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Abstract

BACKGROUND: Despite successful preclinical treatment studies to improve neurocognition

in the Ts65Dn mouse model of Down syndrome, translation to humans has failed. This raises
questions about the appropriateness of the Ts65Dn mouse as the gold standard. We used the novel
Ts66'Yah mouse that carries an extra chromosome and the identical segmental Mmul6 trisomy as
Ts65Dn without the Mmul7 non-Hsa21 orthologous region.

METHODS: Forebrains from embryonic day 18.5 Ts66Yah and Ts65Dn mice, along with euploid
littermate controls, were used for gene expression and pathway analyses. Behavioral experiments
were performed in neonatal and adult mice. Because male Ts66'Yah mice are fertile, parent-of-
origin transmission of the extra chromosome was studied.

RESULTS: Forty-five protein-coding genes mapped to the Ts65Dn Mmul7 non-Hsa2l
orthologous region; 71%-82% are expressed during forebrain development. Several of these
genes are uniquely overexpressed in Ts65Dn embryonic forebrain, producing major differences in
dysregulated genes and pathways. Despite these differences, the primary Mmu16 trisomic effects
were highly conserved in both models, resulting in commonly dysregulated disomic genes and
pathways. Delays in motor development, communication, and olfactory spatial memory were
present in Ts66'Yah but more pronounced in Ts65Dn neonates. Adult Ts66Yah mice showed
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milder working memory deficits and sex-specific effects in exploratory behavior and spatial
hippocampal memory, while long-term memory was preserved.

CONCLUSIONS: Our findings suggest that triplication of the non-AHsa21 orthologous Mmul7
genes significantly contributes to the phenotype of the Ts65Dn mouse and may explain why
preclinical trials that used this model have unsuccessfully translated to human therapies.

Ninety-five percent of cases of Down syndrome (DS) are caused by the presence of a

freely segregating third copy of human chromosome 21 (Hsa21), which carries 235 protein-
coding genes, 411 noncoding genes, and 188 pseudogenes (https://useast.ensembl.org). The
multigenic nature of DS complicates the understanding of its etiology and the development
of mouse models that recapitulate the human karyotype, genotype, and phenotype. Hsa21
orthologous genes map to 3 syntenic regions on mouse chromosomes (Mmu) 10 (from Paxk
to Prmt2, 2.1 Mb, 39 genes), 16 (from Lipito Zbtb21, 22.5 Mb, 119 genes), and 17 (from
Umod/1to Rrplb, 1.1 Mb, 19 genes). Because Mmu/16 carries the largest number of Hsa21
orthologous genes, it has been used to generate several partial trisomy models, including the
Ts(1716)65Dn/J (Ts65Dn) mouse (1-5).

For the past 25 years, the Ts65Dn mouse has been the gold standard model in which most
preclinical treatment studies have been conducted, many of which have shown promising
positive effects on brain and behavior phenotypes. Translation of these treatments to human
trials, however, has not been successful (6,7). As in humans, the Ts65Dn mouse carries

a freely segregating extra chromosome that was generated by a translocation of the distal
region of Mmu16 onto the centromeric region of Mmud7. This results in triplication of
Hsa21 orthologous genes and ~50-60 Mmul7 non-Hsa21 orthologous protein-coding genes
(8,9).

The contribution of the triplicated non-Hsa21 orthologous Mmul7 genes to the Ts65Dn
phenotype has not been specifically elucidated. Here, we used the new Ts66Yah model, in
which CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 was used
to eliminate non-orthologous Mmul7 genes from the Ts65Dn extra chromosome (10), to
investigate the effects of the Mmul7 non-Hsa21 orthologous genes. We hypothesized that
these genes may trigger transcriptional and pathway dysregulation that is unrelated to DS
and may be one reason why therapies that looked promising in the Ts65Dn mouse failed to
translate in humans with DS.

