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Abstract

Introduction: Regenerative medicine involves the replacement of damaged cells, tissues, or 

organs to restore normal function. Mesenchymal stem cells (MSCs) and exosomes secreted by 

MSCs have unique advantages that make them a suitable candidate in the field of regenerative 

medicine.

Areas covered: This article provides a comprehensive overview of regenerative medicine, 

focusing on the use of MSCs and their exosomes as potential therapies for replacing damaged 

cells, tissues, or organs. This article discusses the distinct advantages of both MSCs and their 

secreted exosomes, including their immunomodulatory effects, lack of immunogenicity, and 

recruitment to damaged areas. While both MSCs and exosomes have these advantages, MSCs 

also have the unique ability to self-renew and differentiate. This article also assesses the current 

challenges associated with the application of MSCs and their secreted exosomes in therapy. 

We have reviewed proposed solutions for improving MSC or exosome therapy, including ex-

vivo preconditioning strategies, genetic modification, and encapsulation. Literature search was 

conducted using Google Scholar and PubMed databases.

Expert opinion: Providing insight into the future development of MSC and exosome-based 

therapies and to encourage the scientific community to focus on the identified gaps, develop 

appropriate guidelines, and enhance the clinical application of these therapies.
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This graphical abstract illustrates the potential for direct use of MSCs or their secreted exosomes 

in regenerative medicine, as well as various strategies to enhance their efficacy.
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1. Introduction

The term ‘regenerative medicine’ refers to the ability to restore or replace tissues and 

organs that have been injured or lost by illness, trauma, aging, or other factors. Regenerative 

medicine is a promising alternative therapeutic option to address problems in tissue or cell 

transplantation, such as donor supply shortages or immune complications [1,2].

Since both synthetic and biomaterials are extensively used in tissue repair and therapeutic 

procedures, material development is a high priority in regenerative medicine. Although 

some synthetic materials, such as silicone and tetrafluoroethylene, were developed to repair 

damaged tissues, their tissue-specific functional characteristics were not preserved [3]. 

Therefore, in recent decades, living materials that are biologically generated by living cells 

have been of great interest due to their ability to be well-tolerated by the body and to 

promote biological activity [1]. To develop living materials, human cells, especially those 

with the potential for self-renewal, expansion, and differentiation into other types of cells, 

have been a crucial focus in the field of regenerative medicine [4].

Stem cells are known to have the abilities of proliferation and the generation of identical 

daughter cells, as well as the capability of differentiation into other types of cells. According 

to their sources, there are four types of stem cells: embryonic stem cells, placental and 

umbilical cord stem cells, adult stem cells, and induced pluripotent stem cells (iPSCs) [5,6]. 

Even without considering the moral and ethical implications, human embryos are not the 

ideal source from a technical perspective. Other sources of stem cells, such as the placenta, 

umbilical cord, and many adult tissues, possess MSCs, which are multipotent cells that 

can differentiate into several types of cells [4,7,8]. Especially, extracellular vesicles (EVs), 

mainly exosomes, secreted by MSCs have emerged as a promising therapeutic strategy 

to treat a variety of diseases [9,10]. In this study, we conducted a literature search using 

databases such as Google Scholar and PubMed to identify relevant articles on the therapeutic 
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applications of mesenchymal stem cells (MSCs) and their exosomes in the context of 

degenerative medicine. The search was performed with the following keywords: ‘MSC,’ 

‘exosome and MSC,’ ‘degenerative medicine,’ ‘encapsulation,’ ‘preconditioning,’ ‘gene 

modification,’ ‘bioprinting,’ and ‘clinical trials.’ We searched for articles published between 

2017 and 2022. The aim of this review is to provide an overview of the applications of 

MSCs and their secreted exosomes in regenerative medicine.

2. Mesenchymal stem cells (MSCs)

2.1. Sources, characterization, and properties

MSCs, as adult stem cells, can be isolated from different types of human tissues, including 

bone marrow, adipose tissue, Wharton’s jelly, the umbilical cord, the chorionic villi of the 

placenta, and fetal or neonatal tissue [11]. In addition, other uncommon sources have been 

introduced for MSC isolation, such as amniotic fluid [12], dental pulp [13], endometrium 

[14], tonsils [15], salivary gland [16], urine [17], menstrual blood [18], peripheral blood 

[19], synovial fluid [20], and most of human tissues, such as kidney, liver, and pancreas [21]. 

The IPSCs derived from somatic cells can also be differentiated into MSCs [22]. Regardless 

of their sources, MSCs possess two important intrinsic characteristics: the abilities to self-

renew and the ability to differentiate into other cell lineages [23]. It has been reported that 

MSCs can express nestin and NANOG genes, which are crucial markers for maintaining 

pluripotency and self-renewal [23]. In addition, MSCs, as multipotent cells, can produce not 

only mesodermal lineage cells but also non-mesodermal cells like neuroblasts. Although the 

mechanism behind the differentiation of MSCs into non-mesodermal cells is not completely 

clear, some studies have reported the transdifferentiation potential of MSCs, meaning that 

MSCs can dedifferentiate to the primitive stem cell stage and subsequently differentiate to 

other lineages [24–26].

As there are no specific criteria for the characterization of MSCs, to classify human MSCs 

according to the 2006 declaration of the International Society for Cellular Therapy (ISCT), 

(a) MSCs must be plastic-adherent and have fibroblastic MSC-like morphology under 

standard culture conditions; (b) they must express some specific surface antigens such as 

CD105, CD90, CD73, CD44, etc. but lack the expression of CD34, CD45, CD11b, and 

CD31 to exclude hematopoietic, myeloid, and endothelial cell contamination; (c) they must 

be able to differentiate into some specific mesenchymal lineages such as chondrocytes, 

osteoblasts, and adipocytes [27]. However, in recent years, the expression of the highly 

procoagulant tissue factor (TF/CD142), which initiates coagulation, has been thought to 

reduce the risk of a thromboembolic adverse effect when using MSCs in clinic [28].

