Published in final edited form as:

Nat Aging. 2023 June; 3(6): 642-660. doi:10.1038/s43587-023-00416-y.

Targeting the biology of aging with mTOR inhibitors

Joan B. Mannick¹, Dudley W. Lamming^{2,*}

¹Tornado Therapeutics, New York, NY, USA

²Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA

Abstract

Inhibition of the protein kinase mTOR with the FDA-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians, and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored if existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTORC1 in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed in order to make mTOR inhibitors part of the standard of care for diseases of aging.

Keywords

mTOR; rapamycin; aging; mTORC1; geroprotector

Introduction

The mechanistic Target of Rapamycin (mTOR) is an evolutionarily conserved serine/ threonine protein kinase found in diverse species including mice and humans. The mTOR kinase forms the catalytic core of two distinct protein complexes, mTOR Complex 1 (mTORC1) and mTORC2, each of which are composed of shared as well as unique protein subunits and phosphorylate different substrates. mTORC1 is regulated by a wide range of nutrients and hormonal cues, most notably the availability of amino acids, but also glucose, oxygen, and cholesterol ^{1–3}. mTORC1 activity drives a wide variety of anabolic processes through phosphorylation of substrates including ribosomal protein S6 kinase beta-1 (S6K1) and the eukaryotic translation initiation factor 4E-binding proteins (4E-BPs). mTORC1 activity also inhibits autophagy via phosphorylation of substrates including Unc-51 like

COMPETING INTERESTS

^{*}Correspondence: Dudley W. Lamming, PhD, Associate Professor of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI 53705, USA, dlamming@medicine.wisc.edu, Tel: 608-262-7341, Fax: 608-263-9983;. AUTHOR CONTRIBUTIONS

JBM and DWL wrote the manuscript and prepared the figures.

JBM is CEO and co-Founder of Tornado Therapeutics, which is developing safer, more effective mTOR inhibitors to extend human healthspan, and former CMO of resTORbio. DWL has received funding from, and is a scientific advisory board member of, Aeovian Pharmaceuticals, which seeks to develop novel, selective mTOR inhibitors for the treatment of various diseases.

autophagy activating kinase (ULK1) ⁴. In contrast to mTORC1, which is responsive to many different environmental cues, mTORC2 primarily acts as an effector of PI3K signaling by tuning the activity of substrates including AKT, serum/glucocorticoid regulated kinase (SGK), and protein kinase C alpha (PKCα).

Beginning twenty years ago, researchers discovered a role for mTORC1 signaling in the aging process. Studies in yeast, worms and flies found that genetic inhibition of mTORC1 or signaling pathways downstream of mTORC1, including S6K and translation initiation factors, extends lifespan $^{5-11}$. mTORC1 signaling was also observed to be lower in long-lived Ames dwarf mice than in wild-type controls 12 . Studies in mice have likewise shown that genetic depletion of mTORC1 subunits, deletion of S6K1 or downstream substrates, or expression of dominant negative 4E-BP1 in specific tissues extends the lifespan and healthspan of mice $^{13-16}$. Even partial inhibition of mTORC1 in genetic mouse models (e.g., $S6K1^{-/-}$, $mTOR^{+/-}$ mLST8^{+/-}, $mTOR^{-/-}$, $TSC1^{tg}$) can extend lifespan and healthspan in mice $^{13,17-19}$.

These results quite logically spurred significant interest over the possibility that a potent chemical inhibitor of mTORC1, rapamycin, could extend lifespan. This was indeed the case – and there are now numerous studies showing that rapamycin can extend the lifespan not only of model organisms including yeast, worms, and flies 20-22, but also as we detail below, in both wild-type mice and in many disease models. In this review, we will discuss the results of these studies, as well as the possible mechanism by which reduced mTORC1 signaling via both dietary and pharmacological means may improve healthspan 23-25.

Many of the side effects of rapamycin, which include immunosuppression, hyperlipidemia and hyperglycemia, have raised concerns about the feasibility of using rapamycin to promote healthy longevity in humans and slowed clinical evaluation of mTOR inhibitors for diseases of aging ²⁶. In this review, we will discuss data generated over the past decade suggesting that the beneficial effects of rapamycin on healthspan and lifespan are mediated by inhibition of mTORC1 whereas the negative effects of rapamycin on glucose and lipid metabolism are mediated by inhibition of mTORC2.

Importantly, these data predict that interventions that more selectively target mTORC1 — by limiting the amount of mTOR inhibitor used and the time of the exposure — will have reduced side effects as compared to chronic treatment. Here we discuss pre-clinical animal data and clinical human data exploring the use of intermittent and low dose mTOR inhibitor treatment regimens, the results of which suggest that rapalogs and other mTOR inhibitors may be able to be dosed in a way that is safer as well as geroprotective. Finally, we discuss future studies and the quest for mTORC1 selective molecules derived in part through recent discoveries about the molecular machinery through which mTORC1 senses nutrients and hormonal cues.

Extension of lifespan with the mTOR inhibitor rapamycin in mice

Rapamycin is a macrolide first discovered in soil from Easter Island almost fifty years ago ²⁷. Rapamycin is an acute inhibitor of mTORC1 but not mTORC2 ²⁸. The reasons for this

difference in rapamycin sensitivity is structural; the mTOR interacting protein RICTOR, which is present in mTORC2 but not mTORC1, masks the rapamycin-interacting domain of mTOR^{29–31}. Although mTORC2 is not acutely inhibited by rapamycin, subsequent studies have shown that mTORC2 is inhibited in cell culture as well as *in vivo* in mice when exposed to high concentrations of rapamycin for a prolonged period of time, most likely due to the sequestration of free of mTOR by rapamycin so that it is unavailable for incorporation into mTORC2 ^{17,32} Rapamycin and its analogs (rapalogs) inhibit T cell activation and are approved to prevent organ transplant rejection. In addition, rapalogs inhibit tumor cell growth and are approved for the treatment of a subset of tumors. Finally, rapalogs are approved for the treatment of specific genetic disorders that result in hyperactive mTOR signaling.

Multiple groups have studied the effect of rapamycin on the longevity of mice, starting with a landmark study by the National Institute on Aging Interventions Testing Program (NIA ITP) published in 2009 which demonstrated that rapamycin extended the lifespan of genetically heterogeneous mice ³³. Since that time, additional studies of rapamycin on mouse lifespan have been conducted not only by the NIA ITP, but by at least ten other groups across the globe (Table 1). A number of lessons can be drawn from this set of studies, primarily that rapamycin is an extraordinarily robust geroprotective intervention, extending lifespan in multiple wild-type mouse strains handled by multiple teams, and including inbred, outbred, and genetically heterogenous male and female mice. Every study observed an extension of lifespan in one or more dosing groups, with females typically benefiting more than males at equivalent doses of rapamycin. Importantly, unlike caloric restriction, another well validated longevity intervention, which is less efficacious when begun later in life ³⁴, rapamycin robustly extends lifespan when dosing was not initiated until late in life when the mice were 20 months of age (equivalent to about a 60 year old human) ^{33,35}. Dosing regimens for rapamycin are very flexible, and beneficial effects of rapamycin on longevity are observed even when rapamycin is dosed intermittently, when it is given for only a short period of time immediately postnatally, or when it is administered to older mice already past middle age ^{36–43}. Finally, rapamycin may be effective when combined with other geroprotectors, including metformin and acarbose ^{44,45}.

Rapamycin has also been tested in a wide number of disease models, including multiple different cancers, mitochondrial disease, and progeria (Table 2). Here, the beneficial effects of rapamycin have been more varied than in wild-type mice. As might be expected, rapamycin has shown significant benefits in mouse models of mTORopathies ⁴⁶, diseases resulting from genetic activation of mTOR, including tuberous sclerosis complex and some epilepsies. Rapamycin also has substantial positive effects on the survival of mouse cancer models. Finally, rapamycin extends the lifespan of several progeroid mouse models quite effectively, suggesting that progeria mouse models, while not perfect models of aging, may have utility for rapidly assessing the potential benefits of geroprotectors.

While by far the most work on rapamycin and aging has been done in mice, there is significant interest in exploring the use of rapamycin in primates. A total of 66 middle-aged marmosets (*Callithrix jacchus*) have been fed either rapamycin or vehicle containing diets, with the lifespan and healthspan of the animals followed longitudinally. Both sexes are

being examined in this study, which is still underway. A limitation of these studies is both the relatively small number of animals studied – less than 20 per sex and treatment – and the range of ages and the genetic heterogeneity of the population. Initial studies suggested that rapamycin, dosed at ~1 mg/kg of body weight via the diet, was well tolerated, with only minor effects of rapamycin on hematological parameters, and no statistically significant changes in blood glucose, cholesterol, or triglyceride levels⁴⁷. In the subset of 6 animals treated with rapamycin or vehicle for nine months, 2 rapamycin-treated animals showed an increase in fasting blood glucose, and 2 rapamycin-treated animals shown an increase in triglycerides suggesting the possibility of some inhibition of TORC2 at this dose level ⁴⁷. However, a definitive examination of the metabolic impact of rapamycin in marmosets will require studies in a larger number of animals, conducted over a longer period of time.

The second major study of rapamycin done outside of the rodent context is examining the effect of rapamycin on the aging of dogs. As companion animals, dogs share the human environment, receive regular medical care similar to humans, and develop many of the same age-related diseases that humans do. Further, many dog owners have shown interest in enrolling their dogs in studies to promote healthy aging. The short lifespan of dogs, particularly of large dog breeds, allows for studies of shorter duration compared to humans. A small pilot study found that treatment with 0.05 mg/kg or 0.1 mg/kg rapamycin three times per week did not cause statistically significant side effects but did improve measurements of cardiac function (fractional shortening and diastolic function) ⁴⁸. A larger study in which middle-aged, large-breed dogs will be treated with rapamycin or vehicle for one year will complete enrollment during 2023 ⁴⁹.

Mechanisms underlying the effects of rapamycin on healthspan and lifespan

There are many possible mechanisms underlying the geroprotective effects of rapamycin. In this section, we will discuss the effects of mTORC1 inhibition on both specific disease processes and the molecular mechanisms which may contribute to the beneficial effects of rapamycin on lifespan and healthspan.

Protein translation

mTORC1, via S6K1 and 4E-BPs, plays a central role in the regulation of translation, and defects in translation have long been theorized to contribute to aging. The error catastrophe theory suggests errors in protein translations could leads to increasingly inaccurate protein synthesis and functional decline ⁵⁰. Conceptually, slowing protein translation by treatment with rapamycin might allow mRNA to be translated into protein with higher fidelity, or to fold more accurately. In agreement with such a model, experiments in model organisms have shown that deletion or knockdown of ribosomal subunits, S6K1, or translation initiation factors results in increased lifespan ^{6,10}.

However, modern measurement techniques have not found evidence that protein translation errors increase with age ⁵¹. Further, neither mTOR inhibition by rapamycin or deletion of *S6K1* significantly slows protein translation in mice or cells ^{52–54}. Studies in *C. elegans* have

shown that the lifespan of worms lacking eukaryotic translation initiation factor 4E (eIF4E), which are long-lived and have a global reduction in protein synthesis, can be still further increased by knockdown of the gene encoding TOR^{10} . These results strongly suggest that rapamycin does not regulate longevity solely by downregulating protein translation.

There may be a more subtle effect of rapamycin on protein translation – namely, that rapamycin may alter the translation of specific mRNAs. Both rapamycin and complete mTOR inhibition preferentially inhibit translation of mRNAs with 5' terminal oligopyrimidine (TOP) motifs, suggesting a potential role for these genes in longevity ^{55,56}. In yeast, the ability of deletion of genes encoding ribosomal subunits to extend lifespan is partially dependent upon inducing translation of the mRNA encoding the transcription factor GCN4 (General Control Nondepressible 4) ⁵⁷. Expression of the Gcn4 protein is limited by multiple upstream open reading frames (ORFs) that normally sequester ribosomes that bind to the mRNA. Under conditions of large ribosomal subunit abundance, the upstream ORFs are more frequently bypassed to initiate translation of Gcn4. It is not clear if this system is conserved in mammals because in mammals mTORC1 inhibition decreases translation of the mammalian homologue of Gcn4, ATF4 ^{58,59}. ATF4 instead may act as a break on mTORC1 in response to mitochondrial distress, with ATF4 inhibiting mTORC1 activity via upregulation of the mTORC1 inhibitors Sestrin2 and Redd1 60. Despite these differences, it is possible that changes in translation of specific mRNAs may contribute to the beneficial effects of rapamycin on healthspan and lifespan.

One potential example of this is that mice expressing a constitutively active (dephosphorylated) form of 4E-BP1 in skeletal muscle are protected from age- and dietinduced declines in insulin sensitivity and metabolic rate ¹⁵. These effects may be mediated non-cell-autonomously via increased production of Fibroblast growth factor 21 (FGF21) by skeletal muscle, activating brown adipose tissue. Interestingly, whole body overexpression of 4E-BP1 also has positive effects on healthspan, protecting male mice from diet-induced obesity ¹⁶. These mice also have increased levels of FGF21, in this case due to an upregulation of hepatic Fgf21 expression. Notably, expression of Fgf21 is regulated in part by ATF4 61,62. A recently described downstream effector of mTORC1 and S6K1 is glutamyl-prolyl tRNA synthetase (EPRS) which is phosphorylated by S6K1¹⁴. When phosphorylated, EPRS functions to inhibit the translation of select mRNAs by forming an interferon γ -activated inhibitor of translation (GAIT) complex which selectively inhibits mRNAs containing GAIT elements ⁶³. Mice expressing EPRS S999A, which is non phosphorylatable, have reduced body weight and adipose mass, and increased lifespan, similar to mice lacking S6K1 ¹⁴. Other aminoacyl-tRNA synthetases may similarly have non-canonical functions ⁶⁴ that may play a part in the response to rapamycin.

Autophagy

Autophagy is a process by which cells recycle their proteins and organelles, which not only allows cells to survive nutrient-limited conditions, but which is also a central mechanism by which damaged protein and subcellular organelles are removed. While autophagy thus seems to be very important from this description alone, studies in yeast, worms, and flies have shown that inactivation of autophagy shortens lifespan, while promotion of autophagy

extends lifespan ^{65–67}. Importantly, autophagy has also been shown to be required for the extension of lifespan by reduced mTOR signaling in both yeast and worms ^{65,68}. In mammals, autophagy is reportedly upregulated in CR mice and in the cells of long-lived Snell dwarf mice, and is required for some of the beneficial effects of a CR diet on the heart, kidney, and liver ^{69–72}.