METHODS AND MATERIALS

Animal Rederivation and Breeding

All experiments were approved by the National Human Genome Research Institute
Institutional Animal Care and Use Committee (Protocol G-17-1). Mice were housed in
standard cages with food and water ad libitum in a controlled environment (temperature: 20
°C; humidity: 60%; 12 hour light/dark cycle with lights on at 7:00 am). The Ts65Dn and
Ts66'Yah mouse strains used in these studies were all maintained on the same B6C3H mixed
genetic background (Jackson Laboratory stock No. 003647).
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We obtained 3 Ts66Yah founder female mice from the Herault Laboratory on a B6C3B
genetic background (with the C3B line as a C3H/HeH congenic line for the BALB/c allele at
the Pde6blocus) (11). The founder Ts66Yah females were mated with BE6EIC3Sn.BLiIAF1/J
(F1 hybrid) males. The sperm of 4 different Ts66'Yah males were then used via in vitro
fertilization to expand the colony.

Ts(1716)65Dn/DnJ (Ts65Dn; stock No. 005252) mice were obtained from the Jackson
Laboratory. Because Ts65Dn male mice are infertile (12,13), Ts65Dn female mice were
mated with B6EIC3Sn.BLiAF1/J (F1 hybrid) males. Thus, the extra chromosome could only
be transmitted through the female parent.

To investigate the effects of parent-of-origin transmission of the extra chromosome, 2
different breeding schemes were used for the Ts66Yah mice: 1) cohort 1 was generated

by mating Ts66Yah females with F1 males to mimic breeding in Ts65Dn mice and 2) cohort
2 was generated by mating Ts66Yah males with F1 euploid (Eup) females. The F1 Eup dams
more accurately represent human pregnancies in which the mother is euploid.

Timed matings were set up as described previously (14,15). On embryonic day 18.5 (E18.5),
pregnant females were euthanized, and embryonic forebrains were dissected and snap frozen
in liquid nitrogen for gene expression studies (Ts66Yah = 45, EupTsesyan = 59, Ts65Dn =
49, and EUPTs65Dn = 44).

Genotyping and Gene Expression Studies

To determine genotype and sex, 50 ng of purified DNA from tail snips or ear punches was
analyzed using multiplex polymerase chain reaction as described previously (15). Primers
specific to Ts66Yah, Ts65Dn, and SRY were used (10,14).

RNA was isolated from E18.5 forebrains in both strains and hybridized on Clariom S

HT arrays (Thermo Fisher Scientific). Gene expression analysis was performed on the
normalized data as described previously (14,15). A Benjamini-Hochberg false discovery
rate of 10% was used for multiple comparison correction of differentially expressed (DEX)
genes. The marginally expressed genes (expression ratios < 0.8 and > 1.2 and raw p values
<.01) were used for pathway analyses as described previously (14,15). Pathway analysis
was performed using Ingenuity Pathway Analysis (IPA) and the Database for Annotation,
Visualization, and Integrated Discovery (DAVID).

Behavioral Studies

Detailed descriptions of behavioral tests performed are in the Supplement. These were
conducted in the light phase in neonates and adults (14,15). For neonates (between postnatal
days 2 and 12), the open field was used to investigate motor development, ultrasonic
vocalization (USV) to investigate communication development, and the homing test to
examine olfactory spatial memory. Animal numbers for neonatal studies were Ts66Yah (11
females and 19 males for cohort 1 and 21 females and 40 males for cohort 2); Ts65Dn

(17 females and 16 males); and Eup littermates (26 females and 19 males for EupTsggyan
cohort 1; 50 females and 37 males for EupTsggyan cohort 2; and 35 females and 22 males for

EupTsesDN)-
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For adult mice, exploratory behavior (open field), motor coordination (rotarod), working
memory (Y-maze), long-term memaory (novel object recognition [NOR]), contextual
hippocampal memory (fear conditioning), and hippocampal-dependent spatial (Morris water
maze [MWM]) tests were examined in Ts66Yah and Eup littermates starting at 3-4 months
of age. Because our group and others previously reported behavioral deficits in Ts65Dn
adult mice using these tests (14,16,17), we did not repeat them. All behavioral tests using
Ts66Yah mice were performed in cohorts 1 and 2, except for the MWM, which was only
performed in cohort 2. For all experiments, the investigator was blinded to the genotype.
Cohort 1 included 11 females and 17 males for Ts66Yah and 24 females and 17 males for
Eup. Cohort 2 included 13 females and 36 males for Ts66Yah and 13 females and 34 males
for Eup.