The advantages in the clinical application of MSCs over other types of stem cells can 

be attributed to their low immunogenicity and unique immunomodulatory properties [29–

31]. The risk of immune rejection is the most imminent concern regarding the use of 

stem cells in cell therapy. Although all types of stem cells have low expression of major 

histocompatibility complex (MHC) classes I and II, the differentiation of stem cells into 

more differentiated cells may cause them to lose their low immunogenicity [32]. Therefore, 

the immunomodulatory properties of MSCs have emerged as an important factor in cell 

therapy. It has been reported that MSCs can affect both innate and adaptive immunity 
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and inhibit immune responses [33]. MSCs can exert immunomodulatory paracrine factors 

and direct cell-cell contact between MSCs and immune cells such as T cells, B cells, 

natural killer cells, macrophages, monocytes, dendritic cells, and neutrophils. MSCs can 

secrete some cytokines, chemokines, and growth factors such as transforming growth 

factor-1 (TGF-β1), interferon-γ (IFN-γ), tumor necrosis factor- (TNF-α), hepatocyte 

growth factor (HGF), fibroblast growth factor (FGF), indoleamine-pyrrole 2,3-dioxygenase 

(IDO), prostaglandin E2 (PGE2), and nitric oxide (NO), which are responsible for the 

immunosuppressive effects of MSCs via interaction with the innate and adaptive immune 

systems [33].

Recently, enhancing the immunomodulatory properties of MSCs via either preconditioning 

or engineering of MSCs has attracted much attention. For example, Zimmermann et al. 

showed that preconditioning of MSC spheroids cultured in agarose micro-wells with IFN-

γ and TNF-α resulted in the increased secretion of immunomodulatory factors PGE2, 

IDO, and interleukin-6 as well as the inhibition of secretion of TNF-α from macrophage 

under trans-well co-culture conditions, in comparison with untreated spheroids [34]. 

Moreover, Garcia et al. encapsulated MSCs with IFN-γ-tethered hydrogels to enhance their 

immunomodulatory activity and observed an increase in secretion of IDO and programmed 

death ligand-1 (PD-L1) levels, as well as the capacity of MSCs to suppress proliferation 

of activated T-cell and finally an acceleration in wound healing in mice treated with MSCs 

encapsulated with IFN-γ-tethered hydrogels in comparison with MSCs pre-treated with 

IFN-γ and untreated MSCs [35]. Filho et al. proposed that MSC engineering using the 

CRISPR-Cas system can enhance their secretum, survival, and migration abilities, which 

may improve the therapeutic efficiency of MSCs [36]. Another advantage of MSCs that 

makes them a considerable candidate for cell therapy is their ability to migrate to injured 

sites. The most important mechanism involved in the migration of MSCs to injured tissues 

is the stromal cell-derived factor 1 (SDF-1) (CXCL-12)/C-X-C chemokine receptor type 4 

(CXCR4) axis. Binding of SDF-1 to CXCR4 expressed on the surface of MSCs can trigger 

several signaling cascades in MSCs, including p44/p42 extracellular signal-regulated kinases 

(ERK1/2) and phosphatidylinositol-3-kinase (PI3K)/Akt, which result in the mobilization of 

stem cells [37,38]. It was reported that overexpression of CXCR4 could lead to increased 

homing to intestine tumors in the mice which enhanced the anti-tumor function of MSCs 

[39].

2.2. Mechanisms underlying MSC-based therapy

Several mechanisms have been presented to describe the mechanisms how MSCs can 

influence target cells (Figure 1). The functions of MSCs in a specific injured tissue include 

differentiation into specific tissue cells and effect on both specific tissue cells and immune 

cells. The effect of MSCs on target cells can be mediated through direct cell-cell contact 

or the release of biomolecules. Wang et al. demonstrated that MSCs can differentiate into 

cardiomyocytes and smooth muscle cells only through direct co-culture with cardiomyocytes 

and smooth muscle cells only through direct co-culture with these cells, but not through 

indirect co-culture or conditioned culture [40]. The effect of MSCs on target cells through 

direct cell-cell interactions was further supported by another study conducted by Duffy et al, 

where it was reported that MSCs can inhibit the differentiation of CD4+ T cells into T-helper 
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17 cells under Th17-inducing conditions by cell-cell contact via the PGE2/EP4 receptor 

signaling pathway; either PGE2 or EP4 receptor antagonists reversed T-helper 17 cell 

differentiation inhibition [41]. Moreover, Li et al. showed an increased immunomodulatory 

effect of MSCs through cell-cell interactions in certain mouse models of abortion. They 

observed that direct interaction between MSCs and proinflammatory macrophages can 

increase in CD200 expression on the surface of MSCs, leading to interactions with CD200R 

on the surface of proinflammatory macrophages and the shift of these cells to an anti-

inflammatory phenotype [42].

Another proposed mechanism by which MSCs influence their target cells is through 

mitochondrial transfer. Several mechanisms have been suggested for the transfer of 

mitochondria from MSCs to injured cells, including direct cell-to-cell contact, cell 

fusion, the formation of microvesicles containing mitochondria, and transportation via 

tunneling nanotubes [43]. Mori et al. confirmed the transfer of human MSC mitochondria 

to cardiomyocytes in a rat model of myocardial infarction by detecting human MSC 

mitochondrial DNA in the rat myocardium [43]. Jiang’s study showed that MSCs could 

transfer their mitochondria to corneal epithelial cells, protecting the cells from mitochondrial 

dysfunction induced by oxidative stress and that tunneling nanotubes between MSCs and 

epithelial cells contribute to mitochondrial transfer [44]. Additionally, Rackham et al. 

demonstrated that MSCs can donate mitochondria to human islet β-cells under coculture 

conditions, and tunneling nanotube-like structures were also shown to play a role in 

mitochondrial transfer [45]. Morrison et al. observed mitochondrial transfer from MSCs 

to murine alveolar macrophages via EVs. By staining EVs isolated from MSCs with 

a MitoTracker dye and using them to treat macrophages, they found that the treated 

macrophages had an anti-inflammatory phenotype and were able to improve a mouse lung 

injury model, likely due to increased oxidative phosphorylation-related metabolism [46].