When nutrients are abundant, mTORC1 activity acts as a brake on autophagy by phosphorylating the autophagy-initiating kinase ULK1 and ATG13, as well as other components downstream of autophagy initiation and reviewed in detail elsewhere ^{73–75}. Conversely, when nutrients are low, autophagy is active as a result of AMP-activated protein kinase (AMPK) activation and reduced mTORC1 activity. Autophagy is normally impaired with age in multiple types of mouse cells, and genetic activation of autophagy in the aged mouse liver rejuvenates the liver histologically and improves function ^{76–78}. While rapamycin itself is not a strong inducer of autophagy compared to mTOR kinase inhibitors ⁵³, the effects of rapamycin on the pathology of mouse models of Alzheimer's disease has been attributed in part to increased autophagy ^{79,80}.

Improvement in immune function

Premature aging of the immune system has been shown to drive aging of multiple other organ systems in mice ⁸¹. These findings suggest that therapies that improve immune aging may have more systemic healthspan and lifespan benefits. mTOR inhibition has been shown to improve the function of the aging immune system in both mice and humans. Specifically, a short 6-week course of rapamycin has been shown to rejuvenate the function of hematopoietic stem cells, increase production of naïve lymphocytes and improve the response to influenza vaccination in old mice ³⁹. Of interest, rapamycin treatment extended lifespan in this study even though it was only administered for 6 weeks when mice were already old (26 months). In elderly humans, 6 weeks of mTOR inhibitor treatment (a rapalog alone or in combination with a catalytic site mTOR inhibitor) also improved the response to influenza vaccination and was associated with a decrease in the percentage of exhausted PD1+ T cells in peripheral blood ^{82,83}. In addition, mTOR inhibition has been shown to upregulate antiviral immunity in older adults ^{83,84}. These clinical studies will be discussed in more detail below.

However, it is worth noting that rapamycin is FDA-approved as an immunosuppressant, and infections are common, particularly in humans taking high doses of rapalogs for a long period of time. In mice, rapamycin has been shown to be immunomodulatory, improving CD8⁺ T cell immunological memory while at the same time impairing defenses against acute viral and bacterial infections ⁸⁵. A recent meta-analysis suggests that mice treated with rapamycin have increased survival following an acute pathogenic challenge ⁸⁶. Thus, there may be tradeoffs, with rapalogs improving some aspects of immune function while impairing others.

Cancer

Cancer is the most common cause of death for laboratory mice, and rapamycin and its derivatives (rapalogs) inhibit the proliferation of cancer cell lines. Rapalogs are approved for

use in certain oncology indications and, as shown in Table 2, rapamycin is very effective at extending the lifespan of mouse models of cancer. A study by Neff and colleagues found that rapamycin significantly reduced the proportion of 16 month old mice with cancer and/or precancerous lesions ⁸⁷, and suggested that this indicated that the effects of rapamycin on lifespan was driven by its anti-cancer effects. However, the NIA ITP has shown that the overall prevalence of cancer at death, as well as the spectrum of cancers observed, was very similar between rapamycin-treated mice and controls ³⁶. This effect on cancerous and precancerous lesions not observed in animals sacrificed at later time points, but the interpretation of these results was confounded by as cancer was not assessed in animals that died of natural causes. While cancer prevention clearly plays a role in the benefits of rapamycin in mice, cancer is itself an age-related disease, and thus prevention of cancer is an expected consequence of geroprotective therapies.

Cancer cells often express pluripotency markers, and rapamycin reduces cell size and proliferation and enhances the differentiation of mouse and human embryonic stem cells ^{88–90}. Rapamycin may be particularly beneficial against cancer stem cells, and has been shown to deplete leukemia-initiating cells and inhibit both self-renewal and differentiation of stem cells derived from infantile hemangioma ^{91,92}. Rapamycin inhibits cell proliferation, epithelial-mesenchymal transition and cancer stem cell characteristics of lung cancer stem cells and colorectal cancer stem cells ^{93,94}

Stem cells

In contrast to its actions of cancer stems cells, rapamycin has been shown to have beneficial effects on self-renewal and function in normal stem cells, which may contribute to the benefits of rapamycin on tissue function. Several studies have been conducted on hematopoietic stem cells (HSCs); aged mice have elevated mTORC1 activity in their HSCs, as well as functional deficits similar to those observed in a mouse model of hyperactive mTORC1 activity ³⁹. Treatment of aged mice with rapamycin restored the functional capacity of their HSCs, and boosted the immune response to influenza virus. In a separate study, rapamycin was shown to restore self-renewal capacity to a subpopulation of mouse HSCs with spontaneously high oxidative stress and reduced functional capacity ⁹⁵. Rapamycin also increases the self-renewal capacity of mouse intestinal stem cells, via a non-cell autonomous mechanism mediated by inhibition of mTORC1 in the adjacent Paneth cells ⁹⁶.

Reduction of hyperactive mTOR in aging tissues

One reason mTOR inhibition may have health benefits in older organisms is because mTOR activity may become inappropriately high with age. Higher mTORC1/S6K activity in muscle of older mice, rats and humans is associated with sarcopenia ^{97–101}, and in brain is associated with Alzheimer's disease ^{101–105}. Altered mTORC1 signaling with age has also been reported in other tissues of mice, with most studies reporting increased mTORC1 activity with age ^{39,97,106–108}. The ability of rapamycin to promote longevity is consistent with the idea that mTOR activity is an example of antagonistic pleiotropy, with high mTOR signaling being beneficial for development and reproduction, but being harmful during a post-reproductive old age ¹⁰⁹. Under such a model, the benefits of mTOR inhibition may

arise less from specific benefits on processes such as translation, and more from avoiding negative effects of hyperactive mTOR on processes such as cellular senescence. Indeed, rapamycin has been shown to inhibit the accumulation of senescent cells in mice as well as suppress the senescence associated secretory phenotype (SASP) ¹¹⁰.

Inhibition of mTORC2

In sharp contrast to mTORC1, inhibition of mTORC2 has mostly negative effects on lifespan. In worms, mTORC2 inhibition has most often been associated with reduced lifespan, while in flies increasing mTORC2 activity through overexpression of *Rictor* extends lifespan ^{21,111–113}. Whole body deficiency of mTORC2 signaling, or tissue-specific inhibition of mTORC2 signaling in the brain, liver, or adipose tissue, reduces lifespan in C57BL/6J mice ^{114–117}. Conversely, the lifespan of male mice is extended by acarbose and 17-α estradiol, and these compounds increased hepatic mTORC2 activity ¹¹⁸. mTORC2 activity is also elevated in long-lived Snell dwarf mice and *Ghr*^{-/-} mice ¹¹⁹.

Inhibition of mTORC2 also results in negative effects on metabolism and immunity. Genetic inhibition of mTORC2 in one or more tissues of a mouse can result in frailty, hyperphagia, insulin resistance, hyperlipidemia, hypercholesterolemia, hyperglycemia, kyphosis, and/or obesity depending upon the specific tissues in which mTORC2 is inhibited ^{114–117, 68}. Specific inhibition of mTORC1 in mice using a mTORC1-specific inhibitor did not result in hyperglycemia, impaired glucose tolerance, hyperlipidemia or hypercholesterolemia, again demonstrating that these negative effects are mediated at least in part by inhibition of mTORC2 ¹²⁰. Finally, mTORC2 has been shown in a number of studies to play a key role in immunity and wound repair ^{121–127}, and in accordance with this important role for mTORC2, compounds that selectively inhibit mTORC1 have a reduced effect on the immune system compared to rapamycin ¹²⁰. Thus, lower or intermittent doses of rapamycin, or treatment with rapalogs that more specifically target mTORC1, are predicted to reduce mTORC2-associated side effects such as hyperlipidemia and hyperglycemia without impairing the lifespan-extending benefits of mTORC1 inhibition.

This is not to say that there may not be benefits to inhibiting mTORC2 in specific settings. Inhibition of mTORC2 signaling extends the lifespan of *C. elegans* under certain temperatures and dietary conditions^{111,112}, has anti-tumor effects ^{128–131}, is beneficial in mouse models of mitochondrial disease^{132,133}, and has been shown to inhibit or reverse senescence in human cells ^{134,135}. Certain side effects, whether mediated by mTORC1 or mTORC2, may potentially even be a consequence of "on-target" action of rapamycin and rapalogs, and avoiding these side effects may limit the benefits of such drugs for healthy aging. However, given the balance of the evidence, particularly the genetic studies showing that mTORC2 activity is associated with lifespan and that inhibition of mTORC1 alone can extend lifespan, we believe that inhibition of mTORC2 is "off-target" with respect to the beneficial effects of rapamycin and rapalogs on healthspan and longevity.

Clinical trials of mTOR inhibitors for diseases of aging

Given the extensive preclinical data confirming that mTOR inhibition extends lifespan and healthspan, there is great interest in determining whether mTOR inhibitors will have

benefits for human aging. As highlighted in Figure 1, based on mouse studies rapamycin and rapalogs may have benefits in many different systems, including the brain, heart, immune system, intestine, liver, senescent skin cells, skeletal muscle and tendons. Rapalogs are approved for use in transplant and cancer patients at high doses that strongly suppress mTORC1 activity ¹³⁶and have significant side effects including mouth ulcers similar to canker sores, gastrointestinal side effects, hyperlipidemia and hyperglycemia, and impaired wound healing. The approved doses of rapalogs also inhibit immune function and therefore the FDA-approved prescribing information notes that taking rapalogs may increase the risk of infection and certain cancers associated with immunosuppression ^{137,138}. The risk of infectious diseases associated with higher doses of rapalogs in humans may not be adequately modeled in preclinical mouse experiments since mice are usually housed in specific pathogen free (SPF) barrier facilities.

Chronic treatment of humans with high doses of rapalogs is also associated with deleterious metabolic consequences including hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, insulin resistance and glucose intolerance ^{139–143}. Hyperlipidemia and hyperglycemia have also been observed in rodents treated with rapamycin or rapalogs although mice are less susceptible to developing hyperlipidemia-induced cardiovascular disease than humans. Trelinska and colleagues observed hyperlipidemia in 66% of TSC patients taking high daily doses of everolimus for 15 months; hyperglycemia was observed in 22% of subjects ¹³⁹. Another side effect of doses of rapamycin that extend lifespan in mice is testicular degeneration ^{25,144}, and reduced male fertility has been observed in humans treated with rapalogs ^{145,146}. Finally, lifespan-extending doses of rapamycin in mice also promote the formation of cataracts ²⁵, although cataracts have not been associated with rapalog treatment in humans.

Recent studies (see Table 3) have explored the safety and efficacy of lower or intermittent dosing regimens of mTOR inhibitors in older adults. Preliminary results from these studies suggest that lower or intermittent dosing regimens of mTOR inhibitors that turn down mTOR activity to "younger" levels rather than turn off mTOR activity have the potential to safely improve the function of aging organ systems or ameliorate aging-related diseases in humans. Of interest, clinical trials to date suggest that low or intermittent doses of mTOR inhibitors enhance rather than suppress immune function and decrease infection risk in older adults. Table 2 summarizes the clinical trials published to date of mTOR inhibitors for aging-related conditions; we discuss each of these briefly below.

mTOR inhibition and the immune system

The largest clinical trials to date have investigated if mTOR inhibition can improve the function of the aging immune system. The first clinical trial was done in 218 adults age 65 years without unstable medical conditions to determine if the rapalog everolimus improved the function of the aging immune system as assessed by a response to an influenza vaccination ⁸². The rationale for the trial was a preclinical study demonstrating that 6 weeks of rapamycin treatment improved the immune response of old mice to an influenza vaccination ³⁹.

Safety was a key concern when designing this trial. Therefore, very low daily or intermittent doses of everolimus were used in the vaccination trial (1/6–1/20th lower than the approved doses in transplant and oncology patients) that were predicted to minimize adverse events and to lower rather than completely inhibit mTORC1 activity. The clinical trial demonstrated that 6 weeks of treatment with either 0.5 mg once daily or 5 mg once weekly everolimus was well tolerated and significantly improved the response of older adults to an influenza vaccination. Immunophenotyping revealed that low or intermittent doses of everolimus decreased the percentage of PD-1+ exhausted T cells in the peripheral blood of older adults and this may have been a mechanism underlying their improved immune function. This was the first study to demonstrate that mTOR inhibition may improve the function of an aging organ system in humans⁸².

A subsequent clinical trial was done in 264 adults age 65 years to extend these findings and determine if low dose mTOR inhibitor treatment with either everolimus and/or or the catalytic site mTOR inhibitor BEZ235 improved the function of the aging immune system sufficiently to improve not only influenza vaccination response, but also to decrease total infection rates in older adults⁸³. The study confirmed that 6 weeks of treatment with a low dose of mTOR inhibitors was safe and was associated with a dose-dependent significant improvement in influenza vaccination response. In addition, low dose mTOR inhibitor treatment significantly decreased the rate of infections, the majority of which were respiratory tract infections. Exploratory transcriptional profiling found that the older adults receiving low doses of mTOR inhibitors had a significant upregulation of genes in type 1 interferon-induced antiviral pathways. This upregulation of antiviral gene expression may underlie the reduction in respiratory tract infections seen older adults treated with mTOR inhibitors since most respiratory tract infections are viral in origin ^{147,148}.

Large follow-up Phase 2b (n=652) and Phase 3 (n=1051) trials were done to confirm whether 16 weeks of low dose mTOR inhibitor treatment upregulated antiviral immunity and decreased the incidence of viral respiratory tract infections (RTIs) in older adults ⁸⁴. Low doses of the mTOR inhibitor BEZ235 were observed to be well-tolerated and to decrease the incidence of laboratory-confirmed RTIs (the Phase 2b primary endpoint; OR 0.601 [90% CI 0.39, 0.92]; p-value 0.025) but not the incidence of clinically symptomatic respiratory illness, which was defined as symptoms consistent with a RTI irrespective of whether an infection was laboratory-confirmed (the Phase 3 primary endpoint; OR 1.07 [90% CI 0.80, 1.42]; p-value 0.65). In both trials, significantly more interferon-induced antiviral genes were upregulated in subjects treated with BEZ235 as compared to placebo. Lessons learned from the combined Phase 2b and 3 trial results suggest that upregulation of antiviral immunity by low dose mTOR inhibitor therapy may have a greater impact on 1) severity than incidence of viral RTIs, 2) RTIs caused by coronaviruses, rhinoviruses and influenza viruses as opposed to other respiratory viruses; 3) the incidence and severity of viral RTIs in older adults 75 years of age as opposed to 65 years of age. Based on these findings, it will be important to determine in future clinical trials if mTOR inhibitors decrease the severity of specific viral respiratory tract infections in people 75 years of age.

Rapamycin in older adults

In contrast to the subjects in the above trials, who tolerated everolimus or BEZ235 quite well, a small, 8-week long randomized clinical trial of 25 older adults between 70 and 95 years of age treated with 1 mg/day of rapamycin experienced more side effects than placebo including a small increase in glycated hemoglobin (within-group p=0.03), and a 40% rise in triglyceride levels (within-group p=0.05) ¹⁴⁹. While these results tend to align with our expectation that chronic rapamycin treatment may cause hyperglycemia and hyperlipidemia, a caution in interpreting these results is the small group size and the failure of the between-group comparisons to reach statistical significance (p=0.07 and 0.12 for A1C and triglyceride changes, respectively). In addition, other parameters of glucose metabolism including insulin sensitivity and pancreatic beta cell function were not affected. It is possible that lower doses of rapamycin, intermittent treatment with rapamycin, or treatment with everolimus would be better tolerated than the daily dose of 1 mg/day examined here, but this has not been directly tested.