Statistical Analysis

In all analyses, trisomic mice were compared with their Eup littermates and matched by sex.
Data analysis was performed using GraphPad Prism software (https://www.graphpad.com/).

Differences between genotypes or sexes were calculated using the ¢test when the data
were normally distributed and the nonparametric Mann-Whitney test when the normality
assumption was not satisfied. Differences between 3 or more groups were tested using
one-way analysis of variance (ANOVA) when the data were normally distributed. The
nonparametric Kruskal-Wallis test was used when the normality assumption was not
satisfied. Repeated-measures ANOVA and mixed-effects model were used for time course
analyses. Statistically significant results were further analyzed using the post hoc Tukey-
Kramer or Conover test, as indicated. A pvalue < .05 was considered statistically
significant.

RESULTS

Expression of Mmul6 Trisomic Genes in Embryonic Forebrain

The Ts66Yah and Ts65Dn models are both trisomic for the distal Mmul6 region
encompassing Mrp139to Zbtb21 (104 genes). The forebrains from both strains showed
upregulation of most genes in this region (Figure 1A; Table S1). The average expression
ratios for the triplicated genes on Mmul6 in the brains of Ts65Dn and Ts66'Yah embryos
were 1.21 and 1.14, respectively (range 1.15-1.5). In Ts65Dn and Ts66'Yah E18.5
forebrains, 95% and 91% of the respective overexpressed Mmul6 genes overlapped (Figure
2A).

Expression of Mmul17 Non-Hsa21 Orthologous Genes in Embryonic Forebrain

The Mmul7 non-Hsa21 orthologous (hereafter referred to as Mmul7 non-orthologous)
region in the Ts65Dn mouse encompasses 45 protein-coding and 81 non—protein-coding
genes (University of California Santa Cruz and Ensembl Genome Browsers, GRCm39
build). Using probe signal intensity from our microarray dataset and publicly available data
from the Mouse Genome Informatics database, we found that most of the protein-coding
genes in this region (82% in our microarray data and 71% in the Mouse Genome Informatics
data) are expressed in the developing forebrain (Table S2).
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In the Ts65Dn embryonic forebrain, the average expression ratios of these Mmu17 non-
orthologous genes was 1.28 compared with Eup (Figure 1B; Table S1). When compared
with our previously published gene expression data in the Ts65Dn embryonic forebrain
at E15.5 (14), we identified 14 Mmu17 non-orthologous genes that were consistently
overexpressed at both E15.5 and E18.5 (Table 1; Table S1). In contrast, the average
expression ratio of genes that map to the MmuL7 Scaf8to Pdel0aregion was 0.99 in
the Ts66'Yah embryonic brain versus Eup.

Differentially and Marginally Expressed Genes

Ts66Yah E18.5 forebrains had 97 differentially expressed (DEX) genes (91 up- and 6
downregulated); 54 (55.7%) mapped to the Mmu16 trisomic region, while the 43 remaining
DEX genes were disomic (Table S3). Ts65Dn E18.5 forebrains had 91 DEX genes (87

up- and 4 downregulated); 54 (59.3%) mapped to the Mmul6 trisomic region. Twenty-five
of the DEX genes in the Ts65Dn E18.5 forebrain mapped to the Mmul7 non-orthologous
region while only 12 DEXs were disomic (Table S3). Although Ts66'Yah and Ts65Dn mice
shared 90% of Mmul6 DEX genes, only 5 disomic protein-coding DEX genes overlapped
between these 2 models, including Fam173a, IfitmZ2, Rbm3, Pik3r3, and Cadk/3 (Table S3).

Comparison of marginally expressed genes in both strains showed overlap of only 63
MmuA6 trisomic and 12 disomic genes, including the 5 common disomic genes cited above
(Figure 2B).