In comparison, the paracrine function of MSCs is a widely accepted mechanism by which 

MSCs can exert their effects on target cells. In addition to immunomodulatory factors, 

certain factors secreted by MSCs, such as vascular endothelial growth factor (VEGF), 

monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), and angiogenin, have 

been suggested to play a key role in vascular regeneration [47]. For instance, MSCs 

secrete various factors and cytokines that have immunomodulatory, anti-apoptotic, and anti-

inflammatory effects, and can modulate the reactivity of astrocytes and microglia to promote 

neurodegeneration. The therapeutic effect of MSCs is due to a paracrine mechanism of 

action, which highlights the importance of MSC survival and their secretory phenotype [48]. 

However, the secretory phenotype of MSCs can vary depending on the donor, indicating 

that there are differences in their biological properties and therapeutic potential [48–50]. 

Recently, scientists have focused on improving MSC secretome production. For example, Su 

et al. used electrospun fibrous scaffolds made of polycaprolactone to enhance the production 

of pro-angiogenic and anti-inflammatory factors by MSCs, and found that culturing MSCs 

in these scaffolds increased their paracrine function compared to 2D culture [51]. Drzeniek 

et al. showed that encapsulating of MSCs with a hydrogel made of collagen I-hyaluronic 

acid led to a significant increase of their secretory factors [52]. Moreover, the effect of 

the stiffness of alginate hydrogels as a matrix for MSCs on their paracrine function was 

evaluated by Lin et al, who found that a stiffer matrix could promote the secretion of 

Adelipour et al. Page 5

Expert Opin Biol Ther. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



paracrine factors from MSCs compared to a soft matrix, due to the polymerization of F-actin 

and subsequent activation of Yes-associated protein (YAP) [53]. In another study, the effect 

of pulsed electromagnetic fields on the paracrine functions of MSCs was assessed by Parate 

et al, who found that the medium after exposure of MSCs to pulsed electromagnetic fields 

exhibited the potential to induce the differentiation of MSCs into chondrocytes [54].

Some effects of MSCs on their target cells can also be attributed to exosomes secreted 

by MSCs. Exosomes are small EVs that are produced through the endocytic process and 

contain active signaling components. These components are surrounded and protected by the 

two layers of lipid molecules that make up the exosome [55]. Based on available evidence, 

exosomes derived from MSCs include a variety of proteins, coding and non-coding RNAs 

[56–58]. Recently, exosomes have been suggested as a nanodelivery system due to their 

low immunogenicity, long half-life, and ability to cross the blood-brain barrier. They are 

considered an alternative to MSC-based therapy in regenerative medicine and are being used 

in a number of studies [55,59].

2.3. Application of MSCs in regenerative medicine and challenges

Regenerative medicine utilizes a combination of synthetic or natural materials to treat a 

variety of diseases and to regenerate damaged tissue. Over the last few decades, MSCs 

have become increasingly popular in regenerative medicine due to their unique advantageous 

properties, including the potential for self-renewal, capacity for differentiation into other 

cells, ability to target injured tissues, low immunogenicity, and immunomodulatory 

functions [7,60,61].

Despite the numerous advantages of MSCs, their clinical application still presents challenges 

in terms of preparation and use for disease treatment. The most important challenge related 

to preparing MSCs is their inherent heterogeneity, which can be attributed to their isolation 

from various sources and donors, resulting in different differentiation capacities, stemness 

stability, and expansion capacities. Additionally, challenges still exist during the application 

of MSCs to treat diseases, due to factors such as the impact of administration conditions on 

homing, the effect of the host microenvironment on the MSC secretion, and the influence of 

immune compatibility between donors and patients on the risk of rejection [62]. Therefore, 

the optimization of MSC-based therapy has been considered to address these challenges. To 

this end, a wide range of strategies have been applied to enhance the survival, stability, and 

secretory capacity of MSCs. MSCs derived from different sources have been used in vitro, in 

experimental animal models, and in clinical trials as non-engineered MSCs, pre-conditioned 

MSCs, engineered MSCs, and encapsulated MSCs to alleviate various types of degenerative 

or non-degenerative diseases (Figure 2).

2.3.1. Strategies to improve MSC-based therapy—The protective effects of MSCs 

have been reported in various disease models, including diabetic retinopathy [63,64], 

meniscus repair [65], lumbar spinal degeneration [66], spinal cord injury [48], cardiac 

degeneration [67], reproductive diseases [68], osteoporosis [69], inflammatory diseases [70], 

and autoimmune diseases [71]. Furthermore, various preconditioning strategies have been 

introduced to enhance the therapeutic potential of MSCs, such as incubation with cytokines 
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and chemicals, as well as exposure to hypoxia and heat shock prior to transplantation into 

animal models. For instance, Ishiuchi et al. demonstrated that preconditioning MSCs in 

hypoxic conditions can increase their efficiency in preventing inflammation and fibrosis 

induced by ischemic/reperfusion injury of the kidney in mice. They found that hypoxic 

preconditioning increased the production of VEGF and HGF, which are responsible for 

suppressing fibrosis [72]. In addition, preconditioning MSCs at 42 °C for 1 h as heat 

shock showed an increase in the heat shock protein 70 (HSP70) level, which can suppress 

macrophage activation and improve acute lung injury in a mouse model [73]. Moreover, 

preconditioning MSCs with an optimal concentration of H2O2 has been shown to improve 