Rapamycin in skin

Local administration of rapamycin with negligible systemic exposure poses fewer safety risks than systemic administration. In a randomized placebo-controlled study of subjects age 40 years with signs of skin aging, 36 subjects topically applied cream containing rapamycin (10µM) to one hand and a matching placebo cream to their other hand for eight months ¹³⁵. A total of 17 subjects completed the study, 13 subjects had skin biopsies and 8 subjects had sufficient biopsy material for analysis of p16 expression levels, the primary endpoint of the study. Rapamycin-treated as compared to placebo-treated subjects were observed to have a significant decrease in senescent cells as assessed by p16 expression, increased collagen VII protein expression, and clinical and histologically assessed improvements in skin appearance. Treated subjects did not have detectable levels of rapamycin in their blood and there were no treatment-related adverse events.

Forthcoming clinical trials

A number of small clinical trials focused on geroprotective outcomes have been proposed in the United States, the United Kingdom, and New Zealand over the past two years, and many have obtained funding and/or began enrolling subjects. While the details of each study differ, most are testing low or intermittent doses of rapamycin or everolimus in subjects over the age of 50, in the range of 0.5–1 mg/day to 5–6 mg/week. These studies are testing a range of outcomes, for a range of age-related diseases, including Alzheimer's disease, diabetes and sarcopenia; primary outcomes include disease-specific outcomes, including effects on cognitive performance, changes in insulin sensitivity, and changes in physical performance. Secondary outcomes for most planned studies include biomarkers of aging, including analysis of the DNA methylation clock; most studies are also assessing safety-related endpoints, including infections and metabolic disruption. A weakness of these planned studies is that even the largest will be studying a maximum of only 150 subjects, and the longest planned study is 18 months. Thus, while these studies are critical to gather data on the safety and effectiveness of these compounds as geroprotectors in humans, and interesting new data will likely become available over the next few years, comprehensive

follow-up with well-powered double-blind placebo-controlled randomized clinical trials will still be necessary.

Novel ways to inhibit mTORC1

Given the drawbacks of rapamycin and commercially available rapalogs, most notably the side-effects and the narrowness of any potential therapeutic window, there is intense interest in identifying new ways to selectively inhibit mTORC1. In the short-term, some dietary interventions have shown potential promise. In particular, since mTORC1 activity is regulated by amino acids, while mTORC2 activity is not, reducing the content of dietary protein or specific dietary amino acids that normally stimulate mTORC1 activity has been explored as a way promote healthy aging. Several studies have shown that restriction of protein or specific restriction of either methionine or one or more of the branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) reduces mTORC1 activity and extends lifespan in preclinical species ^{24,150–152}. Intriguingly, low blood levels of isoleucine are also associated with reduced mortality in humans ¹⁵³. Other potentially mTORC1-lowering diets include a ketogenic diet, which has been shown to extend the lifespan of mice while reducing mTORC1 activity ¹⁵⁴.

Of course, any dietary intervention will have issues with adherence, and pharmaceutical interventions can make mTOR inhibition to a much broader swath of the population. High resolution structures of mTORC1 have provided a previously unprecedented look at how mTORC1 is activated by nutrients and how it is inhibited by rapamycin ^{155–157}. High-resolution structures have also been generated of the complexes that regulate mTORC1 activity, including the TSC complex ¹⁵⁸, the Rag GTPases in complex with mTORC1 and Ragulator ^{159–161}, and the binding of leucine by Sestrin2 ¹⁶². As discussed below, this has led to potential new approaches and the development of new molecules to target mTORC1 selectively.

mTORC1 is able to phosphorylate its substrates only after allosteric interaction with Rheb-GTP, which activates mTORC1 by promoting the alignment of kinase-site residues ^{163,164}. In order to bring mTORC1 and Rheb-GTP together, two signaling pathways converge at the surface of the lysosome. The first of these pathways brings mTORC1 to the lysosomal surface, while a second pathway controls the GTP/GDP binding status of Rheb. The recruitment of mTORC1 to the lysosomal surface has been studied for over a decade, and has been reviewed in detail elsewhere ³; we have outlined the major regulator mechanisms in Figure 2. Briefly, mTORC1 is recruited to the lysosome by interacting with heterodimeric pairs of the Rag family of small GTPases ^{165,166}. In the presence of amino acids, RagA/B binds GTP and RagC/D binds GDP (e.g., RagAGTP/RagCGDP), permitting the Rags to interact with mTORC1 and localize it to the lysosome. The nucleotide binding status of the Rag GTPases is controlled by several different protein complexes with guanine nucleotide exchange factor (GEF) or GTPase-activating protein (GAP) activity for the Rag GTPases.

One of the best described systems for regulating the nucleotide binding status of the Rag GTPases is the activity of the GATOR complexes. GATOR1 functions as a GAP for RagA and RagB, while GATOR2 acts to inhibit the activity of GATOR1 ^{167,168}. The

GATOR complexes are regulated by levels of amino acids, cholesterol, and glycolytic intermediates, thus linking mTORC1 activity to nutrient availability. Three different amino acid sensors have been found that regulate mTORC1 activity by controlling GATOR1 or GATOR 2 activity. The Sestrin and CASTOR family of proteins link the availability of leucine and arginine, respectively, to the recruitment of mTORC1 to the lysosomal surface. Specifically, the Sestrin family of proteins binds to and inhibits the action of GATOR2 when leucine levels are low, permitting GATOR1 to inhibit the recruitment of mTORC1 to the lysosome. Binding of leucine by the Sestrins, particularly Sestrin 2, relieves this inhibition of GATOR2, resulting in the inhibition of GATOR1 GAP activity, and allowing mTORC1 to be recruited to the lysosome ^{162,169}.

The CASTOR proteins function similarly; when arginine levels are low, the CASTOR proteins bind to and inhibit GATOR2. When arginine levels are high, CASTOR proteins bind to arginine and release GATOR2, which allows the recruitment of mTORC1 to the lysosome ^{170,171}. The SAMTOR protein acts as an indirect sensor of methionine levels, inhibiting GATOR1 when levels of the methionine metabolite S-adenosylmethionine (SAM) are low (128). As SAM is extremely responsive to methionine levels, SAMTOR essentially functions as a sensor of methionine levels ¹⁷². It was recently shown that cholesterol signals through a G protein-coupled receptor, LYCHOS, which links cholesterol levels to mTORC1 activity by sequestering GATOR1 in the presence of cholesterol ¹⁷³. Finally, while glucose is not directly sensed by mTORC1, the glycolytic intermediate dihydroxyacetone phosphate (DHAP) is sensed via a GATOR-dependent mechanism ².

The regulation of RagC and RagD is somewhat less well understood, but the FLCN complex has been shown to act as a GAP for these GTPases ^{174–177}. The leucyl-tRNA synthetase (LRS) has been shown to function as a leucine sensor for mTORC1, acting as a GAP for RagD ¹⁷⁸. The mitochondrial threonyl-tRNA synthetase TARS2 functions as a threonine sensor, interacting with GTP-RagC to promote the GTP loading of RagA, likely via the recruitment of an unidentified RagA GEF ¹⁷⁹.

At the lysosomal surface, mTORC1 activity depends upon the interaction of the mTOR protein kinase with GTP-found Rheb. Cryo-electron microscopy has revealed that Rheb-GTP binds allosterically to mTOR, resulting in a global conformational change that allosterically realigns the active-site residues to enable substrate phosphorylation ¹⁵⁷. At the lysosomal surface the Tuberous Sclerosis Complex (TSC) inhibits mTORC1 activity by acting as a GAP for Rheb. A number of different factors have been reported to control the lysosomal localization of TSC, most notably insulin/PI3K/AKT signaling, which acts to phosphorylates TSC on multiple residues, causing TSC to depart from the lysosome and permitting Rheb to be loaded by GTP ¹⁸⁰. The localization of TSC has also been reported to be sensitive to amino acids, including arginine, although the mechanism by which this takes place is unclear ¹⁸¹. The Rag GTPases have also been reported to recruit TSC to lysosomes in response to amino acid restriction, possibly via a GATOR2 or Sestrin2-dependent mechanism ¹⁸².

Researchers are capitalizing on this knowledge to develop new but still early stage mTORC1-selective drugs based on molecular and structural information about mTORC1

activation (Figure 2). One of the best examples of these is the compound is NR1, which binds the mTORC1 activator Rheb and prevents it from allosterically activating mTORC1 ¹⁶⁴. The leucyl-tRNA synthetase (LRS) has been proposed to function as a leucine sensor for mTORC1, acting as a GAP for RagD, and several recent compounds, e.g. (S)-4-isobutyloxazolidin-2-one and BC-LI-0186, have been identified that inhibit mTORC1 by interfering with LRS sensing or activity ^{178,183–186}. BC-LI-0186 inhibits mTORC1 activity *in vivo* in mice and slows tumor growth in a mouse model of non-small cell lung cancer ¹⁸⁷. As outlined in Figure 2, small molecules that interfere with amino acid sensors or cholesterol sensors that normally signal nutrient availability could potentially be developed as mTORC1-selective inhibitors.

Newer rapalogs have been discovered that are more selective for mTORC1 than rapamycin. One company that screened a library of modified rapalogs identified a compound, DL001, with significantly greater selectivity for mTORC1 than rapamycin ¹²⁰. As expected, mice treated with DL001 had reduced glucose intolerance, dyslipidemia, and immune disruption as compared to mice treated in parallel with rapamycin ¹²⁰. Multiple other companies are also working to bring more mTORC1-selective rapalogs to the clinic ¹⁸⁸. Pre-clinical trials of one such compound, NV-20494, has reportedly shown efficacy in a mouse model of polycystic kidney disease and *in vitro* in human 3D cell culture ¹⁸⁹. Finally, Rapalink-1, a compound in which a mTOR kinase inhibitor is linked to rapamycin, and delivered at low dose, has shown the ability to inhibit mTORC1 kinase activity selectively ¹⁹⁰. A potential issue with this approach for diseases of aging is that mTOR kinase inhibitors result in broader mTORC1 inhibition than rapamycin⁵³, and it remains to be determined if mTOR kinase inhibitors recapitulate the lifespan benefits of rapamycin in preclinical species.

Conclusions

There is rapidly growing interest in using mTOR inhibitors to promote healthy aging and to treat, delay or reverse numerous age-related diseases. While there is incredibly strong pre-clinical evidence in mice that rapamycin can extend lifespan and healthspan, excitement about rapamycin has outpaced rigorous evidence that rapalogs are both safe and efficacious for diseases of aging in humans. There are many unanswered questions from the trials that have been conducted thus far, but a few general lessons can be taken from the clinical trials of mTOR inhibitors that have been performed thus far. As highlighted in Figure 3, in both humans and mice, treatment with low or intermittent doses of rapamycin or everolimus, or treatment of mice with the mTORC1-selective inhibitor DL001, is much better tolerated than the high doses of mTOR inhibitors currently approved for organ transplant and oncology indications, with fewer metabolic side effects and less immunosuppression. In addition, low doses of mTOR inhibitors have been shown to have some beneficial effects on the function of aging human organ systems, in particular the immune system.

There remains much work ahead to bring mTOR inhibitors into the clinic for age-related conditions, and as highlighted in Figure 3, many open questions remain. While the safety profile of low-dose rapamycin and rapalogs in humans appears promising, the long-term safety and efficacy of low-dose regimens remains to be determined. A much better understanding is needed of the specific dose and duration of mTOR inhibitors that both

maximize efficacy and minimize risk. In humans, higher doses (e.g., 3 mg/day) of mTOR inhibitors such as everolimus inhibit T-cell function, and are therefore are used to suppress immune-mediated organ transplant rejection in patients. In contrast, a 6-fold lower dose of everolimus for 6 weeks was associated with improved immune function as assessed by vaccination response. Thus, both dose and duration may contribute to whether mTOR inhibition has positive or negative effects on healthy aging; but generally speaking, the lower the dose of a drug, the fewer expected side effects. Moreover, animal dosing regimens that extend lifespan cannot be directly translated to human doses due to differences between species in factors such as bioavailability, half-life, metabolism, plasma protein binding, and tissue distribution. These factors need to be taken into consideration when estimating the human doses that may extend healthspan or lifespan.

There is also a need to identify both the specific aging population and the specific aging-related conditions which show the greatest benefit from a safe mTOR inhibitor regimen. An important question for future research is discovering why mTOR inhibitors have sex-specific or sex-biased benefits, as pharmacological treatment with rapamycin or genetic inhibition of insulin-IGF1/PI3K/Akt/mTOR/S6K1 signaling typically (but not always) extends the lifespan of female mice a greater amount than it extends the lifespan of male mice ^{191–193}. We also need to define new regulatory paths for aging-related conditions such as frailty and sarcopenia, and to develop new mTOR inhibitors that improve on the safety and efficacy of currently approved mTOR inhibitors. Over the next five years, we expect results from a rapidly expanding list of human clinical trials as well as work in canines and non-human primates to shed light on the viability of mTOR inhibition as a therapy for aging-related conditions. New mTORC1-specific molecules may help widen the therapeutic window for rapalogs, limiting undesirable side effects resulting in whole or in part from inhibition of mTORC2. Collectively, we expect that researchers will soon be able to determine if clinicians can safely and effectively bring mTOR inhibitors to the geriatric bedside.