Dysregulated Signaling Pathways

Ts65Dn embryonic forebrains had more dysregulated pathways and cellular processes
than Ts66Yah using IPA and DAVID (Table S4). Ts66Yah analyses demonstrated
upregulation of several inflammation-associated pathways, including T-cell exhaustion,
TH1, interferon signaling, and STAT3 signaling. Additionally, upregulation of the NRF2-
mediated oxidative stress response, FGF signaling, and HIF1A signaling was observed. In
contrast, downregulated pathways included translation initiation, G-protein signaling, and
aryl hydrocarbon receptor signaling (Figure 2C).

Cellular processes and signaling pathways that were commonly dysregulated in both models
included interferon signaling, sirtuin signaling, PISBK/AKT signaling, NRF2-mediated
oxidative stress response, cytoskeleton organization, and zinc ion binding (Figure 2C; Table
S4).

Neonatal Behavioral Testing

Neonatal behavioral data details are presented in Table S5.

Motor Development (Open Field).—During the first week of life, the movement of
pups is limited and restricted to body rotation. As they acquire more physical strength, pups
increasingly move and explore their environment. We measured movement and rotation as a
proxy for motor development and maturation.
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Mixed-effects analysis demonstrated that cohort 1 Ts66Yah males exhibited significant
delays in motor development compared with Eup as evidenced by a lower number of body
rotations and reduced total distance traveled (Figure 3A, B). Ts66Yah females, however,
showed normal motor development profiles (Figure 3C, D). For cohort 2, both male and
female pups showed delayed motor development with significant reduction in the number of
body rotations (Figure 3).

In Ts65Dn mice, although females were more severely affected, neonates from both sexes
displayed motor development delays versus their Eup littermates with a significant reduction
in the number of body rotations and total distance traveled (Figure 3).

Communication Development (Ultrasonic Vocalization).—During the first
postnatal week, the number of ultrasonic vocalizations (USVs) uttered by pups as a means
of communication with their mother increases. It then steadily decreases during the second
week to reach a minimum around the time the pups’ eyes open. Over these 2 weeks, pups
develop a repertoire of USVs that can be classified into categories based on their duration
and complexity.

In Ts66Yah cohort 1, both trisomic male and female neonates uttered significantly more
USVs than Eup starting at the end of the first postnatal week (Figures 4, 5A). Similarly,
cohort 2 Ts66Yah female pups exhibited increased USVs versus Eup, while Ts66Yah and
Eup male neonates had similar numbers of USVs throughout the neonatal period (Figures 4,
5A).

When different USV categories were examined, cohort 1 male and female Ts66Yah pups
uttered fewer short calls and more down, up, and flat USVs than Eup. These deficits were
more pronounced in males (Figures 4, 5B). Similar trends were also observed in cohort 2
Ts66'Yah female, but not in male, pups (Figures 4, 5).

By contrast, in Ts65Dn mice compared with Eup, the total number of USVs was
significantly lower in both sexes during the first postnatal week (Figures 4, 5A). Analysis
of the different USV categories demonstrated that the Ts65Dn male and female pups uttered
a significantly higher proportion of short USVs but significantly less down, up, flat, step
down, and step up when compared with Eup (Figures 4, 5B-E).

Spatial Olfactory Learning and Memory (Homing Test).—To investigate spatial
olfactory memory, we used a modified version of the homing test in which pups were placed
in the center of an open field arena with home bedding (home zone) on one side and clean
bedding (clean zone) on the opposite side. Because the pups’ eyelids are still closed, they
rely on their spatial olfactory navigation to reach the home zone instead of moving toward
the clean zone.

Euploid neonates from both strains reached the home zone faster and spent significantly
more time there than the clean zone, suggesting robust learning (Figure S1).
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Ts66Yah pups of both sexes and in both cohorts exhibited increased latency to reach the
home zone and spent less time there than Eup, but this did not reach statistical significance
(Figure S1).

By comparison, both male and female Ts65Dn pups showed severe deficits in spatial
olfactory memory as demonstrated by the increased latency to reach the home zone and
the total time spent there versus Eup (Figure S1).