MSCs and increase their therapeutic activity for wound healing [74]. Furthermore, there 

are a large number of studies showing the use of chemicals, cytokines, and growth factors 

for preconditioning MSCs and thereby optimizing cell therapy. For example, Zhao et al. 

found that antioxidative enzymes in conditioned medium from MSCs treated with melatonin 

could protect human kidney cells against cisplatin toxicity [75]. Also, preconditioning of 

MSCs with resveratrol [76], thrombin [77], dimethyloxalylglycine [78], rapamycin [79], 

sevoflurane [80], and lithium chloride [81] were reported to enhance the protective effects of 

MSCs against diabetic cardiomyopathy, severe hypoxic ischemic encephalopathy, Alzheimer 

disease, liver ischemia/reperfusion injury, myocardial ischemia/reperfusion injury, and 

degenerated intervertebral disc in animal models, respectively.

Genetically engineered MSCs have been used in successful MSC-based therapy [82]. For 

example, VEGF-expressing MSCs were used to evaluate their effect on pain in a mouse 

model of Parkinson’s disease, where the cell therapy with VEGF-expressing MSCs was 

shown to reduce pain behaviors in mice, and inhibition of the expression of transient 

receptor potential vanilloid 1 (TRPV1) was shown to contribute to analgesia [83]. Rostami 

et al. used interleukin 23 receptor (RIL-23R)-expressed MSCs to treat a mouse model 

of autoimmune encephalomyelitis, which resulted in enhanced myelination and decreased 

inflammation in the white matter [84]. Hombach et al. used engineered MSCs expressing 

IL7-IL12 to activate chimeric antigen receptor (CAR) T cells and improve their efficiency 

in treating colorectal cancer cells. Genetically altered MSCs were used to transport immuno-

modulatory proteins to tumor tissue, enhancing the effectiveness of CAR T cells in treating 

solid tumors [85].

Encapsulation has been considered as a means of increasing the survival of MSCs. For 

example, Sahu et al. prepared microbeads by encapsulating MSCs with alginate, and showed 

that microencapsulation of MSCs can increase their secretion of cytokines such as IL-10, 

HGF, and sFAS. Co-culture of patient-derived osteoarthritis tissue explants with MSC 

microbeads increased the DNA content and number of Ki67+ cells, indicating proliferation 

and regeneration [86]. Similarly, Kim et al. showed that gelatin−hydroxyphenyl propionic 

acid (GH) hydrogel can be serve as a delivery platform for MSCs to be injected into 

the myocardium. Encapsulation of MSCs using GH hydrogel improved cell retention and 

survival both in vitro and in vivo. In a mouse myocardial infarction model, the use of MSC-

encapsulating GH hydrogels resulted in improved cardiac functional parameters, reduced 

fibrosis, and thicker infarcted walls [87]. Furthermore, Wang et al. demonstrated that an 

injectable hydrogel can be a suitable carrier for MSCs derived from the nucleus pulposus 

to treat degenerative intervertebral discs in rats. Their results showed that a combination of 

Adelipour et al. Page 7

Expert Opin Biol Ther. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MSCs and a 3D-RGD peptide-modified polysaccharide hydrogel can promote the efficiency 

of MSCs in repairing degenerative intervertebral discs in rats [88].

MSCs have been explored for their potential use in constructing artificial tissues or 

organoids. For example, Pitacco et al. created a cartilaginous graft using MSCs and 

fibrinogen to repair bone defects. They used a 3D bioprinting strategy to create a 

fibrin-based scaffold and seeded it with MSCs. The scaffold was then cultured under 

chondrogenesis conditions to form a cartilaginous structure, which was then implanted 

into a rat femoral bone defect model. The results showed that the cartilaginous structure 

was remodeled into bone with a high level of vascularization [89]. In addition, Lin et al. 

developed scaffolds made of a gelatin-methacryloyl matrix and various concentrations of 

calcium silicate, which were loaded with human dental pulp stem cells for odontogenic 

regeneration. They demonstrated that the stem cells can differentiate into odontocyte-like 

cells in the presence of calcium silicate, which suggests a possible approach for dental 

tissue engineering [90]. Furthermore, Ke et al. used a bioprinting strategy to create a trachea 

construct made of polycaprolactone and MSC-laden hydrogels, where the bioprinted trachea 

had both smooth muscle and cartilage structures expressing the related biomarkers [91].

2.4. Application of MSC-based therapy in clinical trials

Various clinical trials have utilized MSCs derived from different sources for treating 

different diseases, as shown in Table 1. Most of these trials have demonstrated the safety 

of MSCs without any serious side effects. However, one study evaluated the safety and 

efficacy of using autologous MSCs in combination with standard therapy for treating kidney 

transplant recipients with biopsy-proven chronic active antibody-mediated rejection (AMR). 

The study, which enrolled three patients, was terminated early due to adverse events. The 

results indicated that the treatment did not improve AMR in any of the patients, and serious 

adverse events occurred in one patient when the therapy was administered in the late phase 

after kidney transplantation [92]. The effectiveness of MSCs has been demonstrated in 

clinical trials for treating ischemic stroke, newly diagnosed type-1 diabetes patients, type 

2 diabetes, diabetic foot ulcers, knee osteoarthritis, and detrusor underactivity [93–98]. 

However, the effectiveness of MSCs in treating COVID-19 remains inconclusive, with some 

studies showing significant effects on disease response while others have not demonstrated 

any significant effects [99–102].