ACKNOWLEDGEMENTS

We thank Dr. Mirre Simons for suggesting additional references to include in our tables of rapamycin lifespan and survival studies, Dr. Adam Salmon for sharing information about his in-progress studies, and many of our colleagues for providing additional information about their published studies and current and future plans. The Lamming laboratory is supported in part by the NIH/NIA (AG056771, AG062328, AG061635 and AG076941), the NIH/NIDDK (DK125859), and startup and other funds from the University of Wisconsin-Madison School of Medicine and Public Health and Department of Medicine to D.W.L. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

References

- Castellano BM et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science 355, 1306–1311, doi:10.1126/science.aag1417 (2017). [PubMed: 28336668]
- 2. Orozco JM et al. Dihydroxyacetone phosphate signals glucose availability to mTORC1. Nat Metab 2, 893–901, doi:10.1038/s42255-020-0250-5 (2020). [PubMed: 32719541]
- 3. Lamming DW & Bar-Peled L Lysosome: The metabolic signaling hub. Traffic 20, 27–38, doi:10.1111/tra.12617 (2019). [PubMed: 30306667]
- Simcox J & Lamming DW The central moTOR of metabolism. Dev Cell 57, 691–706, doi:10.1016/j.devcel.2022.02.024 (2022). [PubMed: 35316619]

5. Kaeberlein M et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196, doi:10.1126/science.1115535 (2005). [PubMed: 16293764]

- 6. Kapahi P et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14, 885–890, doi:10.1016/j.cub.2004.03.059 (2004). [PubMed: 15186745]
- Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK & Fields S Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20, 174–184, doi:10.1101/ gad.1381406 (2006). [PubMed: 16418483]
- 8. Vellai T et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620, doi:10.1038/426620a (2003).
- 9. Hansen M et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95–110, doi:10.1111/j.1474-9726.2006.00267.x (2007). [PubMed: 17266679]
- Syntichaki P, Troulinaki K & Tavernarakis N eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445, 922–926, doi:10.1038/nature05603 (2007). [PubMed: 17277769]
- 11. Medvedik O, Lamming DW, Kim KD & Sinclair DA MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5, e261, doi:10.1371/journal.pbio.0050261 (2007). [PubMed: 17914901]
- 12. Sharp ZD & Bartke A Evidence for down-regulation of phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J Gerontol A Biol Sci Med Sci 60, 293–300, doi:10.1093/gerona/60.3.293 (2005). [PubMed: 15860463]
- 13. Selman C et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144, doi:10.1126/science.1177221 (2009). [PubMed: 19797661]
- 14. Arif A et al. EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. Nature 542, 357–361, doi:10.1038/nature21380 (2017). [PubMed: 28178239]
- 15. Tsai S et al. Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity. J Clin Invest 125, 2952–2964, doi:10.1172/JCI77361 (2015). [PubMed: 26121750]
- 16. Tsai SY et al. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell reports 16, 1903–1914, doi:10.1016/j.celrep.2016.07.029 (2016). [PubMed: 27498874]
- 17. Lamming DW et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643, doi:10.1126/science.1215135 (2012). [PubMed: 22461615]
- 18. Wu JJ et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell reports 4, 913–920, doi:10.1016/j.celrep.2013.07.030 (2013). [PubMed: 23994476]
- 19. Zhang HM, Diaz V, Walsh ME & Zhang Y Moderate lifelong overexpression of tuberous sclerosis complex 1 (TSC1) improves health and survival in mice. Scientific reports 7, 834, doi:10.1038/s41598-017-00970-7 (2017). [PubMed: 28400571]
- 20. Powolny AA, Singh SV, Melov S, Hubbard A & Fisher AL The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp Gerontol 46, 441–452, doi:10.1016/j.exger.2011.01.005 (2011). [PubMed: 21296648]
- 21. Robida-Stubbs S et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15, 713–724, doi:10.1016/j.cmet.2012.04.007 (2012). [PubMed: 22560223]
- 22. Bjedov I et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11, 35–46, doi:10.1016/j.cmet.2009.11.010 (2010). [PubMed: 20074526]
- 23. Rice KM, Kinnard RS, Wright GL & Blough ER Aging alters vascular mechanotransduction: pressure-induced regulation of p70S6k in the rat aorta. Mech Ageing Dev 126, 1213–1222, doi:10.1016/j.mad.2005.07.001 (2005). [PubMed: 16087221]

24. Solon-Biet SM et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 19, 418–430, doi:10.1016/j.cmet.2014.02.009 (2014). [PubMed: 24606899]

- 25. Wilkinson JE et al. Rapamycin slows aging in mice. Aging Cell 11, 675–682, doi:10.1111/j.1474-9726.2012.00832.x (2012). [PubMed: 22587563]
- 26. Lamming DW, Ye L, Sabatini DM & Baur JA Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123, 980–989, doi:10.1172/JCI64099 (2013). [PubMed: 23454761]
- 27. Vezina C, Kudelski A & Sehgal SN Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28, 721–726, doi:10.7164/antibiotics.28.721 (1975). [PubMed: 1102508]
- 28. Sarbassov DD et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14, 1296–1302, doi:10.1016/j.cub.2004.06.054 (2004). [PubMed: 15268862]
- 29. Scaiola A et al. The 3.2-A resolution structure of human mTORC2. Sci Adv 6, doi:10.1126/sciadv.abc1251 (2020).
- 30. Gaubitz C et al. Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Mol Cell 58, 977–988, doi:10.1016/j.molcel.2015.04.031 (2015). [PubMed: 26028537]
- 31. Yip CK, Murata K, Walz T, Sabatini DM & Kang SA Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 38, 768–774, doi:10.1016/j.molcel.2010.05.017 (2010). [PubMed: 20542007]
- 32. Sarbassov DD et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22, 159–168, doi:10.1016/j.molcel.2006.03.029 (2006). [PubMed: 16603397]
- 33. Harrison DE et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395, doi:10.1038/nature08221 (2009). [PubMed: 19587680]
- 34. Hahn O et al. A nutritional memory effect counteracts benefits of dietary restriction in old mice. Nat Metab 1, 1059–1073, doi:10.1038/s42255-019-0121-0 (2019). [PubMed: 31742247]
- Flurkey K, Astle CM & Harrison DE Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 65, 1275–1284, doi:10.1093/ gerona/glq155 (2010). [PubMed: 20819793]
- 36. Miller RA et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66, 191–201, doi:10.1093/gerona/glq178 (2011). [PubMed: 20974732]
- 37. Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE & Lamming DW Intermittent Administration of Rapamycin Extends the Life Span of Female C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 71, 876–881, doi:10.1093/gerona/glw064 (2016). [PubMed: 27091134]
- 38. Bitto A et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. eLife 5, doi:10.7554/eLife.16351 (2016).
- 39. Chen C, Liu Y, Liu Y & Zheng P mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2, ra75, doi:10.1126/scisignal.2000559 (2009). [PubMed: 19934433]
- 40. Anisimov VN et al. Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol 176, 2092–2097, doi:10.2353/ajpath.2010.091050 (2010). [PubMed: 20363920]
- 41. Anisimov VN et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10, 4230–4236, doi:10.4161/cc.10.24.18486 (2011). [PubMed: 22107964]
- 42. Shindyapina AV et al. Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna. Sci Adv 8, eabo5482, doi:10.1126/sciadv.abo5482 (2022). [PubMed: 36112674]
- 43. Aiello G et al. Transient rapamycin treatment during developmental stage extends lifespan in Mus musculus and Drosophila melanogaster. EMBO Rep 23, e55299, doi:10.15252/embr.202255299 (2022). [PubMed: 35796299]
- 44. Strong R et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15, 872–884, doi:10.1111/acel.12496 (2016). [PubMed: 27312235]

45. Strong R et al. Lifespan benefits for the combination of rapamycin plus acarbose and for captopril in genetically heterogeneous mice. Aging Cell 21, e13724, doi:10.1111/acel.13724 (2022). [PubMed: 36179270]

- 46. Moloney PB, Cavalleri GL & Delanty N Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun 3, fcab222, doi:10.1093/braincomms/fcab222 (2021). [PubMed: 34632383]
- 47. Sills AM, Artavia JM, DeRosa BD, Ross CN & Salmon AB Long-term treatment with the mTOR inhibitor rapamycin has minor effect on clinical laboratory markers in middle-aged marmosets. Am J Primatol 81, e22927, doi:10.1002/ajp.22927 (2019). [PubMed: 30311681]
- 48. Urfer SR et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. Geroscience 39, 117–127, doi:10.1007/s11357-017-9972-z (2017). [PubMed: 28374166]
- 49. Creevy KE, Akey JM, Kaeberlein M, Promislow DEL & Dog Aging Project C An open science study of ageing in companion dogs. Nature 602, 51–57, doi:10.1038/s41586-021-04282-9 (2022). [PubMed: 35110758]
- 50. Orgel LE The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci U S A 49, 517–521, doi:10.1073/pnas.49.4.517 (1963). [PubMed: 13940312]
- 51. Ke Z et al. Translation fidelity coevolves with longevity. Aging Cell 16, 988–993, doi:10.1111/acel.12628 (2017). [PubMed: 28707419]
- 52. Mieulet V et al. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am J Physiol Cell Physiol 293, C712–722, doi:10.1152/ajpcell.00499.2006 (2007). [PubMed: 17494629]
- 53. Thoreen CC et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284, 8023–8032, doi:10.1074/jbc.M900301200 (2009). [PubMed: 19150980]
- 54. Pedersen S, Celis JE, Nielsen J, Christiansen J & Nielsen FC Distinct repression of translation by wortmannin and rapamycin. Eur J Biochem 247, 449–456, doi:10.1111/j.1432-1033.1997.00449.x (1997). [PubMed: 9249059]
- 55. Thoreen CC et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113, doi:10.1038/nature11083 (2012). [PubMed: 22552098]
- 56. Jefferies HB et al. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J 16, 3693–3704, doi:10.1093/emboj/16.12.3693 (1997). [PubMed: 9218810]
- 57. Steffen KK et al. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133, 292–302, doi:10.1016/j.cell.2008.02.037 (2008). [PubMed: 18423200]
- 58. Park Y, Reyna-Neyra A, Philippe L & Thoreen CC mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4. Cell reports 19, 1083–1090, doi:10.1016/j.celrep.2017.04.042 (2017). [PubMed: 28494858]
- 59. Byles V et al. Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin. Molecular metabolism 53, 101309, doi:10.1016/j.molmet.2021.101309 (2021). [PubMed: 34303878]
- 60. Condon KJ et al. Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. Proc Natl Acad Sci U S A 118, doi:10.1073/ pnas.2022120118 (2021).
- 61. De Sousa-Coelho AL, Marrero PF & Haro D Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443, 165–171, doi:10.1042/BJ20111748 (2012). [PubMed: 22233381]
- 62. Kim KH et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19, 83–92, doi:10.1038/nm.3014 (2013). [PubMed: 23202295]
- 63. Arif A et al. Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol Cell 35, 164–180, doi:10.1016/j.molcel.2009.05.028 (2009). [PubMed: 19647514]

64. Guo M, Yang XL & Schimmel P New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 11, 668–674, doi:10.1038/nrm2956 (2010). [PubMed: 20700144]

- 65. Alvers AL et al. Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5, 847–849, doi:10.4161/auto.8824 (2009). [PubMed: 19458476]
- 66. Hars ES et al. Autophagy regulates ageing in C. elegans. Autophagy 3, 93–95, doi:3636 [pii] (2007). [PubMed: 17204841]
- 67. Lionaki E, Markaki M & Tavernarakis N Autophagy and ageing: Insights from invertebrate model organisms. Ageing Res Rev, doi:S1568–1637(12)00082–7[pii] 10.1016/j.arr.2012.05.001 (2012).
- 68. Hansen M et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4, e24, doi:10.1371/journal.pgen.0040024 (2008). [PubMed: 18282106]
- 69. Cuervo AM et al. Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1, 131–140 (2005). [PubMed: 16874025]
- 70. Han X et al. Influence of long-term caloric restriction on myocardial and cardiomyocyte contractile function and autophagy in mice. J Nutr Biochem, doi:S0955–2863(11)00307-X[pii]10.1016/j.jnutbio.2011.11.002 (2012).
- Kume S et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120, 1043–1055, doi:10.1172/ JCI41376 (2010). [PubMed: 20335657]
- 72. Wang M & Miller RA Fibroblasts from long-lived mutant mice exhibit increased autophagy and lower TOR activity after nutrient deprivation or oxidative stress. Aging Cell 11, 668–674, doi:10.1111/j.1474-9726.2012.00833.x (2012). [PubMed: 22577861]
- Kim J, Kundu M, Viollet B & Guan KL AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13, 132–141, doi:10.1038/ncb2152 (2011). [PubMed: 21258367]
- 74. Hosokawa N et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20, 1981–1991, doi:10.1091/mbc.e08-12-1248 (2009). [PubMed: 19211835]
- 75. Dossou AS & Basu A The Emerging Roles of mTORC1 in Macromanaging Autophagy. Cancers (Basel) 11, doi:10.3390/cancers11101422 (2019).
- 76. Zhang C & Cuervo AM Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14, 959–965, doi:10.1038/nm.1851 (2008). [PubMed: 18690243]
- 77. Hua Y et al. Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Res Cardiol 106, 1173–1191, doi:10.1007/s00395-011-0222-8 (2011). [PubMed: 21901288]
- 78. Brandhorst S et al. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab 22, 86–99, doi:10.1016/j.cmet.2015.05.012 (2015). [PubMed: 26094889]
- 79. Majumder S, Richardson A, Strong R & Oddo S Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One 6, e25416, doi:10.1371/journal.pone.0025416 (2011). [PubMed: 21980451]
- 80. Spilman P et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 5, e9979, doi:10.1371/journal.pone.0009979 (2010). [PubMed: 20376313]
- 81. Yousefzadeh MJ et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105, doi:10.1038/s41586-021-03547-7 (2021). [PubMed: 33981041]
- 82. Mannick JB et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med 6, 268ra179, doi:10.1126/scitranslmed.3009892 (2014).
- 83. Mannick JB et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med 10, doi:10.1126/scitranslmed.aaq1564 (2018).
- 84. Mannick JB et al. Targeting the biology of ageing with mTOR inhibitors to improve immune function in older adults: phase 2b and phase 3 randomised trials. Lancet Healthy Longev 2, e250–e262, doi:10.1016/S2666-7568(21)00062-3 (2021). [PubMed: 33977284]

85. Goldberg EL, Smithey MJ, Lutes LK, Uhrlaub JL & Nikolich-Zugich J Immune memory-boosting dose of rapamycin impairs macrophage vesicle acidification and curtails glycolysis in effector CD8 cells, impairing defense against acute infections. Journal of immunology 193, 757–763, doi:10.4049/jimmunol.1400188 (2014).

