measurements are shown in Table 1. Microvascular resistance measurements have 

the theoretical advantage that they are specific to the microcirculation. Elevated MR may 

indicate structural mechanisms of CMD and provides an explanation for ischemic symptoms 

in patients with INOCA.16 However, the independent prognostic utility of resistance 

measures to predict major adverse cardiovascular events in patients with INOCA is unclear, 

whereas the prognostic utility of CFR is well established.17 In contrast, microvascular 

resistance measures are associated with prognosis in patients with microcirculatory 

dysfunction post-MI.

Wire-free measures of MR have also been developed to assess the microcirculation. 

Computational fluid dynamics models that estimate distal coronary pressure gradients can be 

combined with estimates of coronary flow using frame counts and vessel lengths measured 

from invasive coronary angiography to calculate an angiographic IMR (IMRangio).18 In 

studies of patients with STEMI, both hyperemic and non-hyperemic IMRangio demonstrated 

good agreement with conventional invasive IMR.19 Further research is necessary to validate 

angiography-based IMR in larger patient cohorts and determine best practices using this 

novel technology.

Integration and Interpretation of Flow Reserves and Microvascular Resistance

CMD, which is characterized by reduced CFR or elevated MR, has recently been divided 

into two distinct subtypes: structural CMD, in which hyperemic coronary flow is reduced 

due to pathologically increased minimal microvascular resistance (IMR>25 or hMR>2.5), 

and functional CMD, in which baseline coronary flow is high due decreased resting 

microvascular tone.11,16,20,21 The former has been ascribed to architectural changes leading 

to microcirculatory impairment, the later may be due to an abnormal metabolic state at 

rest or perhaps increased oxygen demand leading to high resting flow.11,17,21,22 Patients 

with functional and structural CMD have similar clinical presentations, characterized by 

exercise maladaptation, inducible ischemia, and comparable adverse prognosis, although the 

underlying pathophysiological mechanisms may be distinct. Among patients with INOCA, 

abnormal functional CMD appears to be more common in women, younger patients, and 

patients with fewer cardiovascular risk factors.21 Ultimately, both CFR and MR measures 

(e.g. IMR or hMR) are necessary to discriminate between these two subtypes; CFR is 

abnormally low in both cases, whereas MR is normal in functional CMD, while it is 

pathologically increased (IMR>25 or HMR>2.5) in structural CMD.17 Measurement of CFR 

alone is insufficient to identify mechanisms of CMD.

The prognostic impact of CFR and MR measurements have been investigated in patients 

with INOCA.17,20,23 In patients with abnormal CFR, long term outcomes such as major 

adverse cardiac events (MACE) and target vessel failure (TVF) are increased when 

compared to patients with normal CFR, irrespective of MR. Conversely, in patients with 

normal CFR, high MR was not associated with increased cardiovascular events.17 The 

clinical impact of elevated MR measurements in patients with INOCA requires further study.
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Intracoronary Acetylcholine Reactivity Testing

Coronary infusion of acetylcholine (ACh) explores endothelium-dependent mechanisms 

of CMD and epicardial vasomotor disorders and is required for the definitive endotype 

stratification of patients with INOCA.3,24–27 Acetylcholine binds muscarinic receptors 

on endothelial and vascular smooth muscle cells. In normal coronaries, ACh likely 

stimulates endothelial calcium release and enhances nitric oxide production, which dilates 

the epicardial coronary diameter by >20% and augments microcirculatory coronary blood 

flow.28 Acetylcholine also acts at smooth muscle cells to cause vasoconstriction, and in 

vessels with endothelial dysfunction, vasoconstriction becomes the dominant response.29 