In regard to the use of autologous or allogenic MSCs, the evidence has shown that 

autologous MSCs have a positive effect on ischemic stroke [95], type 1 diabetes [94], knee 

osteoarthritis [93], and detrusor underactivity [98], while they have not shown a positive 

effect on cardiomyopathy and chronic active antibody-mediated kidney graft rejection. 

It appears that most studies using autologous MSCs have reported positive outcomes. 

However, the application of allogenic MSCs to treat certain diseases, such as type 2 

diabetes [96], diabetic foot ulcer [97], systemic lupus erythematosus [103], and COVID-19 

[101,102], has been reported to be safe and effective.
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3. Exosome secreted by MSCs

3.1. Isolation and characterization

Extracellular vesicles (EVs) include a variety of vesicles that differ in size, content, and 

biogenesis. The three main types of extracellular vesicles are exosomes, microvesicles, and 

apoptotic bodies. Microvesicles and apoptotic bodies are released from living or dying cells, 

respectively, by outward budding of the plasma membrane. Exosomes are typically smaller 

than microvesicles and apoptotic bodies and are formed through the endocytic pathway 

[104]. Exosomes released from MSCs are being discovered as mediators for cell-free 

regenerative medicine. These small EVs, with sizes less than 150 nm, are produced from 

endosomes, created by the invagination of the plasma membrane, and released through 

membrane fusion. Exosomes contain two layers of phospholipids enriched in ceramide, 

sphingomyelin, and cholesterol. Exosomes also contain various biomolecules, including 

transmembrane proteins (CD63, CD9, and CD81), mRNA, microRNA, and DNA, which 

make them potential therapeutic agents [105,106].

There are several methods available for isolating and enriching exosomes secreted 

from cells, including ultracentrifugation, size exclusion chromatography, polymer-based 

precipitation, immunoaffinity capture, and ultrafiltration. Each method has its own 

advantages and limitations, and the choice of isolation method should be based on the 

specific research question and characteristics of the exosome sample being studied [107].

To characterize exosomes, several criteria are typically used. According to the MISEV2018 

guidelines, in order to demonstrate the extracellular vesicle nature of exosomes, the 

presence of certain proteins, such as transmembrane or GPI-anchored proteins (e.g., 

CD63), cytosolic proteins (e.g., heat shock protein HSP70), and the absence of major 

components of non-extracellular vesicle co-isolated structures (e.g., apolipoproteins A1/2 

for lipoproteins or Tamm-Horsfall protein for protein and protein/nucleic acid aggregates) 

must be demonstrated. To validate small EVs, it is necessary to evaluate transmembrane, 

lipid-bound, and soluble proteins associated with other intracellular compartments other 

than the plasma membrane or endosomes (e.g., histones for the nucleus or cytochrome C 

for mitochondria). Additionally, to confirm the functional activities of EVs, it is necessary 

to analyze secreted proteins recovered with EVs such as cytokines and growth factors. 

In addition to measuring protein content, it is necessary to characterize EVs using two 

distinct methods of single vesicle analysis. Various methods are available for evaluating 

single vesicles, including imaging techniques such as electron or atomic force microscopy, 

which can reveal the bilayer lipid membrane of EVs, and single-particle analyzers such as 

nanoparticle tracking analysis (NTA), which can determine the size of EVs (Figure 3) [108].

Mass spectrometry, which ionizes molecules and separates them based on their mass-to-

charge ratio, is also a valuable analytical technique for identifying and characterizing 

exosomes. Mass spectrometry can detect the proteins, lipids and other molecules present 

in exosomes, providing a comprehensive overview of their content [107]. Due to its ability to 

identify, mass spectrometry is a powerful tool for characterizing exosomes.
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3.2. Application of MSCs-derived exosomes in regenerative medicine and challenges

Exosomes derived from MSCs possess unique properties that make them a suitable 

candidate to be used for the treatment of certain diseases. These properties include 

the capacity for regeneration, immunomodulation, and even anti-tumor effects. They can 

migrate to injured tissues such as MSCs and penetrate tight tissues like the blood-brain 

barrier. Using exosomes as an alternative to MSC-based therapy appears to have some 

advantages, such as avoiding harmful effects like malignant transformation, immune 

rejection, and the risk of infusion toxicity. In recent years, a wide range of studies have 

focused on the use of exosomes derived from MSCs to improve diseases in vitro, in vivo, 

and in clinical trials [109]. In the line of research, Rong et al. used exosomes released 

from bone marrow-derived MSCs to improve fibrosis in a rat model of liver fibrosis. Their 

findings demonstrated that exosomes can contribute to the inhibition of hepatic stellate cell 

activation through the Wnt/β-catenin pathway, which is responsible for liver fibrosis [110]. 

In another study, exosomes derived from MSCs were found to promote neurogenesis and 

improve cognitive function in an Alzheimer’s disease mouse model. This was indicated by 

the increased levels of doublecortin and polysialylated neuronal cell adhesion molecules in 

the subventricular zones of the brains of mice, indicating neurogenesis and the presence of 

neuroblastoma in these areas [111]. In addition, Zhang et al. applied exosomes derived from 

MSCs to improve diabetic osteoporosis in rats, and showed that exosome therapy suppressed 

NLRP3 inflammasome activation in osteoclasts, resulting in a decrease in bone resorption 

[112]. It has been reported that ultrasonication for one minute can be used to shear intact 

human umbilical cord MSCs and extract a higher yield of EVs. The EVs extracted using 

ultrasonication demonstrate similar properties to those extracted without the ultrasonication 

step. Furthermore, EVs derived from MSCs have been shown to increase the proliferation 

of dermal fibroblasts, upregulate the expression of elastin, collagen, and fibronectin proteins, 

and downregulate matrix metalloproteinases-1 (MMP-1) and MMP-3 in vitro. An in vivo 

study has also demonstrated wound healing in mice after treatment with EVs [113].