Adult Behavioral Testing

Adult behavioral data details are presented in Table S5.

Exploratory Behavior (Open Field).—For cohort 1, Ts66Yah males exhibited mildly
hyperactive behavior in the open field test, as demonstrated by an increased distance traveled
and average speed compared with Eup (Figure 6A). Male mice from cohort 1 and their Eup
littermates explored the periphery of the arena more than its center, however, Ts66Yah mice
traveled on average more in both zones (Figure 6B). Ts66Yah females exhibited normal
exploratory behavior (Figure 6A, B).

For cohort 2, Ts66Yah males displayed hyperactivity when compared with Eup (Figure
6A). When the distances traveled in the center and periphery of the arena were compared,
Ts66'Yah males traveled significantly more in both zones versus Eup (Figure 6B). As
observed in cohort 1, females that were born to both Ts66Yah mothers and Ts66Yah fathers
showed normal exploratory behavior (Figure 6A, B).

Working Memory (Y-Maze).—For both cohorts 1 and 2, Ts66'Yah males exhibited
significant working memory deficits as demonstrated by the significant decrease in the
percent alternation (Figure 6C).

Like Ts66Yah males from both cohorts, Ts66'Yah females also exhibited defective working
memory in the Y-maze test with significant reduction of percent alternation when compared
with Eup (Figure 6C).

Motor Coordination.—For cohort 1, Ts66Yah mice of both sexes had comparable
performances in the fixed speed version of the rotarod test as compared with Eup (Figure
S2A). Cohort 2 Ts66'Yah males performed significantly better in the rotarod test versus
Eup (Figure S2A). Cohort 2 females and Eup controls exhibited similar motor coordination
phenotypes (Figure 2A).

In the accelerating speed version of the rotarod, cohort 1 Ts66'Yah males and females fell
from the rotarod faster than their controls, but this did not reach statistical significance
(Figure S2B).

As in the fixed speed trial, cohort 2 Ts66Yah male mice remained significantly longer on the
rotarod in the accelerating speed trial than Eup, whereas cohort 2 Ts66'Yah female mice fell
at a slightly faster rate versus Eup. This did not reach statistical significance (Figure S2A,
B).
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Hippocampal Contextual Memory (Fear Conditioning).—For both cohorts,
Ts66'Yah males and females exhibited normal hippocampal contextual memory. The average
percent of freezing 24 hours after the electrical shock was not significantly different between
Ts66'Yah mice and Eup (Figure S2C, D).

Long-term Memory (Novel Object Recognition).—For both cohorts, male and female
Ts66Yah mice showed comparable familiarity indices during day 1 (training) (Figure S3A)
and similar long-term memory performance as their Eup littermates with no differences seen
in the recognition indices after 24 hours of training (Figure S3B).

Spatial Hippocampal Memory (Morris Water Maze).—In the visible platform phase
of the MWM, no visual learning deficits were observed in Ts66Yah mice of either sex.
Repeated-measures ANOVA revealed that the performance of Ts66Yah mice improved at a
similar rate as Eup with repeated testing sessions (Figure 7A).

In the hidden phase, Ts66Yah females exhibited hippocampal-dependent spatial memory
deficits as indicated by a significant increase in the latency to reach the platform in trisomic
females compared with Eup. Repeated-measures ANOVA demonstrated a significant
genotype effect in Ts66Yah females; however, no spatial memory deficits were observed

in Ts66Yah males versus Eup (Figure 7B).

In the probe trial, although the total time spent in the platform quadrant was not significantly
different between Ts66'Yah and Eup in either sex, the latency to first entry to the platform
zone was significantly higher in trisomic mice (Figure 7C, D).

DISCUSSION

Historically, most DS preclinical therapeutic studies have relied on the Ts65Dn mouse
(18,19). This gold standard model, however, also carries a trisomy of the centromeric
segment of MmuA7 that is not triplicated in humans with trisomy 21 (8,9,20).

Here, we studied the novel Ts66Yah mouse (10), comparing prenatal gene expression and
postnatal behavioral phenotypes in Ts66Yah and Ts65Dn mice to gain a better understanding
of the role of the Mmul7 non-orthologous genes. Our findings highlight widespread
differences between these 2 models (Table 2).