ACh dosing, including manual or automated infusion, and the timing with respect to CMD 

testing, varies according to local preferences. A typical approach to assess for endothelial 

dysfunction involves sequential intracoronary infusion of escalating doses of acetylcholine 

at concentrations approximating 0.182, 1.82, and 18.2 mcg/ml (10−6, 10−5, and 10−4 mol/l, 

respectively) at 2 ml/min for 2 min using a mechanical pump.25 To evaluate for coronary 

spasm, ACh can be administered as an intracoronary bolus at doses of 20, 50, 100, and 200 

mcg over 20 seconds to 3 minutes. Given the risk of acetylcholine-induced bradycardia, it 

is considered safer to administer a half-dose bolus in cases of left coronary dominance, or 

when testing the right coronary artery. Intracoronary ACh reactivity testing is generally safe, 

with major complications reported in 0.5% of cases.27 The most robust safety data is derived 

from protocols that use 3-minute infusions of ACh.27

Assessment of Endothelium-Dependent Epicardial Function

Epicardial coronary endothelial dysfunction is characterized by impairment of vasodilatation 

or mild vasoconstriction in response to intracoronary infusion of low doses (1–40 μg) 

of ACh. Endothelial dysfunction severity exists on a continuum, with more significant 

dysfunction reflected by greater degrees of narrowing in response to lower doses of 

intracoronary ACh.30,31 Epicardial coronary spasm, the pathophysiological mechanism 

underlying vasospastic angina (VSA), is a transient, severe epicardial coronary narrowing 

that abruptly reduces coronary flow. Epicardial spasm is defined by a 90% reduction 

in coronary diameter associated with angina and ischemic ECG changes in response to 

intracoronary ACh.2,25,32

Assessment of Endothelium-Dependent Microvascular Function

Responses to ACh provide important insights into endothelial-dependent microvascular 

function. In the absence of epicardial coronary spasm, a <50% augmentation of coronary 

blood flow in response to ACh (ACh flow reserve ≤ 1.5) indicates endothelial-dependent 

CMD is present.10,33–35 In this setting, volumetric coronary flow is frequently calculated 

from Doppler velocity measurements and quantitative coronary angiography using the 

formula: flow= ½ APV x cross sectional area, where area=π x diameter2/4). Microvascular 

coronary responses to ACh can also be evaluated by coronary thermodilution techniques to 

determine ACh flow reserve and MR.36

Microvascular spasm plays a role in the pathogenesis of microvascular angina (MVA) 

in selected cases.2,32 Microvascular spasm is diagnosed when infusion of ACh causes a 

transient reduction or cessation of coronary flow, or based on clinical criteria, when angina 
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and ischemic ECG changes develop after ACh administration in the absence of epicardial 

coronary spasm.25 Microvascular spasm remains a poorly defined entity, and recent data 

indicate that not all patients with microvascular spasm diagnosed by clinical criteria have 

objective decreases in microvascular flow.37 Additionally, VSA and MVA may coexist, 

however, in presence of severe epicardial spasm, it may not be possible to detect the 

presence of microvascular spasm with ACh reactivity testing.2,29,38

Alternative approaches to test the integrity of endothelial-dependent microvascular function 

have also been studied. The endothelial agonist substance-P,39 dobutamine infusion,40 

and supine bicycle exercise are vasodilatory stimuli that may identify inappropriate 

augmentation (or reduction) of coronary blood flow suggestive of endothelial-dependent 

microcirculatory dysfunction.20,39,40 Mental stress and anxiety can also provoke endothelial 

dysfunction, providing a potential explanation for anxiety-induced ischemic symptoms 

that might otherwise be classified as non-cardiac.41,42 However, accepted protocols and 

thresholds indicative of an abnormal response to these vasodilatory stimuli have not yet been 

established and require further study.

Clinical Manifestations of CMD

CMD plays a role in ischemia and non-obstructive coronary arteries (INOCA) and acute 

MI, and may contribute to angina following percutaneous coronary intervention (PCI), heart 

failure with preserved ejection fraction, Takotsubo syndrome, and complications after heart 

transplantation. The most common clinical scenarios are described herein.

Ischemia with non-obstructive coronary arteries (INOCA)

Nearly half of patients undergoing coronary angiography for the evaluation of stable 

angina do not have obstructive CAD.43 INOCA is a clinical syndrome characterized by 

ischemic symptoms in the absence of a major epicardial coronary artery diameter stenosis 

≥50%.1–3 In a majority of cases, INOCA is caused by CMD (including microvascular 

spasm), epicardial coronary spasm, or a combination of pathologies, with or without 

traditional coronary risk factors and non-obstructive atherosclerosis. Patients with INOCA 

have impaired quality of life and are at increased risk of long-term cardiac events, recurrent 

hospital admissions, and increased health care costs.44 In CorMicA, patients randomly 

assigned to medical therapy guided by invasive physiology (CMD and ACh coronary 

reactivity testing) had sustained improvement in angina and better quality of life at 1 year 

compared to management per usual care.3 Despite the prevalence and clinical impact of 

INOCA, substantial gaps in knowledge remain due to heterogenous causes of this clinical 

syndrome and a dearth of large randomized controlled trials on therapies and outcomes.