Exosomes have recently been considered as nanoparticle carriers for drug and biomolecule 

delivery in biological systems. There are some advantages of using exosomes over synthetic 

nanoparticles in drug delivery such as biocompatibility and durability, as well as capability 

to communicate with distant cells via their intrinsic delivery mechanism, fusion, and 

intercellular communication capacities [109].

3.3. Strategies to improve MSC-secreted exosomes therapy

Table 2 lists several strategies that have been used to engineer exosomes to be more potent 

in the treatment of a wide range of diseases. Several methods have been used to load 

cargo into exosomes, including incubation of exosomes or exosome-derived MSCs with 

cargo, transduction of the desired cargos into exosomes or exosome-secreting MSCs using 

a transfection reagent, and physical treatment of exosomes to create some micropores on 

the surface of the exosomes, allowing cargo to enter. Some methods such as electroporation, 

freeze-thaw, dialysis, surfactant treatment, and sonication are among the physical techniques 

used to load exosomes and extracellular vesicle with cargo [114,115].
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Wei et al. prepared doxorubicin-loaded exosomes by incubating exosomes isolated from 

MSCs with doxorubicin and demonstrated that the doxorubicin-loaded exosomes could be 

more efficiently entered into the osteosarcoma MG63 cell line than free doxorubicin and 

exerted significantly improved anti-tumor effects [116]. Yang et al. demonstrated a higher 

content of miR-125a and miR-125b in exosomes derived from IFN-γ-pretreated MSCs. 

The targets of miR-125a and miR-125b are the 3′-UTR of Stat3, which can suppress Th17 

cell differentiation upon binding with miR-125a and miR-125b. The researchers treated a 

mouse model of colitis with these engineered exosomes and observed a suppression of 

inflammation via inhibition of Th17 cell differentiation and an increased ratio of Treg 

cells. This, in turn, resulted in a significant improvement in the disease activity index and 

histological score of colitis [117].

Furthermore, Chen et al, generated exosomes enriched in miR-375 by using lentiviral 

transfection to load MSC-derived exosomes with miR-375, and demonstrated that the 

exosomes enriched in miR-375 improved the differentiation of MSCs into osteoblasts 

and increased bone repair in a calvarial defect model of the rat. They also showed that 

the combination of exosomes with hydrogel can regulate their release and enhance their 

efficiency [118]. In a separate study, exosomes were extracted from MSCs that had been 

transduced with lentivirus carrying HIF-1α and applied to improve a model of myocardial 

infarction in vitro. For this purpose, human umbilical vein endothelial cells (HUVECs) 

were cultured under hypoxic condition in the presence or absence of exosome derived from 

HIF-1α-overexpressed MSCs. The results showed that HIF-1α-overexpressed exosomes can 

promote the proliferation, migration, and vessel formation ability of HUVECs. Furthermore, 

administration of HIF-1α-overexpressed exosomes in a rat model of myocardial infarction 

resulted in improved heart function by inducing the overexpression of proangiogenic factors 

and enhancing angiogenesis [119].

Hydrogel encapsulation was used to improve the efficiency of exosomes derived from MSCs 

in other studies. In this regard, Zhang et al. used hyaluronic acid hydrogel to encapsulate 

MSC-derived exosomes and combined them with a scaffold made of nanohydroxyapatite/

poly-ε-caprolactone to accelerate bone repair in a rat model of cranial defect. Their 

results showed an acceleration in bone repair that can be attributed to the angiogenic 

action of exosomal miR-21 [120]. Furthermore, Yang et al. utilized F127 hydrogel to 

encapsulate exosomes derived from MSCs for the treatment of full-thickness cutaneous 

wound in a diabetic rat model. Their findings demonstrated that the combination of F127 

hydrogel with exosomes from MSCs can enhance the efficiency of exosomes. Encapsulated 

exosomes promoted angiogenesis in granulation tissues in a chronic diabetic wound, thereby 

accelerating wound healing and skin regeneration [121]. However, Kostennikov et al. 

compared the efficacy of local (encapsulated in fibrin matrix) and systemic transplantation 

of MSC-EVs in promoting spinal cord regeneration in rats after injury. The study showed 

that intravenous transplantation of MSC-EVs showed more significant therapeutic effects 

compared to the treatment of fibrin matrix-encapsulated MSC-EVs in the spinal cord injury 

area [122].

Surface modification of exosomes is reported as a strategy to increase the therapeutic 

potential of exosomes. Huang et al. modified the surface of exosomes using a cell-
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penetrating peptide-linked phospholipid to enhance the penetration of exosomes to 

endothelial cells. For this purpose, cell-penetrating peptide-linked phospholipids were 

synthesized and mixed with exosomes to incorporate into their surfaces. They showed that 

following incubation of endothelial cells with exosomes, the modified exosomes can be 

highly detected in the endothelial cells compared to the unmodified exosome [123]. Also, 

Wu et al. modified the surface of exosomes derived from MSCs with the CREKA peptide, 

which is able to target fibrin. They showed that exosomes containing the CREKA peptide 

can accumulate in the bones of rats with a femoral defect model and increase bone repair 

[124].

Recently, bioprinting technology has been used to create scaffolds containing exosomes 

derived from MSCs for use in regenerative medicine [125–127]. For instance, Chen et 

al. developed a scaffold made of cartilage extracellular matrix, gelatin methacrylate, and 

exosomes from MSCs to regenerate osteochondral defects in rabbits. The scaffold was 

printed using desktop-stereolithography technology, and its effectiveness was evaluated in 

a rabbit model of osteochondral defects. The results showed that the scaffold led to the 

restoration of chondrocyte mitochondria, polarization of macrophages from M1 to M2, 

and regeneration of cartilage in the osteochondral defect model [125]. In a separate study, 

Sun et al. integrated exosomes derived from MSCs into a scaffold made of bioprinted silk 

fibroin, collagen I, and nano-hydroxyapatite. They then implanted this scaffold into a rat 

model of alveolar bone defects. Their findings showed that the scaffold containing exosomes 

promoted the formation of blood vessels and bone tissue, effectively repairing the defects in 

the alveolar bone [127].