- 86. Phillips EJ & Simons MJP Rapamycin not dietary restriction improves resilience against pathogens: a meta-analysis. Geroscience 45, 1263–1270, doi:10.1007/s11357-022-00691-4 (2023). [PubMed: 36399256]
- 87. Neff F et al. Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest 123, 3272–3291, doi:10.1172/JCI67674 (2013). [PubMed: 23863708]
- 88. Zhou J et al. mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci U S A 106, 7840–7845, doi:10.1073/pnas.0901854106 (2009). [PubMed: 19416884]
- 89. Murakami M et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24, 6710–6718, doi:10.1128/MCB.24.15.6710-6718.2004 (2004). [PubMed: 15254238]
- 90. Lee KW et al. Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev 19, 557–568, doi:10.1089/scd.2009.0147 (2010). [PubMed: 19642865]
- 91. Yilmaz OH et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482, doi:10.1038/nature04703 (2006). [PubMed: 16598206]
- 92. Greenberger S et al. Rapamycin suppresses self-renewal and vasculogenic potential of stem cells isolated from infantile hemangioma. The Journal of investigative dermatology 131, 2467–2476, doi:10.1038/jid.2011.300 (2011). [PubMed: 21938011]
- 93. Xie LX et al. Rapamycin inhibited the function of lung CSCs via SOX2. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 37, 4929–4937, doi:10.1007/s13277-015-4341-y (2016). [PubMed: 26526583]
- 94. Wang Y et al. Rapamycin inhibits FBXW7 loss-induced epithelial-mesenchymal transition and cancer stem cell-like characteristics in colorectal cancer cells. Biochem Biophys Res Commun 434, 352–356, doi:10.1016/j.bbrc.2013.03.077 (2013). [PubMed: 23558291]
- 95. Jang YY & Sharkis SJ A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063, doi:10.1182/blood-2007-05-087759 (2007). [PubMed: 17595331]
- 96. Yilmaz OH et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495, doi:10.1038/nature11163 (2012). [PubMed: 22722868]
- 97. Baar EL, Carbajal KA, Ong IM & Lamming DW Sex- and tissue-specific changes in mTOR signaling with age in C57BL/6J mice. Aging Cell 15, 155–166, doi:10.1111/acel.12425 (2016). [PubMed: 26695882]
- 98. Markofski MM et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol 65, 1–7, doi:10.1016/j.exger.2015.02.015 (2015). [PubMed: 25735236]
- 99. White Z, White RB, McMahon C, Grounds MD & Shavlakadze T High mTORC1 signaling is maintained, while protein degradation pathways are perturbed in old murine skeletal muscles in the fasted state. Int J Biochem Cell Biol 78, 10–21, doi:10.1016/j.biocel.2016.06.012 (2016). [PubMed: 27343428]
- 100. Joseph GA et al. Partial Inhibition of mTORC1 in Aged Rats Counteracts the Decline in Muscle Mass and Reverses Molecular Signaling Associated with Sarcopenia. Mol Cell Biol 39, doi:10.1128/MCB.00141-19 (2019).
- 101. Ham DJ et al. The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nature communications 11, 4510, doi:10.1038/s41467-020-18140-1 (2020).
- 102. An WL et al. Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. Am J Pathol 163, 591–607, doi:10.1016/S0002-9440(10)63687-5 (2003). [PubMed: 12875979]

103. Perluigi M et al. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta 1842, 1144–1153, doi:10.1016/j.bbadis.2014.04.007 (2014). [PubMed: 24735980]

- 104. Tramutola A et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 133, 739–749, doi:10.1111/jnc.13037 (2015). [PubMed: 25645581]
- 105. Caccamo A, Majumder S, Richardson A, Strong R & Oddo S Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285, 13107–13120, doi:10.1074/jbc.M110.100420 (2010). [PubMed: 20178983]
- 106. Houtkooper RH et al. The metabolic footprint of aging in mice. Scientific reports 1, 134, doi:10.1038/srep00134 (2011). [PubMed: 22355651]
- 107. Leontieva OV, Paszkiewicz GM & Blagosklonny MV Fasting levels of hepatic p-S6 are increased in old mice. Cell Cycle 13, 2656–2659, doi:10.4161/15384101.2014.949150 (2014). [PubMed: 25486351]
- 108. Calhoun C et al. Senescent Cells Contribute to the Physiological Remodeling of Aged Lungs. J Gerontol A Biol Sci Med Sci 71, 153–160, doi:10.1093/gerona/glu241 (2016). [PubMed: 25568097]
- 109. Blagosklonny MV Rapamycin treatment early in life reprograms aging: hyperfunction theory and clinical practice. Aging (Albany NY) 14, 8140–8149, doi:10.18632/aging.204354 (2022). [PubMed: 36332147]
- 110. Wang R et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16, 564–574, doi:10.1111/acel.12587 (2017). [PubMed: 28371119]
- 111. Soukas AA, Kane EA, Carr CE, Melo JA & Ruvkun G Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 23, 496–511, doi:10.1101/gad.1775409 (2009). [PubMed: 19240135]
- 112. Mizunuma M, Neumann-Haefelin E, Moroz N, Li Y & Blackwell TK mTORC2-SGK-1 acts in two environmentally responsive pathways with opposing effects on longevity. Aging Cell 13, 869–878, doi:10.1111/acel.12248 (2014). [PubMed: 25040785]
- 113. Chang K et al. TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2. Autophagy 16, 1807–1822, doi:10.1080/15548627.2019.1704117 (2020). [PubMed: 31884871]
- 114. Yu D et al. Calorie-Restriction-Induced Insulin Sensitivity Is Mediated by Adipose mTORC2 and Not Required for Lifespan Extension. Cell reports 29, 236–248 e233, doi:10.1016/j.celrep.2019.08.084 (2019). [PubMed: 31577953]
- 115. Chellappa K et al. Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging Cell 18, e13014, doi:10.1111/acel.13014 (2019). [PubMed: 31373126]
- 116. Arriola Apelo SI et al. Ovariectomy uncouples lifespan from metabolic health and reveals a sex-hormone-dependent role of hepatic mTORC2 in aging. eLife 9, doi:10.7554/eLife.56177 (2020).
- 117. Lamming DW et al. Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell 13, 911–917, doi:10.1111/acel.12256 (2014). [PubMed: 25059582]
- 118. Garratt M et al. Male lifespan extension with 17-alpha estradiol is linked to a sex-specific metabolomic response modulated by gonadal hormones in mice. Aging Cell 17, e12786, doi:10.1111/acel.12786 (2018). [PubMed: 29806096]
- 119. Dominick G et al. Regulation of mTOR activity in Snell dwarf and GH receptor gene-disrupted mice. Endocrinology 156, 565–575, doi:10.1210/en.2014-1690 (2015). [PubMed: 25456069]
- 120. Schreiber KH et al. A novel rapamycin analog is highly selective for mTORC1 in vivo. Nature communications 10, 3194, doi:10.1038/s41467-019-11174-0 (2019).
- 121. Sadtler K et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352, 366–370, doi:10.1126/science.aad9272 (2016). [PubMed: 27081073]

122. Festuccia WT, Pouliot P, Bakan I, Sabatini DM & Laplante M Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS One 9, e95432, doi:10.1371/journal.pone.0095432 (2014). [PubMed: 24740015]

- 123. Katholnig K et al. Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis. JCI Insight 4, doi:10.1172/jci.insight.124164 (2019).
- 124. Yang C et al. mTORC1 and mTORC2 differentially promote natural killer cell development. eLife 7, doi:10.7554/eLife.35619 (2018).
- 125. Hallowell RW et al. mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis. Nature communications 8, 14208, doi:10.1038/ncomms14208 (2017).
- 126. Zhang L et al. Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner. Cell reports 14, 1206–1217, doi:10.1016/j.celrep.2015.12.095 (2016). [PubMed: 26804903]
- 127. Powell JD, Pollizzi KN, Heikamp EB & Horton MR Regulation of immune responses by mTOR. Annual review of immunology 30, 39–68, doi:10.1146/annurev-immunol-020711-075024 (2012).
- 128. Guertin DA et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15, 148–159, doi:10.1016/j.ccr.2008.12.017 (2009). [PubMed: 19185849]
- 129. Fang X et al. LINC00998 functions as a novel tumor suppressor in acute myeloid leukemia via regulating the ZFP36 ring finger protein/mammalian target of rapamycin complex 2 axis. Bioengineered 12, 10363–10372, doi:10.1080/21655979.2021.1996506 (2021). [PubMed: 34699314]
- 130. Tian L et al. mTORC2 regulates ribonucleotide reductase to promote DNA replication and gemcitabine resistance in non-small cell lung cancer. Neoplasia 23, 643–652, doi:10.1016/j.neo.2021.05.007 (2021). [PubMed: 34126361]
- 131. Ding Y et al. Vimentin loss promotes cancer proliferation through up-regulating Rictor/AKT/beta-catenin signaling pathway. Exp Cell Res 405, 112666, doi:10.1016/j.yexcr.2021.112666 (2021). [PubMed: 34052237]
- 132. Johnson SC et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528, doi:10.1126/science.1244360 (2013). [PubMed: 24231806]
- 133. Martin-Perez M et al. PKC downregulation upon rapamycin treatment attenuates mitochondrial disease. Nat Metab 2, 1472–1481, doi:10.1038/s42255-020-00319-x (2020). [PubMed: 33324011]
- 134. Walters HE, Deneka-Hannemann S & Cox LS Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging (Albany NY) 8, 231–244, doi:10.18632/aging.100872 (2016). [PubMed: 26851731]
- 135. Chung CL et al. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. Geroscience 41, 861–869, doi:10.1007/s11357-019-00113-y (2019). [PubMed: 31761958]
- 136. Tabernero J et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26, 1603–1610, doi:10.1200/JCO.2007.14.5482 (2008). [PubMed: 18332469]
- 137. Novartis. FULL PRESCRIBING INFORMATION Zortress https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021560s000lbl.pdf (2010).
- 138. Pfizer. FULL PRESCRIBING INFORMATION Rapamune, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021083s059,021110s076lbl.pdf (2017).

140. Krueger DA et al. Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology 87, 2408–2415, doi:10.1212/WNL.000000000003400 (2016). [PubMed: 27815402]

- 141. Johnston O, Rose CL, Webster AC & Gill JS Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 19, 1411–1418, doi:10.1681/ASN.2007111202 (2008). [PubMed: 18385422]
- 142. Firpi RJ et al. Sirolimus-induced hyperlipidaemia in liver transplant recipients is not dose-dependent. Aliment Pharmacol Ther 19, 1033–1039, doi:10.1111/j.1365-2036.2004.01923.x (2004). [PubMed: 15113371]
- 143. Bissler JJ et al. Everolimus long-term use in patients with tuberous sclerosis complex: Four-year update of the EXIST-2 study. PLoS One 12, e0180939, doi:10.1371/journal.pone.0180939 (2017). [PubMed: 28792952]
- 144. Arriola Apelo SI et al. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell 15, 28–38, doi:10.1111/acel.12405 (2016). [PubMed: 26463117]
- 145. Zuber J et al. Sirolimus may reduce fertility in male renal transplant recipients. Am J Transplant 8, 1471–1479, doi:10.1111/j.1600-6143.2008.02267.x (2008). [PubMed: 18510638]
- 146. Huyghe E et al. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview. Transpl Int 20, 305–311, doi:10.1111/j.1432-2277.2006.00423.x (2007). [PubMed: 17326771]
- 147. File TM Viral respiratory tract infections: increasing importance and a new pathogen. Curr Opin Infect Dis 16, 125–127, doi:10.1097/00001432-200304000-00008 (2003). [PubMed: 12734444]
- 148. Jain S et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med 373, 415–427, doi:10.1056/NEJMoa1500245 (2015). [PubMed: 26172429]
- 149. Kraig E et al. A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: Immunological, physical performance, and cognitive effects. Exp Gerontol 105, 53–69, doi:10.1016/j.exger.2017.12.026 (2018). [PubMed: 29408453]
- 150. Miller RA et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125, doi:10.1111/j.1474-9726.2005.00152.x (2005). [PubMed: 15924568]
- 151. Green CL et al. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. bioRxiv, 2022.2010.2006.511051, doi:10.1101/2022.10.06.511051 (2022).
- 152. Richardson NE et al. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. Nat Aging 1, 73–86, doi:10.1038/s43587-020-00006-2 (2021). [PubMed: 33796866]
- 153. Deelen J et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nature communications 10, 3346, doi:10.1038/s41467-019-11311-9 (2019).
- 154. Roberts MN et al. A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice. Cell Metab 26, 539–546 e535, doi:10.1016/j.cmet.2017.08.005 (2017). [PubMed: 28877457]
- 155. Aylett CH et al. Architecture of human mTOR complex 1. Science 351, 48–52, doi:10.1126/science.aaa3870 (2016). [PubMed: 26678875]
- 156. Yang H et al. 4.4 A Resolution Cryo-EM structure of human mTOR Complex 1. Protein & cell 7, 878–887, doi:10.1007/s13238-016-0346-6 (2016). [PubMed: 27909983]
- 157. Yang H et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552, 368–373, doi:10.1038/nature25023 (2017). [PubMed: 29236692]
- 158. Ramlaul K et al. Architecture of the Tuberous Sclerosis Protein Complex. J Mol Biol 433, 166743, doi:10.1016/j.jmb.2020.166743 (2021). [PubMed: 33307091]
- 159. Shen K et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 556, 64–69, doi:10.1038/nature26158 (2018). [PubMed: 29590090]
- 160. Anandapadamanaban M et al. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 366, 203–210, doi:10.1126/science.aax3939 (2019). [PubMed: 31601764]

161. Rogala KB et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 366, 468–475, doi:10.1126/science.aay0166 (2019). [PubMed: 31601708]

- 162. Saxton RA et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351, 53–58, doi:10.1126/science.aad2087 (2016). [PubMed: 26586190]
- 163. Long X, Lin Y, Ortiz-Vega S, Yonezawa K & Avruch J Rheb binds and regulates the mTOR kinase. Curr Biol 15, 702–713, doi:10.1016/j.cub.2005.02.053 (2005). [PubMed: 15854902]
- 164. Mahoney SJ et al. A small molecule inhibitor of Rheb selectively targets mTORC1 signaling. Nature communications 9, 548, doi:10.1038/s41467-018-03035-z (2018).
- 165. Sancak Y et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501, doi:10.1126/science.1157535 (2008). [PubMed: 18497260]
- 166. Kim E, Goraksha-Hicks P, Li L, Neufeld TP & Guan KL Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10, 935–945, doi:10.1038/ncb1753 (2008). [PubMed: 18604198]
- 167. Panchaud N, Peli-Gulli MP & De Virgilio C Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 6, ra42, doi:10.1126/scisignal.2004112 (2013). [PubMed: 23716719]
- 168. Bar-Peled L et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106, doi:10.1126/science.1232044 (2013). [PubMed: 23723238]
- 169. Wolfson RL et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48, doi:10.1126/science.aab2674 (2016). [PubMed: 26449471]
- 170. Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU & Sabatini DM Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536, 229–233, doi:10.1038/nature19079 (2016). [PubMed: 27487210]
- 171. Chantranupong L et al. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell 165, 153–164, doi:10.1016/j.cell.2016.02.035 (2016). [PubMed: 26972053]
- 172. Haws SA et al. Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Mol Cell 78, 210–223 e218, doi:10.1016/j.molcel.2020.03.004 (2020). [PubMed: 32208170]
- 173. Shin HR et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 377, 1290–1298, doi:10.1126/science.abg6621 (2022). [PubMed: 36007018]
- 174. Tsun ZY et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52, 495–505, doi:10.1016/j.molcel.2013.09.016 (2013). [PubMed: 24095279]
- 175. Meng J & Ferguson SM GATOR1-dependent recruitment of FLCN-FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids. J Cell Biol 217, 2765–2776, doi:10.1083/jcb.201712177 (2018). [PubMed: 29848618]
- 176. Martinez-Carreres L et al. CDK4 Regulates Lysosomal Function and mTORC1 Activation to Promote Cancer Cell Survival. Cancer Res 79, 5245–5259, doi:10.1158/0008-5472.CAN-19-0708 (2019). [PubMed: 31395606]
- 177. Jansen RM et al. Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation. Sci Adv 8, eadd2926, doi:10.1126/sciadv.add2926 (2022). [PubMed: 36103527]
- 178. Han JM et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424, doi:10.1016/j.cell.2012.02.044 (2012). [PubMed: 22424946]
- 179. Kim SH et al. Mitochondrial Threonyl-tRNA Synthetase TARS2 Is Required for Threonine-Sensitive mTORC1 Activation. Mol Cell 81, 398–407 e394, doi:10.1016/j.molcel.2020.11.036 (2021). [PubMed: 33340489]
- 180. Menon S et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785, doi:10.1016/j.cell.2013.11.049 (2014). [PubMed: 24529379]
- 181. Carroll B et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. eLife 5, doi:10.7554/eLife.11058 (2016).