Microvascular Obstruction after ST-segment Elevation MI

Despite advances in treatment for ST-segment elevation MI (STEMI) with PCI, 

microvascular obstruction (MVO) remains a prognostically significant complication without 

evidence-based therapies.45 MVO occurs in half of patients who present with STEMI and 

is associated with angiographic no-reflow or slow-flow despite revascularization.46 MVO 

can be measured invasively after primary PCI using IMR,47 and thermodilution-derived 
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temperature recovery time.48 IMR thresholds >28 and >40 are independently predictive of 

the occurrence of intramyocardial hemorrhage, and all-cause death or heart failure.47

Heart Failure with Preserved Ejection Fraction

Myocardial ischemia due to epicardial CAD or CMD, or both, are implicated in the 

pathophysiology of heart failure with preserved ejection fraction (HFpEF).49,50 In a 

prospective cohort study of 75 patients with HFpEF, 66% had endothelium-independent 

CMD (defined as CFR <2.0 and/or IMR ≥25), and 24% had endothelium-dependent 

microvascular spasm.50 Thus, CMD is a common finding in HFpEF and may be an 

important therapeutic target.

Contemporary Guidelines

Based on cohort studies and the CorMicA trial,3 clinical practice guidelines now recommend 

evaluation of the coronary microcirculation in patients with suspected INOCA to determine 

mechanisms of ischemia and to guide medical therapy.24–26 European Society of Cardiology 

guidelines provide a Class IIa recommendation for guidewire-based measurement of CFR 

and/or microcirculatory resistance measurements in patients with INOCA, and a IIb 

recommendation for intracoronary ACh testing, although when VSA is clinically suspected, 

the recommendation is escalated to Class IIa.24 American clinical practice guidelines also 

provide a Class IIa recommendation for invasive coronary functional testing in INOCA 

(Figure 3).26 Non-invasive modalities, including stress CMR and PET imaging (Class IIa) 

and stress echocardiography with coronary flow velocity reserve measurement (Class IIb) 

are also recommended.26

Future Directions & Research Priorities

Despite this clinical evidence, coronary microvascular function is not routinely measured 

in the catheterization laboratory. Inadequate physician education and training, patient 

involvement, and recognition by insurers and hospital providers are key barriers to CMD 

testing in daily clinical practice. A variety of invasive methods for CMD assessment, 

without a clear gold standard, may reduce confidence and hampers development in the 

field. Although absolute MR by continuous thermodilution has theoretical advantages, its 

clinical utility is yet to be systematically explored. Research priorities should address 

evidence gaps for mechanistically targeted medical therapy in CMD. The potential of 

endothelin receptor antagonists as a disease-modifying therapy in CMD is being assessed 

[ClinicalTrials.gov: NCT04097314]. Currently, there are no evidence-based medicines for 

CMD following acute MI. The ongoing Stratified Medicine of Eplerenone in Acute MI/

Injury trial [ClinicalTrials.gov: NCT05198791] seeks to address this gap.

Conclusions

In conclusion, CMD is a widely prevalent disorder that plays a role in a variety of acute 

and chronic cardiovascular disease states. Guidelines support routine testing for CMD in 

patients with INOCA, and testing has potential to improve symptoms, quality of life, and 

patient satisfaction by establishing a diagnosis, mechanistically targeted medical therapy, 

Smilowitz et al. Page 8

Circ Cardiovasc Interv. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT04097314
http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT05198791


and lifestyle measures.3 Going forward, education and provider awareness of CMD and its 

role in cardiovascular disease are needed.
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Figure 1. 
Anatomy of the Coronary Microcirculation and Potential Mechanisms of CMD
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Figure 2. 
Coronary flow measurements by Doppler (Panel A), Bolus Thermodilution (Panel B), and 

Continuous Thermodilution (Panel C)

A: Average peak velocity (APV) is shown at rest and at peak hyperemia.