There are, however, several limitations in the clinical application of exosomes. Exosome 

production by MSCs is associated with the sources, activities, and microenvironment of 

MSCs, and there is no specific criteria for MSC-derived exosome identification. Another 

important problem in exosome preparation is the heterogeneity of the extracellular vesicle 

population. Some other problems, like low yield, various methods of exosome extraction, 

and a lack of quality assurance assays, remain unsolved [109,128]. However, several 

methods have been developed to increase the production of EVs. These methods can be 

classified into three main categories. Firstly, one approach involves creating high-capacity 

“cell factories” that can naturally produce more EVs. This can be achieved through the 

use of bioreactor systems and by modulating culture conditions to optimize EV production. 

Secondly, researchers induce EV secretion by exposing cells to various stressors such as 

physical and chemical stimulation. This approach has been shown to increase the yield of 

EVs, although further optimization is necessary. A third approach involves fragmenting cells 

to create biomimetic vesicles that closely mimic the properties of natural EVs. This can be 

achieved using techniques such as low-frequency ultrasound and nitrogen cavitation [129].

3.4. Application of exosomes secreted by MSCs in clinical trials

Exosomes, which are secreted by MSCs, have been used to treat certain illnesses such 

as COVID-19 in recent years. Sengupta et al. administered a single dose of ExoFlo, a 

bone marrow MSC-derived exosome agent, an intravenous treatment, to 24 critically ill 

COVID-19 patients suffering from acute respiratory distress syndrome. The treatment was 
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well-tolerated, with no negative effects observed within 72 hours of administration, and 

83% of patients survived. Among the survivors, 71% recovered, 13% remained in critical 

condition but stable, and 16% died from causes unrelated to the treatment. After receiving 

the treatment, the patients’ clinical condition and oxygenation improved substantially, as 

evidenced by improvements in immune cell counts and acute phase reactants in laboratory 

values. ExoFlo appears to be a promising candidate for treating severe COVID-19 due 

to its safety profile and its ability to improve oxygenation, regulate cytokine storm, and 

restore immunity [130]. Also, exosomes derived from human adipose-derived MSCs were 

administered via nebulizer as a method of treating COVID-19 in a phase 2a single-arm trial 

called MEXCOVID. The trial aimed to explore the safety and efficacy of aerosol inhalation 

of exosomes in seven COVID-19 patients. The patients were given daily doses of haMSC-

Exos for five days, and no adverse events or clinical instability occurred during or after the 

treatment. Additionally, patients experienced a slight increase in serum lymphocyte counts 

and varying degrees of improvement in pulmonary lesions [131]. Moreover, a pilot trial was 

conducted to investigate the safety and efficacy of nebulization therapy with exosomes of 

mesenchymal stem cells (MSCs) for treating COVID-19 pneumonia by Chu et al. The trial 

involved seven patients who were treated with nebulization of MSC-derived exosomes. The 

study found that nebulization of MSC-derived exosomes was a safe and effective method 

that improved patient outcomes. Patients showed improved absorption of pulmonary lesions 

and reduced hospitalization duration for mild cases of COVID-19 pneumonia [132]. The 

mentioned studies on exosome therapy for COVID-19 demonstrated no adverse effects 

following administration through both intravenous and inhalational routes. Furthermore, the 

positive effects of exosomes derived from MSCs were observed in patients with COVID-19, 

including improvements in immune cell counts, acute phase reactants, pulmonary lesions, 

and oxygenation levels.

4. Expert opinion

In recent years, the use of MSCs and their secreted exosomes has shown unique advantages 

in regenerative medicine. Several mechanisms have been proposed to explain how MSCs 

can influence their target cells or tissues. Among them, exosomes secreted by MSCs have 

attracted much attention for their key role in the therapeutic effects of MSCs on their 

targets. In preclinical studies, both MSCs and their secreted exosomes have demonstrated 

significant potential in the treatment of various diseases. Promising results in clinical trials 

have also supported the safety of MSC and exosome therapy, underscoring the need for 

further exploration in this field. However, the efficacy of MSCs in treating some diseases 

remains uncertain, necessitating the implementation of strategies aimed at enhancing their 

therapeutic benefits. In certain situations, exosomes may serve as a viable alternative to 

MSCs, particularly in the context of lung disease where their small size enables inhalation 

therapy.

Regarding economics, MSC-based therapies can indeed be costly; however, they have the 

potential to be cost-effective, particularly in cases of chronic diseases that require prolonged 

treatment. Additionally, MSC-based therapies may decrease the need for conventional drugs 

and improve patient outcomes. Nonetheless, the absence of established guidelines for 

the application of MSCs or their secreted exosomes underscores the need for continued 
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patient follow-up in clinical trials, as this will help standardize methods and facilitate the 

development of more efficient treatments using MSCs or their secreted exosomes.

Despite the promising potential of MSCs and their exosomes, there are several unsolved 

challenges and limitations that need to be addressed. In regenerative medicine, the lack of 

reproducibility and comparability of results between studies poses a challenge for the use 

of MSCs or their exosomes. Variations in the preparation of MSCs from different tissue 

and different donors, variation in the routes of administration, and individual host responses 

make it difficult to analyze results from different studies. To overcome these challenges, 

it is necessary to determine the optimal stage of each degenerative disease for MSC-based 

therapy, identify the most suitable MSC source for each specific disease, establish the best 

administration method for each degenerative condition, and consider personalized medicine. 