Overexpression of Mmul7 Non-Hsa21 Orthologous Genes Only in the Ts65Dn Forebrain

We found that over 90% of the Mmul6 overexpressed genes in the E18.5 forebrains of both
Ts66Yah and Ts65Dn embryos overlapped, indicating that the primary transcriptomic effects
of the segmental AMmu16 trisomy in these 2 models is highly conserved.

We have previously shown that ~30% of the MmuL7 non-orthologous genes are
overexpressed in the Ts65Dn mouse during midgestation (E15.5) (14). Here we showed
that, as embryonic brain development progresses, overexpression of more Mmul7 non-
orthologous genes (60%) is observed later in gestation (E18.5) in Ts65Dn mice. In Ts66'Yah
embryonic forebrains, expression of Mmul7 non-orthologous genes was similar to Eup
littermates.
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Several of the Mmul7 non-orthologous genes overexpressed only in Ts65Dn are known

to be essential during embryonic brain development, including Arid1b, Pdel0a, Seracl,
Rps6kaz, and Snx9. ARID1B protein belongs to the neural progenitor-specific and the
neuron-specific chromatic remodeling complexes npBAF and nBAF and plays an important
role in neuronal differentiation (21). AR/D1B haploinsufficiency in humans is associated
with autism spectrum disorder, corpus callosum agenesis, and growth delays (22,23). Pde10a
encodes a cyclic nucleotide phosphodiesterase that plays a major role in regulating signal
transduction through cAMP (cyclic adenosine monophosphate) and cGMP (cyclic guanosine
monophosphate). PDE10A protein is highly expressed in the fetal brain, particularly in

the medium spiny neurons of the striatum and controls striatocortical movement (24,25).

In humans, PDE10A mutations are associated with infantile-onset limb and orofacial
dyskinesia, striatal degeneration, and schizophrenia (24,26,27). A description of the function
and phenotypes associated with the mutations (in humans)/knockout (in mice) of the
remaining genes can be found in Table 1 and Table S1.

Distinct Genome-wide Transcriptional Dysregulation in Ts65Dn and Ts66Yah Models

While the primary trisomic effects were highly conserved in the Ts66Yah and Ts65Dn
embryonic forebrains, the downstream secondary effects on the rest of the genome

were distinct. These unexpected results suggest that overexpression of the Mmul7 non-
orthologous genes in Ts65Dn triggers significant genome-wide dysregulation, which might
ultimately lead to the major differences in their phenotypes.

Despite these differences, we identified 12 disomic genes that were consistently
dysregulated in these 2 strains, suggesting that the expression of these genes is directly

or indirectly regulated by Mmu16 trisomic genes (Table S3). As examples, Cdk/3encodes
a kinase required for neurogenesis and neurite outgrowth; mutations in this gene are
associated with intellectual disability in humans (28,29). Rbm3encodes a stress response
protein that is abundant in the brain during embryonic and early postnatal development. Its
suppression in neural stem cells significantly impairs neurogenesis, while its overexpression
enhances cell proliferation and neuroprotection during hypoxic insults (30-32).

The limited overlap in dysregulated genes between Ts66Yah and Ts65Dn resulted in very
few commonly dysregulated pathways, including neuroinflammation, interferon signaling,
oxidative stress response, and the sirtuin pathway. Understanding how these dysregulated
pathways affect brain development and cognition in DS is critical to developing effective
treatment interventions.

Ts66Yah Mice Have Milder Behavioral Deficits With Sex-Specific Differences

Ts66Yah neonates exhibited motor deficits, abnormal USV profiles, and delayed spatial
olfactory memory versus Eup. Motor deficits were milder than those observed in Ts65Dn
neonates. Additionally, in both strains, USV profiles went in opposite directions for most
categories, suggesting that the underlying molecular and cellular mechanisms leading to
these deficits are quite different.