B: Pressures are shown on the y-axis in the upper panel. Green tracings reflect the distal 

coronary pressure, red tracings indicate aortic pressure. In the lower panel, temperature is 

shown on the y-axis. Blue thermodilution curves were assessed at baseline; yellow curves 

were measured at peak hyperemia. The x-axis indicates time. CFR and IMR are calculated.

C: Pressures are shown on the y-axis in the upper panel. Green tracings reflect the distal 

coronary pressure, red tracings indicate aortic pressure. Blue tracings indicate temperature 

recorded by the distal thermistor. The y-axis is temperature; x-axis is time. At 10–130 

seconds, the thermistor is positioned in the distal coronary artery with saline infusion 

Qi=10ml/min (T at rest); 130–180 seconds: Qi=20ml/min (T at hyperemia); 180 seconds: 

rapid withdrawal of thermistor to Rayflow catheter tip; 190–220 seconds: Qi= 20ml/min 

(Ti at hyperemia); 220–250 seconds: Qi=10ml/min (Ti at rest); 250–280 seconds: infusion 

discontinued. Q at rest and hyperemia are calculated, from which CFR, MR at rest and MR 

at hyperemia can be derived.
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Figure 3. 
Contemporary paradigm to assess endotypes of INOCA.

Abbreviations: ACh, acetylcholine; CAD, coronary artery disease; CFR, coronary flow 

reserve; CFVR, coronary flow velocity reserve; CMD, coronary microvascular dysfunction; 

CMR, cardiac magnetic resonance imaging; ECG, electrocardiogram; FFR, fractional 

flow reserve; GDMT, guideline-directed medical therapy; IMR, index of microcirculatory 

restriction; INOCA, ischemia and no obstructive CAD; MBFR, myocardial blood flow 

reserve; PET, positron emission tomography
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Table 1:

Invasively derived measures of coronary microvascular function

Measure Technique Abnormal 
Threshold Value Formula

Coronary Flow Reserve (CFR) Intracoronary Doppler or 
Thermodilution < 2.0 – 2.5

Doppler: APV hyperemia / APV rest

Bolus Thermodilution: Tmn rest / Tmn hyperemia

Continuous Thermodilution: Absolute Coronary 
flow hyperemia / Absolute Coronary flow rest

Index of Microcirculatory 
Resistance (IMR)

Intracoronary 
Thermodilution (Bolus 

dose)
≥ 25 Pd x Tmn during hyperemia

Hyperemic microvascular 
resistance (hMR) Intracoronary Doppler ≥ 2 – 2.5 Pd / APV at hyperemia

Minimal microvascular 
resistance (mMR) Intracoronary Doppler Not Defined

Pd / APV at hyperemia during wave free period of 
diastole

Resistive reserve ratio (RRR) Intracoronary Doppler or 
Thermodilution ≥ 1.7–3.5 Baseline microvascular resistance (BMR) / 

hyperemic microvascular resistance (HMR)

R micro 

Intracoronary 
Thermodilution 

(Continuous Infusion)
≥ 500 Woods units Rmicro = Pd/absolute coronary flow

Microvascular Resistance 
Reserve (MRR)

Intracoronary 
Thermodilution 

(Continuous Infusion)
Not Defined

MRR = (CFR / FFR) x (Pa at rest / Pa at 
hyperemia)

APV: Average peak velocity.

Pd: Distal coronary pressure
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Table 2:

Hyperemic stimuli in the cardiac catheterization laboratory

Drug Dose

Adenosine
IV Infusion 140 μg/kg/min IV

IC Bolus 100 μg in RCA or 200 μg in LCA

IC Infusion Saline IC Infusion * 20cc/min infusion

IC Papaverine IC Bolus 8 mg in RCA or 12 mg in LCA

Regadenoson IV Bolus 400 μg IV over 10 seconds

Nitroprusside IC Bolus 0.6 μg/kg

*
 Via a dedicated infusion microcatheter.
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