182. Yang S et al. The Rag GTPase Regulates the Dynamic Behavior of TSC Downstream of Both Amino Acid and Growth Factor Restriction. Dev Cell 55, 272–288 e275, doi:10.1016/j.devcel.2020.08.006 (2020). [PubMed: 32898476]

- 183. Yoon S et al. Discovery of Leucyladenylate Sulfamates as Novel Leucyl-tRNA Synthetase (LRS)-Targeted Mammalian Target of Rapamycin Complex 1 (mTORC1) Inhibitors. J Med Chem 59, 10322–10328, doi:10.1021/acs.jmedchem.6b01190 (2016). [PubMed: 27933890]
- 184. Yoon S et al. Discovery of (S)-4-isobutyloxazolidin-2-one as a novel leucyl-tRNA synthetase (LRS)-targeted mTORC1 inhibitor. Bioorg Med Chem Lett 26, 3038–3041, doi:10.1016/j.bmcl.2016.05.011 (2016). [PubMed: 27209231]
- 185. Yoon S et al. Discovery of simplified leucyladenylate sulfamates as novel leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors. Bioorg Med Chem 25, 4145–4152, doi:10.1016/j.bmc.2017.06.002 (2017). [PubMed: 28625715]
- 186. Kim JH et al. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction. Nature communications 8, 732, doi:10.1038/s41467-017-00785-0 (2017).
- 187. Kim EY et al. Therapeutic effects of the novel Leucyl-tRNA synthetase inhibitor BC-LI-0186 in non-small cell lung cancer. Ther Adv Med Oncol 11, 1758835919846798, doi:10.1177/1758835919846798 (2019). [PubMed: 31205503]
- 188. Sullivan D New mTOR player storms into longevity. (2022). https://longevity.technology/news/new-mtor-player-storms-into-longevity/.
- 189. Mazin A Lessons from Longevity Therapeutics 2021 Part 4, https://www.lifespan.io/news/lessons-from-longevity-therapeutics-2021-part-4/ (2021).
- 190. Fan Q et al. A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell 31, 424–435, doi:10.1016/j.ccell.2017.01.014 (2017). [PubMed: 28292440]
- 191. Lamming DW Diminished mTOR signaling: a common mode of action for endocrine longevity factors. SpringerPlus 3, 735, doi:10.1186/2193-1801-3-735 (2014). [PubMed: 25674466]
- 192. Mao K et al. Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nature communications 9, 2394, doi:10.1038/s41467-018-04805-5 (2018).
- 193. Strong R et al. Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects. Aging Cell 19, e13269, doi:10.1111/acel.13269 (2020). [PubMed: 33145977]
- 194. Zhang Y et al. Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci 69, 119–130, doi:10.1093/gerona/glt056 (2014). [PubMed: 23682161]
- 195. Miller RA et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13, 468–477, doi:10.1111/acel.12194 (2014). [PubMed: 24341993]
- 196. Fok WC et al. Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS One 9, e83988, doi:10.1371/journal.pone.0083988 (2014). [PubMed: 24409289]
- 197. Ferrara-Romeo I et al. The mTOR pathway is necessary for survival of mice with short telomeres. Nature communications 11, 1168, doi:10.1038/s41467-020-14962-1 (2020).
- 198. Fang Y et al. Effects of rapamycin on growth hormone receptor knockout mice. Proc Natl Acad Sci U S A 115, E1495–E1503, doi:10.1073/pnas.1717065115 (2018). [PubMed: 29378959]
- 199. Arriola Apelo SI & Lamming DW Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island. J Gerontol A Biol Sci Med Sci 71, 841–849, doi:10.1093/gerona/glw090 (2016). [PubMed: 27208895]
- 200. Li A et al. Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis. J Cell Mol Med 21, 1619–1635, doi:10.1111/jcmm.13091 (2017). [PubMed: 28244683]
- 201. Zhang X et al. Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 7, 412–425, doi:10.4161/auto.7.4.14541 (2011). [PubMed: 21193837]
- 202. Bhattacharya A et al. Dietary restriction but not rapamycin extends disease onset and survival of the H46R/H48Q mouse model of ALS. Neurobiol Aging 33, 1829–1832, doi:10.1016/j.neurobiolaging.2011.06.002 (2012). [PubMed: 21763036]

203. Hernando E et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 13, 748–753, doi:10.1038/nm1560 (2007). [PubMed: 17496901]

- 204. Squarize CH, Castilho RM & Gutkind JS Chemoprevention and treatment of experimental Cowden's disease by mTOR inhibition with rapamycin. Cancer Res 68, 7066–7072, doi:10.1158/0008-5472.CAN-08-0922 (2008). [PubMed: 18757421]
- 205. Koehl GE et al. Rapamycin inhibits oncogenic intestinal ion channels and neoplasia in APC(Min/+) mice. Oncogene 29, 1553–1560, doi:10.1038/onc.2009.435 (2010). [PubMed: 19966863]
- 206. Alexander A et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A 107, 4153–4158, doi:10.1073/pnas.0913860107 (2010). [PubMed: 20160076]
- 207. Ohara T et al. Inhibition of mTOR by temsirolimus contributes to prolonged survival of mice with pleural dissemination of non-small-cell lung cancer cells. Cancer Sci 102, 1344–1349, doi:10.1111/j.1349-7006.2011.01967.x (2011). [PubMed: 21521416]
- 208. Comas M et al. New nanoformulation of rapamycin Rapatar extends lifespan in homozygous p53–/– mice by delaying carcinogenesis. Aging (Albany NY) 4, 715–722, doi:10.18632/aging.100496 (2012). [PubMed: 23117593]
- 209. Hussein O, Tiedemann K, Murshed M & Komarova SV Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases. Cancer Lett 314, 176–184, doi:10.1016/j.canlet.2011.09.026 (2012). [PubMed: 22014409]
- 210. Komarova EA et al. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/- mice. Aging (Albany NY) 4, 709–714, doi:10.18632/aging.100498 (2012). [PubMed: 23123616]
- 211. Maude SL et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 120, 3510–3518, doi:10.1182/blood-2012-03-415448 (2012). [PubMed: 22955920]
- 212. Livi CB et al. Rapamycin extends life span of Rb1+/- mice by inhibiting neuroendocrine tumors. Aging (Albany NY) 5, 100-110, doi:10.18632/aging.100533 (2013). [PubMed: 23454836]
- 213. Hasty P et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila) 7, 169–178, doi:10.1158/1940-6207.CAPR-13-0299 (2014). [PubMed: 24282255]
- 214. Morran DC et al. Targeting mTOR dependency in pancreatic cancer. Gut 63, 1481–1489, doi:10.1136/gutjnl-2013-306202 (2014). [PubMed: 24717934]
- 215. Popovich IG et al. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer biology & therapy 15, 586–592, doi:10.4161/cbt.28164 (2014). [PubMed: 24556924]
- 216. Christy B et al. p53 and rapamycin are additive. Oncotarget 6, 15802–15813, doi:10.18632/oncotarget.4602 (2015). [PubMed: 26158292]
- 217. Ando T et al. Gemcitabine and Rapamycin Exhibit Additive Effect against Osteosarcoma by Targeting Autophagy and Apoptosis. Cancers (Basel) 12, doi:10.3390/cancers12113097 (2020).
- 218. Kon N et al. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression. Genes Dev 35, 59–64, doi:10.1101/gad.340919.120 (2021). [PubMed: 33303641]
- 219. Parihar M et al. Sex-dependent lifespan extension of Apc (Min/+) FAP mice by chronic mTOR inhibition. Aging Pathobiol Ther 2, 187–194, doi:10.31491/apt.2020.12.039 (2020). [PubMed: 33834178]
- 220. Parihar M et al. Rapamycin Extends Life Span in Apc(Min/+) Colon Cancer FAP Model. Clin Colorectal Cancer 20, e61–e70, doi:10.1016/j.clcc.2020.08.006 (2021). [PubMed: 33132009]
- 221. Tibarewal P et al. Long-term treatment of cancer-prone germline PTEN mutant mice with low-dose rapamycin extends lifespan and delays tumour development. J Pathol 258, 382–394, doi:10.1002/path.6009 (2022). [PubMed: 36073856]
- 222. Khapre RV et al. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging (Albany NY) 6, 48–57, doi:10.18632/aging.100633 (2014). [PubMed: 24481314]
- 223. Leontieva OV, Paszkiewicz GM & Blagosklonny MV Weekly administration of rapamycin improves survival and biomarkers in obese male mice on high-fat diet. Aging Cell 13, 616–622, doi:10.1111/acel.12211 (2014). [PubMed: 24655348]

224. Sataranatarajan K et al. Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes. J Gerontol A Biol Sci Med Sci 71, 850–857, doi:10.1093/gerona/glv170 (2016). [PubMed: 26442901]

- 225. Yuskaitis CJ et al. Chronic mTORC1 inhibition rescues behavioral and biochemical deficits resulting from neuronal Depdc5 loss in mice. Hum Mol Genet 28, 2952–2964, doi:10.1093/hmg/ddz123 (2019). [PubMed: 31174205]
- 226. Klofas LK, Short BP, Zhou C & Carson RP Prevention of premature death and seizures in a Depdc5 mouse epilepsy model through inhibition of mTORC1. Hum Mol Genet 29, 1365–1377, doi:10.1093/hmg/ddaa068 (2020). [PubMed: 32280987]
- 227. Hurez V et al. Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell 14, 945–956, doi:10.1111/acel.12380 (2015). [PubMed: 26315673]
- 228. Feng X et al. Rapamycin is highly effective in murine models of immune-mediated bone marrow failure. Haematologica 102, 1691–1703, doi:10.3324/haematol.2017.163675 (2017). [PubMed: 28729300]
- 229. Correia-Melo C et al. Rapamycin improves healthspan but not inflammaging in nfkappab1(-/-) mice. Aging Cell 18, e12882, doi:10.1111/acel.12882 (2019). [PubMed: 30468013]
- 230. Warner LM, Adams LM & Sehgal SN Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum 37, 289–297, doi:10.1002/art.1780370219 (1994). [PubMed: 8129783]
- 231. Zaradzki M et al. Short-term rapamycin treatment increases life span and attenuates aortic aneurysm in a murine model of Marfan-Syndrome. Biochem Pharmacol 205, 115280, doi:10.1016/j.bcp.2022.115280 (2022). [PubMed: 36198355]
- 232. Johnson SC et al. Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice. Front Genet 6, 247, doi:10.3389/fgene.2015.00247 (2015). [PubMed: 26257774]
- 233. Siegmund SE et al. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome. Hum Mol Genet 26, 4588–4605, doi:10.1093/hmg/ddx341 (2017). [PubMed: 28973153]
- 234. Cortes CJ, Qin K, Cook J, Solanki A & Mastrianni JA Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease. J Neurosci 32, 12396–12405, doi:10.1523/JNEUROSCI.6189-11.2012 (2012). [PubMed: 22956830]
- 235. Ramos FJ et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4, 144ra103, doi:10.1126/scitranslmed.3003802 (2012).
- 236. Liao CY et al. Rapamycin Reverses Metabolic Deficits in Lamin A/C-Deficient Mice. Cell reports 17, 2542–2552, doi:10.1016/j.celrep.2016.10.040 (2016). [PubMed: 27926859]
- 237. Birkisdottir MB et al. Unlike dietary restriction, rapamycin fails to extend lifespan and reduce transcription stress in progeroid DNA repair-deficient mice. Aging Cell 20, e13302, doi:10.1111/acel.13302 (2021). [PubMed: 33484480]
- 238. Zeng LH, Xu L, Gutmann DH & Wong M Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Annals of neurology 63, 444–453, doi:10.1002/ana.21331 (2008). [PubMed: 18389497]
- 239. Lee N et al. Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC Pharmacol 9, 8, doi:10.1186/1471-2210-9-8 (2009). [PubMed: 19368729]
- 240. Liang MC et al. TSC1 loss synergizes with KRAS activation in lung cancer development in the mouse and confers rapamycin sensitivity. Oncogene 29, 1588–1597, doi:10.1038/onc.2009.452 (2010). [PubMed: 19966866]
- 241. Woodrum C, Nobil A & Dabora SL Comparison of three rapamycin dosing schedules in A/J Tsc2+/- mice and improved survival with angiogenesis inhibitor or asparaginase treatment in mice with subcutaneous tuberous sclerosis related tumors. J Transl Med 8, 14, doi:10.1186/1479-5876-8-14 (2010). [PubMed: 20146790]

242. Malhowski AJ et al. Smooth muscle protein-22-mediated deletion of Tsc1 results in cardiac hypertrophy that is mTORC1-mediated and reversed by rapamycin. Hum Mol Genet 20, 1290–1305, doi:10.1093/hmg/ddq570 (2011). [PubMed: 21212099]

- 243. Nechama M, Makayes Y, Resnick E, Meir K & Volovelsky O Rapamycin and dexamethasone during pregnancy prevent tuberous sclerosis complex-associated cystic kidney disease. JCI Insight 5, doi:10.1172/jci.insight.136857 (2020).
- 244. Iwata W et al. Podocyte-specific deletion of tubular sclerosis complex 2 promotes focal segmental glomerulosclerosis and progressive renal failure. PLoS One 15, e0229397, doi:10.1371/journal.pone.0229397 (2020). [PubMed: 32191726]
- 245. Dumas SN & Lamming DW Next Generation Strategies for Geroprotection via mTORC1 Inhibition. J Gerontol A Biol Sci Med Sci 75, 14–23, doi:10.1093/gerona/glz056 (2020). [PubMed: 30794726]
- 246. Halloran J et al. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223, 102–113, doi:10.1016/j.neuroscience.2012.06.054 (2012). [PubMed: 22750207]
- 247. Lin AL et al. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease. J Cereb Blood Flow Metab 37, 217–226, doi:10.1177/0271678X15621575 (2017). [PubMed: 26721390]
- 248. Van Skike CE et al. mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell 19, e13057, doi:10.1111/acel.13057 (2020). [PubMed: 31693798]
- 249. Dai DF et al. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13, 529–539, doi:10.1111/acel.12203 (2014). [PubMed: 24612461]
- 250. Flynn JM et al. Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12, 851–862, doi:10.1111/acel.12109 (2013). [PubMed: 23734717]
- 251. Zaseck LW, Miller RA & Brooks SV Rapamycin Attenuates Age-associated Changes in Tibialis Anterior Tendon Viscoelastic Properties. J Gerontol A Biol Sci Med Sci 71, 858–865, doi:10.1093/gerona/glv307 (2016). [PubMed: 26809496]
- 252. Liang SJ, Zhou JY & Wang XQ Signaling Network Centered on mTORC1 Dominates Mammalian Intestinal Stem Cell Ageing. Stem Cell Rev Rep 17, 842–849, doi:10.1007/s12015-020-10073-y (2021). [PubMed: 33201440]