Ts66Yah adult mice exhibited hyperactivity (open field) in males, defective working
memory (Y-maze) in both sexes and abnormal hippocampal-dependent spatial memory
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(MWM) that is more apparent in females. Ts66Yah mice did not show any deficits in motor
coordination (rotarod), long-term memory (NOR), or contextual hippocampal memory
(contextual fear conditioning).

Duchon et al. (10) compared behavior in adult Ts66'Yah and Ts65Dn male progeny from
trisomic mothers. They demonstrated that Ts65Dn males exhibit hyperactivity in the open
field and circadian activity tests and severe deficits in the Y-maze, NOR, and MWM tests.
By contrast, Ts66Yah showed slight increases in the light phase of the circadian activity

test but not in the open field test, mild deficits in the MWM, and significant delays in the
Y-maze and NOR. They examined sex-specific differences for Y-maze and NOR, but did not
examine parent-of-origin differences, which we report here.

Overall, the findings from these 2 studies are consistent, except for the NOR results. In our
study, Ts66Yah mice did not show deficits in the NOR test. Testing was performed in an
open field arena, and animals were exposed to 2 trials with similar objects during day 1. This
was associated with better discrimination when animals were exposed to the novel object 24
hours later but might have consolidated learning, resulting in the annihilation of long-term
memory differences. Duchon et al. (10) used 2 protocols with either an open or a V-shaped
arena with only one training session on day 1. This resulted in a lower discrimination index
of the novel object on day 2. Further studies using different configurations of the NOR tests
are needed to better characterize nonspatial long-term memory in the Ts66Yah mouse.

Our previous studies, and those of others, showed that Ts65Dn males exhibit hyperactivity,
severe deficits in long-term memory and hippocampal-dependent memory, mild deficits in
contextual hippocampal memory, and normal motor coordination (14,16,33-35). To our
knowledge, only one study extensively examined behavioral deficits in both sexes using
behavioral paradigms like ours (17). These investigators demonstrated that both female and
male Ts65Dn mice had hyperactivity and severe deficits in working, long-term, contextual,
and spatial memory.

Parental Origin of the Trisomy

In human pregnancies, a fetus with trisomy 21 develops in a normal intrauterine
environment of a euploid mother. In the Ts65Dn mouse, trisomic males are sterile. Thus,
transmission of the trisomic marker chromosome is only possible through an aneuploid
dam. The impact of an abnormal intrauterine environment on the development of Ts65Dn
embryos and their euploid littermates is unknown.

Here we were able to investigate the effects of maternal versus paternal trisomy in the
Ts66'Yah mouse by taking advantage of male fertility in this model. Although Ts66Yah
offspring from trisomic mothers and fathers exhibited similar behavioral deficits in most
paradigms, maternal trisomy induced more significant changes in the USV profiles of the
Ts66'Yah male and female pups than paternal trisomy. The reasons for these differences are
still under investigation.
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Conclusions

Comparative phenotyping of the Ts66'Yah and Ts65Dn mouse models of DS uncovered

a considerable influence of the trisomic Mmul7 non-Hsa21 orthologous genes on brain
development and behavioral outcomes in Ts65Dn mice, with Ts66Yah showing fewer
dysregulated pathways and milder behavioral deficits than Ts65Dn. These data provide
quantitative evidence of the impact of the extraneous triplicated genes in Ts65Dn, which has
important implications for human clinical trials that are based solely on preclinical studies
in the Ts65Dn model (36). Our findings suggest that Ts66Yah may be a good alternative
model for DS preclinical studies, because it more closely mimics the human DS karyotype
and genotype.
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Figurel.
Expression of Mmul6 orthologous and MmuL7 non-Hsa21 orthologous genes in the

Ts66Yah and Ts65Dn E18.5 embryonic forebrain. (A) (Top) Chromosomal map showing
the overexpression of Mmul6 trisomic genes (red open circles) in the Ts66Yah and Ts65Dn
embryonic forebrain. Chromosomal position is represented on the x-axis as the distance