By conducting a series of well-organized studies for each disease, it may be possible 

to develop separate guidelines for MSC-based or exosome therapy, offering a promising 

avenue for efficient treatment and improving the quality of life for patients suffering from 

degenerative diseases.

In the context of exosomes, while they appear to be safe, the yield and purity of exosomes 

derived from MSCs are often low. To address this issue, several methods have been 

developed to increase exosome production, including bioreactor systems, culture condition 

modulation, induction of various stressors, and cell fragmentation. While these methods 

show promise for increasing exosome production, further research is needed to optimize 

them and improve the yield and quality of exosomes. Achieving this may enable the 

enhancement of the therapeutic potential of exosomes and advance their use in clinical 

applications. Currently, several methods have been developed to improve the stability and 

efficiency of exosomes, including genetic engineering of exosome content, encapsulation, 

and bioprinting technology. However, the development of novel strategies for modifying 

MSCs and their exosomes holds promise for further enhancing their efficiency.

On the other hand, since MSC-based therapies are classified as biological products, 

regulatory agencies have strict guidelines for their use in clinical practice. These guidelines 

need to be standardized, streamlined, and harmonized across different countries and regions 

to facilitate widespread adoption.

The ultimate goal in the field of MSCs or their exosomes-based therapy is to develop safe 

and effective therapies for a wide range of degenerative diseases, which includes optimizing 

cell-based therapies by using novel strategies to increase their efficiency. Further research 

can lead to the development of new combination therapies that utilize MSCs and their 

products to improve the outcomes of existing treatments, as well as provide new insights 

into disease pathology and development.

While the study of MSCs and their exosomes is a promising area of research, it is 

important to focus on novel strategies to enhance the efficiency of MSCs or their exosomes 

for application in regenerative medicine. Additionally, it is crucial to develop proper 

guidelines for using specific MSCs or their exosomes to treat specific stages of particular 

degenerative conditions. Moreover, the combination of MSC (exosome)-based therapy 
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with other treatments may offer potential benefits. Finally, the field of MSCs and their 

secreted exosomes is expected to continue evolving and growing in the coming years, with 

ongoing research aimed at improving the understanding of MSCs and exosome biology and 

developing more effective therapies for a range of diseases and conditions.
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ISCT International Society for Cellular Therapy

TF Tissue factor

MHC Major histocompatibility complex

TGF-β1 Transforming growth factor-1

IFN-γ Interferon-γ

TNF-α Tumor necrosis factor- α

HGF Hepatocyte growth factor

FGF Fibroblast growth factor
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SDF-1 Stromal cell-derived factor 1
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ERK1/2 Extracellular signal-regulated kinases
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PI3K Phosphatidylinositol-3-kinase

VEGF Vascular endothelial growth factor
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MCP-1 Monocyte chemoattractant protein-1

IL-8 interleukin-8

YAP Yes-associated protein

HSP70 Heat shock protein 70

TRPV1 Transient receptor potential vanilloid 1

RIL-23R Interleukin 23 receptor

CAR Activate chimeric antigen receptor

GH Gelatin−hydroxyphenyl propionic acid

NTA Nanoparticle tracking analysis

MMP-1 Matrix metalloproteinases-1
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Article highlights

• MSCs and their secreted exosomes have emerged as a promising therapeutic 

strategy to treat a variety of diseases.

• MSCs can influence their target cells through direct contact, mitochondrial 

transfer, paracrine function, and exosomes, each of which plays a unique role 

in regenerative medicine.

• Exosomes derived from MSCs are useful for cell-free regenerative medicine 

due to their capacity for regeneration, immunomodulation, and anti-tumor 

effects, among other properties.

• Despite the advantages of MSCs, challenges in their preparation and 

application still exist, leading to the development of various strategies to 

optimize MSC-based therapy.

• To optimize MSC or their secreted exosome-based therapy, a variety of 

strategies have been applied to enhance their survival, stability, and secretory 

capacity. These strategies include ex-vivo preconditioning strategies, genetic 

modification, encapsulation and the application of bioprinting technology.
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Figure 1. The mechanisms of mesenchymal stem cells’ (MSCs) actions.
(a) MSCs can differentiate into desired cell types, allowing them to replace injured cells. 

(b) MSCs possess immunomodulatory properties that enable them to impact immune 

cells and inhibit inflammation. (c) MSCs can directly contact target cells and affect 

intracellular cascades to correct abnormalities. Additionally, MSCs may function through 

mitochondrial transfer, secretion of exosomes, and release of other biomolecules. Examples 

of these biomolecules include nitric oxide (NO), indoleamine-pyrrole 2,3-dioxygenase 

(IDO), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and 

hepatocyte growth factor (HGF).
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Figure 2. Application of mesenchymal stem cells (MSCs) in regenerative medicine.
MSCs can be used as unmodified cells due to their therapeutic effects in treating a 

wide range of diseases. Preconditioning of MSCs with heat, hypoxia, chemicals, natural 

molecules, and biomolecules has been shown to improve their efficiency. Genetically 

modified MSCs, which overexpress certain biomolecules, may increase the therapeutic 

effect of MSCs. Encapsulating MSCs improves their stability and survival and allows for 

controlled release of MSCs to target tissues. Additionally, MSCs can be applied to scaffolds 

to create artificial tissues using 3D bioprinting technology.
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Figure 3. The methods for exosome characterization.
To characterize exosomes, their protein contents are examined by checking for the presence 

of positive protein markers and the absence of negative markers. Additionally, it is necessary 

to use two different techniques to assess exosomes at the single extracellular vesicle 

level, namely imaging methods and single particle analysis techniques which analyze the 

biophysical properties of the vesicles.
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