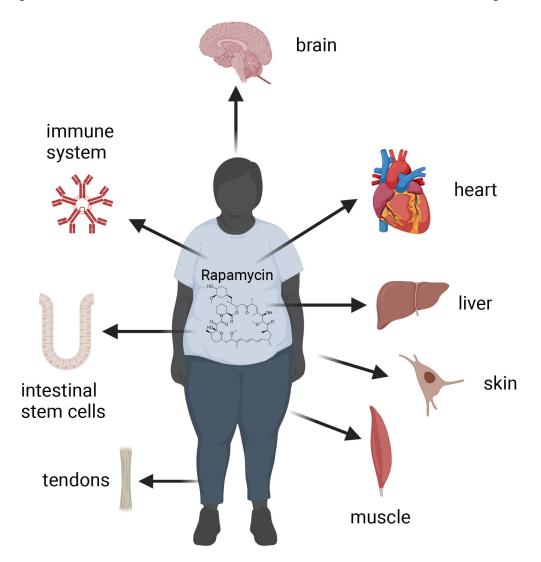
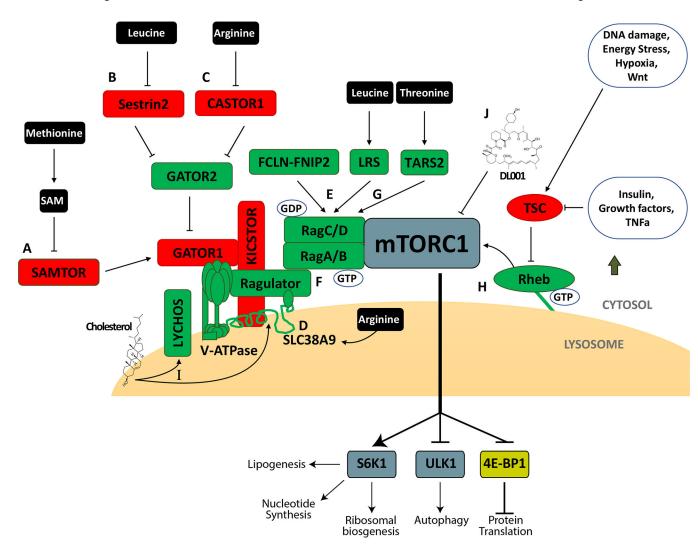



Figure 1. Potential healthspan targets of rapamycin.

Based on studies in rodents and humans, rapamycin and rapalogs may have potential benefits for ameliorating or slowing age-related conditions associated with the brain $^{105,246-248}$, heart 25,249,250 , liver 25 , skeletal muscle 100 , tendons 25,251 , the immune system $^{39,82-84}$, the skin 135 , and the intestine 96,252 . Created with BioRender.Com.

Figure~2.~An~overview~of~the~mechanistic~Target~Of~Rapamycin~Complex~1~(mTORC1)~signaling~pathway~with~areas~of~potential~pharmaceutical~inhibition~highlighted.

Negative regulators (CASTOR1, GATOR1, SAMTOR, Sestrin2, tuberous sclerosis complex [TSC]) and positive regulators (FLCN-FNIP2, GATOR2, KICKSTOR, LRS, RAG GTPases, RAGULATOR, Rheb, SLC38A9, v-ATPase) are shown. Potential mechanisms for the development of mTORC1 specific inhibitors include: A, B, C, D. Identifying small molecules that block the ability of amino acid sensors upstream of mTORC1 to sense the availability of leucine, arginine, or SAM; (E, F, G) developing compounds such as BC-LI-0186 that inhibit the GAP or GEF activities of FLCN-FNIP2, LRS, RAGULATOR or TARS2; (H) Inhibiting the interaction of mTORC1 and Rheb, the mechanism of action of NR1; (I) Identifying small molecules that block the ability of LYCHOS and SLC38A9 to sense the availability of cholesterol; and (J) Identifying rapamycin derivatives such as DL001 that specifically inhibit mTORC1. Select downstream substrates of mTORC1 and processes mediated by them are also show. Figure is adapted from Dumas and Lamming, 2020, *JGBS* ²⁴⁵ and used with permission.

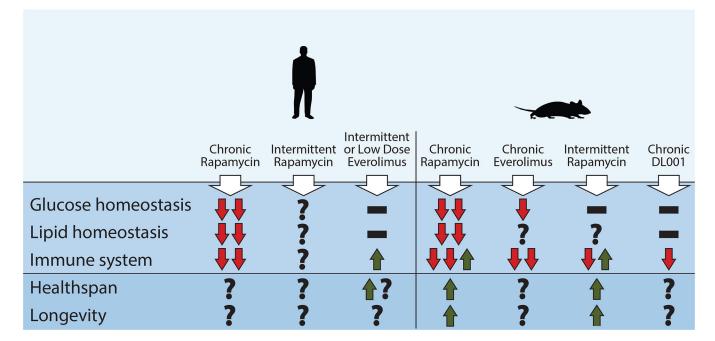


Figure 3. The known and unknown effects of rapalog dosing regimens on metabolic health, the immune system, healthspan and longevity in humans and mice.

Chronic (daily) dosing of rapamycin is associated with impaired blood glucose regulation and hyperlipidemia in humans and mice, while everolimus in mice has somewhat reduced effects on glucose homeostasis. Intermittent or low dose regimens of rapamycin or everolimus are associated with reduced side effects, while the mTORC1-selective rapalog DL001 does not impair blood glucose control or alter circulating lipid levels. Green up arrow = improvement, red down arrow = impairment; Dash indicated no change, Question mark indicates unknown.

Table 1. The effect of rapamycin on the lifespan of wild-type mice.

The impact of rapamycin on median lifespan in mouse studies since 2009 where longevity or mortality rate was determined. Sex is listed separately for males and females where sex-specific data exists. The rapamycin dose listed for dietary administration indicates the drug concentration in the *ad libitum* fed diet; the dose listed for administration in water, or administered intraperitoneally (IP) or subcutaneous (SC) indicates the dose in mg per kg of body weight. Control indicates median lifespan of control group in days;

Strain	Sex	Starting age	Rapa dose	Route	Control (days)	lifespan (%)	Reference
Wild-type mi	ce – rapamyci	n alone via diet					
UM-HET3	Male	20 months	14 ppm	Diet		9	Harrison et al. 2009 33
UM-HET3	Female	20 months	14 ppm	Diet	881–895	14	
UM-HET3	Female	9 months	14 ppm	Diet	843–891	18	Miller <i>et al.</i> 2011 ³⁶
UM-HET3	Male	9 months	14 ppm	Diet	780–851	10	
129/Sv	Female	2 months	1.5 mg/kg	SC 3x/ week 2 weeks per 4	759	10	Anisimov et al. 2011 41
C57BL/ 6J.Rj	Male	4, 13, 20 months	14 ppm	Diet	~900	~10 ^a	Neff et al. 2013 87
C57BL/ 6J.Nia	Male	19 months	14 ppm	Diet	954	-3.5 <i>NS</i>	Zhang <i>et al.</i> 2014 ¹⁹⁴
C57BL/ 6J.Nia	Female	19 months	14 ppm	Diet	874	5	
UM-HET3	Male	9 months	4.7 ppm	Diet	807	$_3NS$	Miller <i>et al.</i> 2014 ¹⁹⁵
UM-HET3	Male	9 months	14 ppm	Diet	807	13	
UM-HET3	Male	9 months	42 ppm	Diet	807	23	
UM-HET3	Female	9 months	4.7 ppm	Diet	896	16	
UM-HET3	Female	9 months	14 ppm	Diet	896	21	
UM-HET3	Female	9 months	14 ppm	Diet	896	26	
C57BL/ 6J.Nia	Male	4 months	14 ppm	Diet	806*	11*	Fok <i>et al.</i> 2014 ¹⁹⁶
C57BL/ 6J.Nia	Female	4 months	14 ppm	Diet	826*	16*	
C57BL/ 6J.Nia	Male	20–21 months	126 ppm for 90 d	Diet	914	14	Bitto <i>et al.</i> 2016 ³⁸
C57BL/ 6J.Nia	Female	20–21 months	126 ppm for 90 d	Diet	960	9	
UM-HET3	Male	20 months	42 ppm	Diet	772	11	Strong et al. 2020 193
UM-HET3	Male	20 months	42 ppm for 3 mo	Diet	772	11	
UM-HET3	Male	20 months	42 ppm	Diet every other mo	772	9	
UM-HET3	Female	20 months	42 ppm	Diet	905	15	
UM-HET3	Female	20 months	42 ppm for 3 mo	Diet	905	₄ NS	

Strain	Sex	Starting age	Rapa dose	Route	Control (days)	lifespan (%)	Reference
UM-HET3	Female	20 months	42 ppm	Diet every other mo	905	8	
C57BL/6 Terc+/+	Male	3 months	42 ppm	Diet	509	43	Ferrara-Romeo <i>et al.</i> 2020 ¹⁹⁷
C57BL/6 Terc ^{+/+}	Female	3 months	42 ppm	Diet	711	23	
UM-HET3	Male	Birth (via dam)	42 ppm until 45 days	Diet	783	11.9	Shindyapina et al. 2022
UM-HET3	Female	Birth (via dam)	42 ppm until 45 days	Diet	822	9.1 <i>NS</i>	
Wild-type mi	ce – rapamycii	n alone via I.P.					
C57BL/ 6J.Nia	MF	22–24 months	4 mg/kg	IP every other day	~795	>14a	Chen et al. 2009 39
C57BL/ 6J.Nia	Female	20 months	2 mg/kg	IP 1x/5 days	897	7	Arriola Apelo <i>et al.</i> 2016
C57BL/ 6J.Nia	Male	20–21 months	8 mg/kg for 90 d	IP 1x/d	925	14	Bitto et al. 2016 38
C57BL/ 6J.Nia	Female	20–21 months	8 mg/kg for 90 d	IP 1x/d	847	₀ NS	
Mixed	Male	600–700 d	4 mg/kg	IP every other day	911	13	Fang et al. 2018 198
Mixed	Female	600–700 d	4 mg/kg	IP every other day	896	22	
CD1	Male	Day 4	10 mg/kg until 40 days	IP 1x/d	655	8.9	Aiello <i>et al.</i> 2022 ⁴³
CD1	Male	Day 30	10 mg/kg until 60 days	IP 1x/d	655	3.5 <i>NS</i>	
CD1	Female	Day 4	10 mg/kg until 40 days	IP 1x/d	714	8.4	
CD1	Female	Day 30	10 mg/kg until 60 days	IP 1x/d	714	3.8 ^{NS}]
Wild-type mi	ce – rapamycii	n via diet as part	of a combination				•
им-нет3	Male and Female	9 months	14 ppm with metformin	Diet	It's complicated – see manuscript for details		Strong <i>et al.</i> 2016 ⁴⁴
UM-НЕТ3	Male and Female	9 or 16 months	14 ppm with acarbose	Diet		icated – see t for details	Strong <i>et al.</i> 2022 ⁴⁵

Page 33

lifespan is the percent change in median lifespan

^{* (}indicates that mean is reported instead). MF indicates that the lifespan results were not broken down by sex or that sex was not reported

a: Lifespan study % increase was not determined

NS: Not Statistically Significant. Control lifespan and percentage change are estimated when precise information is not available from the authors or is not listed in the referenced study. Table is adapted from Arriola Apelo et al., 2016, JGBS ¹⁹⁹ and used with permission.

Table 2.

The effect of rapamycin on the survival of mouse disease models.

The impact of rapamycin on median lifespan in mouse studies since 2009 where longevity or mortality rate was determined. Sex is listed separately for males and females where sex-specific data exists. The rapamycin dose listed for dietary administration indicates the drug concentration in the *ad libitum* fed diet; the dose listed for administration in water, or administered intraperitoneally (IP) or subcutaneous (SC) indicates the dose in mg per kg of body weight. Control indicates median lifespan of control group in days;

Strain	Sex	Starting age	Rapa dose	Route	Control (days)	lifespan (%)	Reference
Disease models							
Autosomal dominan	t polycystic	kidney disease					
Vil-Cre;Pkd2 ^{f3/f3}	Female	10 days	50 mg/kg until 60 days	IP 1x/day	~137	~53	Li <i>et al.</i> 2017 ²⁰⁰
Vil-Cre;Pkd2 ^{f3/f3}	Male	10 days	50 mg/kg until 60 days	IP 1x/day	~137	~33	
Vil-Cre;Pkd2 ^{f3/f3}	MF	10 days	50 mg/kg until 110 days	IP 1x/day	~137	~75	
Vil-Cre;Pkd2 ^{f3/f3}	MF	10 days	50 mg/kg until 60 days	IP 1x/day	~137	~53	
Vil-Cre;Pkd2 ^{f3/f3}	MF	60 days	50 mg/kg until 110 days	IP 1x/day	~137	~53	
Amyotrophic lateral	sclerosis			•			•
SOD1 ^{G93A}	MF	64 days	2 mg/kg	IP 1x/d	126	-15	Zhang et al. 2011 201
SOD1 H46R/HR8Q	MF	1.5 months	14 ppm	Diet	232	NS	Bhattacharya <i>et al.</i> 2012 ²⁰²
Cancer	•			•			
Pten ^{-/-}	MF	1 month	10 mg/kg (Everolimus)	Oral	66*	>292*a	Hernando <i>et al.</i> 2007
K14Cre Pten ^{F/F}	MF	5 days	1 mg/kg	IP every other day	94	240	Squarize et al. 2008 ²⁰⁴
Apc ^{Min/+} C57BL/6	MF	5 weeks	40 mg/kg -not encapsulated, diet changed out frequently	Diet	156*	77	Koehl et al. 2009 205
129 Atm ^{-/-}	MF	2–3 months	15 mg/kg	IP 1x/day	~100	~32	Alexander et al. 2010
FVB/N HER-2/neu	Female	2 months	1.5 mg/kg	SC 3x/ week 2 weeks per 4	288	13.6	Anisimov et al. 2010 40
ALB/c nu/nu + A549	Male	7 weeks	10 mg/kg (Temsirolimus)	IV 1x/ 5week for 5 weeks	53.5	36	Ohara et al. 2010 ²⁰⁷
p53- ^{/-}	Male	2 months	0.5 mg/kg	Oral 1x/day 5 d on/9 d off	161	35	Comas et al. 2012 ²⁰⁸
Balb/c + 4T1	Female	6 weeks	5 mg/kg	IP every other day	₁₆ d	31 <i>d</i>	Hussein <i>et al.</i> 2012 ²⁰⁹
p53 ^{+/-}	Male	<5 months	1.5 mg/kg	Water	373*	28*	Komarova <i>et al.</i> 2012