(in base pair) from the start of Mmu16. For both Ts65Dn and Ts66Yah, the Mmul6
trisomic region starts at Mrp/39located 84,514,464 bp (84.5 Mb) distally from the start

of chromosome 16. (Bottom) Examples of Mmul6 orthologous genes that are overexpressed
in both mouse models, including Dyrkla, Sodl, and /fnar2. (B) (Top) Chromosomal

map showing the expression of the Mmul7 non-Hsa21 orthologous genes trisomic only

in the Ts65Dn mouse model. As expected, these genes were only overexpressed in the
Ts65Dn embryonic forebrain (open red circles) but not in the Ts66'Yah embryonic forebrain.
(Bottom) Expression of some key Mmul7 non-Hsa2l orthologous genes (Arid1b, Pdel0a,
and Seracl) in the Ts66Yah and Ts65Dn embryonic forebrain.
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Overlap in dysregulated genes and pathways in the Ts65Dn and Ts66'Yah E18.5 embryonic
forebrains. (A) Overexpression of Mmul6 orthologous genes is conserved between the
Ts65Dn and Ts66'Yah mouse models. (B) Little overlap in the DEX and MEX genes is
present between the Ts65Dn and Ts66'Yah models, despite the conserved overexpression of
MmuA6 trisomic genes. (C) Dysregulated pathways in the Ts65Dn and Ts66Yah embryonic
forebrain. 1 = Ts66'Yah and 2 = Ts65Dn. As a result of the distinct secondary genome-wide
differences in dysregulated genes, Ts65Dn and Ts66'Yah mice share very few dysregulated
signaling pathways. DEX, differentially expressed; MEX, marginally expressed.
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Neonatal motor development in the Ts66Yah and Ts65Dn mouse models. Comparison of the
number of body rotations (A, C) and total distance traveled (B, D) in cohort 1 (from trisomic
mothers) Ts66Yah, cohort 2 (from trisomic fathers) Ts66Yah, and Ts65Dn female and male
pups between postnatal days 2 and 12. Significant differences are indicated as *p < .05, **p
<.01, ***p<.001, and ****p < .0001.
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Communication in Ts66'Yah and Ts65Dn male neonates. Comparison of the total number of
USVs (A) and the percent of short (B), down (C), up (D), and flat (E) USVs as a proxy

for neonatal communication in cohort 1 (from trisomic mothers) Ts66Yah, cohort 2 (from
trisomic fathers) Ts66Yah, and Ts65Dn male neonatal mice between postnatal days 2 and
12. Significant differences are indicated as *p < .05, **p < .01, ***p < .001, and ****p <

.0001. USV, ultrasonic vocalization.
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Figureb.
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Communication in Ts66'Yah and Ts65Dn female neonates. Comparison of the total number
of USVs (A) and the percent of short (B), down (C), up (D), and flat (E) USVs as a proxy
for neonatal communication in cohort 1 (from trisomic mothers) Ts66Yah, cohort 2 (from
trisomic fathers) Ts66Yah, and Ts65Dn female neonatal mice between postnatal days 2 and
12. Significant differences are indicated as *p < .05, **p < .01, ***p < .001, and ****p <
.0001. USV, ultrasonic vocalization.
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Figure®6.

Exploratory behavior and working memory in Ts66'Yah and Ts65Dn adult mice. (A, B)
Exploratory behavior measured as total distance traveled in the open field as well as
the distance traveled in the center vs. periphery in adult cohort 1 and cohort 2 Ts66Yah
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female and male mice. (C, D) Percent of alternation and total number of arm entries in the
Y-maze in adult cohort 1 Ts66'Yah and cohort 2 Ts66Yah female and male mice. Significant
differences are indicated as *p < .05 and **p < .01. ns, not significant.
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Hippocampal-dependent spatial memory in Ts66Yah adult mice. Hippocampal-dependent

spatial learning/memory was measured in the Morris water maze test in adult Ts66Yah

female and male mice as latency to reach the platform during the visible platform phase
(A) and the hidden platform phase (B). During the probe trial, the total time spent in the
platform quadrant (C) and the latency to first enter the platform zone was also analyzed
(D). Significant differences are indicated as *p < .05, **p < .01, and ***p < .001. ns, not

significant.
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