Strain	Sex	Starting age	Rapa dose	Route	Control (days)	lifespan (%)	Reference
p53 ^{+/-}	Male	>5 months	1.5 mg/kg	Water	373 *	10*	
NOD.Cg- <i>Prkdc^{scid}</i> ALL (<i>JAK2_m</i> / <i>CRLF2_R</i>)	MF	sufficient disease burden	5 m/kg	Oral 5x/ week	23	174	Maude <i>et al.</i> 2012 ²¹¹
NOD.Cg- <i>Prkdc^{scid}</i> ALL (<i>JAK1_m</i>)	MF	sufficient disease burden	5 m/kg	Oral 5x/ week	58	57	
<i>Rb1</i> ^{+/-}	Male	2 months	14 ppm	Diet	369	13.8	Livi <i>et al.</i> 2013 ²¹²
<i>Rb1</i> ^{+/-}	Female	2 months	14 ppm	Diet	378	8.9	1
Apc Min/+	Female	8 weeks	14 ppm	Diet	174	284	Hasty et al. 2014 213
Apc Min/+	Female	8 weeks	42 ppm	Diet	174	439	1
Pdx1-Cre; Kras ^{G12D/+} ; Pten ^{flox/+}	MF	clinically detectable pancreatic tumors	10 mg/kg	IP 1x/day	10	460	Morran <i>et al.</i> 2014 ²¹⁴
Pdx1-Cre; Kras ^{G12D/+} ; Trp53 ^{R172H/+}	MF	clinically detectable pancreatic tumors	10 mg/kg	IP 1x/day	2	250	
HER-2/neu	Female	2, 4, or 5 months	0.45 mg/kg	SC 3x/ week 2 weeks per 4	282, 278, 289	5.7 <i>NS</i> , 6.1, 5.5	Popovich et al. 2014 ²
p53 ^{+/+}	MF	2 months	14 ppm	Diet	681	17.8	Christy et al. 2015 ²¹⁶
p53 ^{+/-}	MF	2 months	14 ppm	Diet	520	11.9 ^{NS}	
p53-/-	MF	2 months	14 ppm	Diet	199	_3 <i>NS</i>	
C3H/HeJJcl + LM8	М	9 weeks	50 mg/kg	IV every other day	~30	~28	Ando <i>et al.</i> 2020 ²¹⁷
p53 ^{5KR/5KR}	MF	weaning	42 ppm	Diet	258	35	Kon et al. 2020 218
p53-/-	MF	weaning	42 ppm	Diet	164	55	
Apc Min/+	Male	4 weeks	42 ppm	Diet	222	348	Parihar et al. 2020 ²¹⁹
Apc Min/+	Female	4 weeks	42 ppm	Diet	260	156	
<i>Apc</i> ^{Min/+} DSS	Male	4 weeks	42 ppm	Diet	112	171	Parihar et al. 2021 220
Apc ^{Min/+} DSS	Female	4 weeks	42 ppm	Diet	113	220]
Pten ^{+/-}	Male	6 weeks	14 ppm	Diet	394	65	Tibarewal et al. 2022
Pten ^{+/-}	Female	6 weeks	14 ppm	Diet	239	54	221
Clock	•	,		•	•		
Bma11 -/-	MF	16 weeks	0.5 mg/kg	Water	~240	47	Khapre <i>et al.</i> 2014 ²²
Diabetes		<u>'</u>		.			
C57BL/6NCr HFD	Male	12 months	1.5 mg/kg	IP 1x/ week	684	b	Leontieva et al. 2014 223
C57BLKS/J lepr ^{db/db}	Male	4 months	14 ppm	Diet	349	-16	Sataranatarajan <i>et al.</i> 2015 ²²⁴
C57BLKS/J lepr ^{db/db}	Female	4 months	14 ppm	Diet	487	-18	

Page 35

Strain	Sex	Starting age	Rapa dose	Route	Control (days)	lifespan (%)	Reference
Epilepsy				•			•
Depdc5cc+	MF	3 weeks	6 mg/kg	IP 3x/ week	126	>62 ^C	Yuskaitis <i>et al.</i> , 2019 225
Depdc5-Emx1-Cre	MF	13–15 days	3 mg/kg	IP 5x/ week	22	>70 ^C	Klofas et al., 2020 226
Growth hormone	-						
ghr ^{-/-}	Male	600–700 d	4 mg/kg	IP every other day	558	-12.5	Fang <i>et al.</i> 2018 ¹⁹⁸
ghr ^{-/-}	Female	600–700 d	4 mg/kg	IP every other day	556	-28	
Immune deficiency							-
Rag2-/-	MF	3 months	14 ppm	Diet	310	121	Hurez et al. 2015 227
IFN-γ ^{-/-}	MF	5 months	14 ppm	Diet	398	34	1
CByB6F1 BM	Female	8–9 weeks	2 mg/kg d0–9 post LN	IP for 5– 13 days	16.5 ^d	36 d	Feng et al. 2017 228
CByB6F1 BM	Female	8–9 weeks	2 mg/kg D0–12 and D3–12 post LN	IP for 5– 13 days	16.5 ^d	>506 ^C	
Inflammation							•
nfĸb1 ^{-/-}	М	4–5 months	14 ppm	Diet	598	-6^{NS}	Correia-Melo <i>et al.</i> 2019 ²²⁹
Lupus	•			!			•
MRL/l	Female	8 weeks	12.5 mg/kg	Oral 3x/ week	90	72	Warner et al. 1994 ²³⁰
MRL/l	Female	8 weeks	25 mg/kg	Oral 3x/ week	90	163	
Marfan syndrome							
mgR/mgR	Female	7–8 weeks	2 mg/kg	IP 1x/d for 2 weeks	199	36	Zaradzki et al. 2022 ²³¹
mgR/mgR	Male	7–8 weeks	2 mg/kg	IP 1x/d for 2 weeks	101	45	
Mitochondrial disea	se						-
Ndufs4 ^{-/-}	Female	weaning	8 mg/kg	IP every other day	~50	38	Johnson et al. 2013 132
Ndufs4-/-	Male	weaning	8 mg/kg	IP every other day	~50	25	
Ndufs4 ^{-/-}	Female	10 days	8 mg/kg	IP 1x/d	~50	~128	
Ndufs4 ^{-/-}	Male	10 days	8 mg/kg	IP 1x/d	~50	~128]
Ndufs4 ^{-/-}	MF	weaning	8 mg/kg	IP 1x/day	52	119	Johnson et al. 2015 ²³²
Ndufs4 ^{-/-}	MF	weaning	42 ppm	Diet	52	29 <i>NS</i>	1
Ndufs4 ^{-/-}	MF	weaning	378 ppm	Diet	52	92	1
Tk2 ^{KUKI}	MF	To dams from conception	0.8 mg/kg prior to birth, 4.0 mg/kg post-birth	Water to dam	~15	~60	Siegmund <i>et al.</i> 2017

Page 36

Strain	Sex	Starting age	Rapa dose	Route	Control (days)	lifespan (%)	Reference
Prion	•						
Tg(PrP-A116V)	MF	6 weeks	10 mg/kg	IP 3x/ week	173*	1NS	Cortes <i>et al</i> 2012 ²³⁴
Tg(PrP-A116V)	MF	6 weeks	20 mg/kg	IP 3x/ week	173*	9	
Progeria	•			•		•	
Lmna ^{-/-}	MF	1 month	14 ppm	Diet	46	35	Ramos et al. 2012 235
Lmna ^{-/-}	MF	1 month	8 mg/kg	IP every other day	55	56	
Lmna ^{-/-}	Female	4 weeks	8 mg/kg	IP every other day	59	70	Liao <i>et al.</i> 2016 ²³⁶
Lmna ^{-/-}	Male	4 weeks	8 mg/kg	IP every other day	52	86	
Lmna ^{H222P/H222P}	MF	2 months	14 ppm	Diet	309	-2^{NS}	
G2 Terc ^{-/-}	Male	3 months	42 ppm	Diet	274	-19	Ferrara-Romeo et al.
G2 Terc ^{-/-}	Female	3 months	42 ppm	Diet	274	-12.5 <i>NS</i>	2020 197
Ercc1 /-	Female	4 weeks	14 ppm	Diet	148	-7.4 ^{NS}	Birkisdottir et al. 2021
Ercc1 /-	Female	8 weeks	14 ppm	Diet	141	-6.4^{NS}	- 237
Ercc1 /-	Female	8 weeks	4.7 ppm	Diet	180	-2.2 ^{NS}	
Ercc1 /-	Female	8 weeks	42 ppm	Diet	180	-1.6 ^{NS}	
Ercc1 /-	Male	8 weeks	4.7 ppm	Diet	160	₅ NS	
Ercc1 /-	Male	8 weeks	42 ppm	Diet	160	-1.7^{NS}	
Tuberous sclerosis co	omplex						
GFAP-Cre Tsc1 ^{L/L}	MF	2 weeks	3 mg/kg	IP 5x/ week	63	e	Zeng et al., 2008 ²³⁸
GFAP-Cre Tsc1 ^{L/L}	MF	6 weeks	3 mg/kg	IP 5x/ week	~74	f	
CD-1 Nude with $Tsc2^{-/-}$, $Trp53^{-/-}$ MEF tumors	MF	Tumor 40– 50 mm ³	8 mg/kg	IP 3x/ week	24.5	88	Lee et al. 2009 ²³⁹
LSL- Kras ^{G12D} Tsc1 ^{L/L}	MF	13–16 weeks	6 mg/kg	IP every other day	20^d	551 ^d	Liang et al. 2010 ²⁴⁰
LSL- Kras ^{G12D} Tsc1 ^{L/+}	MF	13–16 weeks	6 mg/kg	IP every other day	48 ^d	138 ^d	
CD-1 Nude with Tsc2-/-, Trp53-/- MEF tumors	MF	Tumor 100 mm ³	8 mg/kg	IP 3x/ week	31	173	Woodrum <i>et al.</i> 2010
Tsc1 ^{L/L} ; SM22cre ^{±/-}	MF	2 weeks	4 mg/kg	IP 5x/ week	24	g	Malhowski et al. 2011 242
Tsc1 ^{L/L} ; SM22cre ^{+/-}	MF	2 weeks	4 mg/kg	IP 3x/ week	24	g	
Tsc1 ^{L/L} ; SM22cre ^{+/-}	MF	3 weeks	4 mg/kg	3x/week	24	g	

Page 37

Strain Sex Starting age Rapa Route Control Reference lifespan dose (days) (%) MF To dams, E12.5, E14.5. Nechama et al. 2020 243 Six2-Cre tg/+; 0.2 mg/kg 3x 2 500 Tsc1^{L/L} E16.5 Tsc2^{L/L}, Nphs2-Iwata et al. 2020 244 MF 2 mg/kg until 11 4 weeks IP every ~53 ~150 Cre+/- ICR weeks other day

Page 38

lifespan is the percent change in median lifespan

Mannick and Lamming

^{*} indicates that mean is reported instead). MF indicates that the lifespan results were not broken down by sex or that sex was not reported

a: Lifespan study % increase was not determined

 $[\]overset{\mbox{\it b}}{:}$ 100% of rapamycin-treated mice survived to 2 years of age vs. 40% of control mice

 $[\]frac{c}{c}$: study not continued long enough to determine median lifespan

 $[\]frac{d}{d}$: survival following tumor induction, tumor implantation, or lymph node (LN) cell infusion.

e: 91% of rapamycin-treated mice survived to 6 months of age vs. 0% of control mice.

 $f_{100\%}$ of rapamycin-treated mice survived to 18 months of age vs. 0% of control mice.

g: there were no deaths in the treatment cohort at 8 weeks of age vs. 100% of untreated mice.

NS: Not Statistically Significant. ALL indicates an acute lymphoblastic leukemia xenograft model. BM indicates bone marrow failure model. DSS indicates that the mice were treated with dextran sodium sulfate to induce colon cancer. LM8 indicates a murine subcutaneous allograft tumor model. Vil-Cre refers to the expression of Cre under the control of the Vil1 promoter; K14-Cre refers to the expression of Cre under the control of the KRT14 promoter; LSL-KrasG12D refers to a the expression of a Kras mutant allele the expression of which is blocked by the a Lox-Stop-Lox cassette; SM22cre refers to Cre under the control of the Sm22α promoter; mgR refers to a hypomorphic allele of Fbn1; MEF refers to Mouse Embryonic Fibroblast; ICR is an abbreviation for Institute of Cancer Research; and Prp refers to prion protein. Control lifespan and percentage change are estimated when precise information is not available from the authors or is not listed in the referenced study. Table is adapted from Arriola Apelo et al., 2016, JGBS ¹⁹⁹ and used with permission.

Table 3: Completed clinical trials of mTOR inhibitors for aging-related conditions.

Information on completed clinical trials was compiled from a review of the scientific literature.

Population	mTOR Inhibitor Dosing Regimen Duration Primary Endpoint		Primary Endpoint	Was Primary Endpoint Met?	Reference
218 adults age 65 years	Everolimus 0.5 mg daily Everolimus 5 mg weekly Everolimus 20 mg weekly Placebo	6 weeks	Improvement in influenza vaccination response	Yes	Mannick et al. 2014 82
264 adults age 65 years	Everolimus 0.1 mg daily Everolimus 0.5 mg daily BEZ235 10 mg daily BEZ235 10 mg+0.1 mg everolimus daily Placebo	6 weeks	Improvement in influenza vaccination response	Yes	Mannick et al. 2018
652 adults age 65 years at increased risk of respiratory tract infections	BEZ235 5 mg daily BEZ235 10 mg daily BEZ235 10 mg twice daily BEZ10 mg+ everolimus 0.1 mg daily Placebo	16 weeks	Decrease in incidence of laboratory-confirmed respiratory tract infections	Yes	Mannick et al. 2021 84
1051 adults age 65 years	BEZ235 10 mg daily Placebo	16 weeks	Decrease incidence in symptoms consistent with a respiratory tract infection	No	Mannick <i>et al.</i> 2021 84
25 healthy adults 70–95 years	Rapamycin 1 mg Placebo	8 weeks	Safely achieving therapeutic blood level	Yes	Kraig <i>et al.</i> , 2018 ¹⁴⁹
36 adults with aging skin	Topical rapamycin (10 μM) Topical placebo	8 mos	Decreased in p16-positive senescent cells in skin	Yes	Chung et al. 2019 135