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Abstract

The number of children diagnosed with autism spectrum disorder (ASD) has increased 

substantially over the past two decades. Current research suggests that both genetic and 

environmental risk factors are involved in the etiology of ASD. The goal of this paper is to 

examine how one specific environmental factor, early social experience, may be correlated with 
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DNA methylation (DNAm) changes in genes associated with ASD. We present an innovative 

model which proposes that polygenic risk and changes in DNAm due to social experience 

may both contribute to the symptoms of ASD. Previous research on genetic and environmental 

factors implicated in the etiology of ASD will be reviewed, with an emphasis on the oxytocin 

receptor gene, which may be epigenetically altered by early social experience, and which plays 

a crucial role in social and cognitive development. Identifying an environmental risk factor for 

ASD (e.g., social experience) that could be modified via early intervention and which results in 

epigenetic (DNAm) changes, could transform our understanding of this condition, facilitate earlier 

identification of ASD, and guide early intervention efforts.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disability that includes challenges 

in social communication and repetitive/restricted behaviors and interests (APA, 2013). 

Diagnosis of ASD can occur as early as 18 months to three years of age, when caregivers 

or healthcare professionals note developmental delays, particularly in social communication 

and social-emotional reciprocity. The developmental trajectory of individuals diagnosed with 

ASD varies based on symptom severity, response to intervention, and presence of comorbid 

disorders (e.g., intellectual impairment). Regardless, individuals diagnosed with ASD will 

most likely continue to experience the associated symptoms to some extent throughout 

their lifespan and require ongoing intervention and assistance in several contexts (e.g., 

education, vocation, family) (Buescher, Cidav, Knapp, & Mandell, 2014). For individuals 

with moderate to severe symptoms and who are diagnosed early in life, intervention focuses 
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on intensive behavioral therapies and medications to treat comorbidities rather than core 

ASD symptoms. However, the ability to treat or prevent the core symptoms of ASD 

is currently inadequate, in large part because the etiological and biological mechanisms 

underlying ASD are not fully understood.

Notably, the number of children diagnosed with ASD in the United States has soared over 

the past two decades (Figure 1) (Baio et al., 2018; Christensen et al., 2016; Maenner et al., 

2020; Maenner et al., 2021), with recent estimates of prevalence based on representative 

population samples indicating one in 36 children 3–17 years are diagnosed with ASD 

(Xu, Strathearn, Liu, & Bao, 2018). Potential explanations for the increased prevalence 

of ASD include improvements in diagnostic tools, expansion of diagnostic criteria, and 

increased awareness about ASD leading to more referrals for assessment. However, such 

explanations do not fully account for the increased prevalence (Weintraub, 2011), warranting 

investigation of other causal mechanisms. Currently, there are models which propose that 

genetic and environmental factors are involved in the etiology of ASD (Geschwind, 2011; 

Jiang et al., 2004). Specifically, genetic (or intrinsic) and environmental (or extrinsic) 

factors may independently alter the susceptibility for developing ASD; however, such factors 

may also interact, with environmental factors affecting activity of ASD-related genes via 

epigenetic changes (Figure 2).

Social experience is an environmental factor of particular interest given the well-established 

impact on social and cognitive development (Barendse et al., 2013), and the potential to 

modify social experience via intervention. Additionally, social experience has been shown in 

animal models to alter DNAm, which changes gene expression without altering the genomic 

sequence (Moore, Le, & Fan, 2013). For example, rodent studies have shown that early 

social experience, such as maternal licking and grooming of rat pups, alters DNAm of 

genes important for social development, such as the oxytocin receptor gene (Oxtr) (Beery, 

McEwen, MacIsaac, Francis, & Kobor, 2016). In this case, increased DNAm downregulated 

gene expression and appeared to affect behavioral development and stress response. Some 

translational evidence also exists in human infants (Krol, Moulder, Lillard, Grossmann, & 

Connelly, 2019).

We previously hypothesized that social experience may interact with genetic vulnerabilities 

to increase ASD risk via epigenetic mechanisms (Strathearn, 2009). The following sections 

of this paper will expand upon this to discuss, in relation to ASD, (1) genetic risk factors; (2) 

environmental factors; (3) the potential interplay of epigenetics and social experience; and 

(4) the intersection of the genome and epigenome.

2. Genetic Factors in ASD

Estimates of heritability for ASD range from 65 to 90%, with the most recent and largest 

international study estimating ~80% (Bai et al., 2019). While heritability estimates are 

helpful in quantifying the magnitude of genetic contribution to etiology, identification of 

specific variants that contribute to the observed phenotype is key to elucidating mechanisms 

and identifying biomarkers with potential risk prediction utility. These intrinsic risk factors 

range from rare variants (such as SHANK3 and SCN2A) (Antaki et al., 2022) and 
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known genetic syndromes that have a relatively large effect size in predicting ASD, to 

relatively common genetic variants and trait markers, including sex. Research has revealed 

several hundred variants that are associated with ASD, including single nucleotide variants 

(SNVs; one nucleotide is substituted for another) and copy number variants (CNVs; 

duplication or deletion that changes the number of copies of a particular segment of DNA) 

(Ramaswami & Geschwind, 2018). While many common genetic variants are inherited, 

studies have shown an increase in rare de novo (new, non-inherited) genetic variants among 

individuals diagnosed with ASD (Waye & Cheng, 2018; Woodbury-Smith & Scherer, 

2018). In fact, de novo CNVs occur four times as frequently in children diagnosed with 

ASD compared to their non-ASD siblings (Ramaswami & Geschwind, 2018). Several 

specific genetic syndromes have been strongly associated with ASD, such as mutations 

in TSC1 and TSC2 (which leads to Tuberous Sclerosis Complex, a disorder in which 

61% of affected individuals also present with ASD) (Vignoli et al., 2015) and the FMR1 
gene variant (the leading genetic association with ASD) found in Fragile X Syndrome 

(Varghese et al., 2017). In more recent years, common genetic variants for ASD have 

emerged (e.g., NEGR1, PTBP2, CADPS, KCNN2, KMT2E, and MACROD2) (Grove et al., 

2019) through large genetic cohort studies such as the Psychiatric Genetics Consortium, 

Autism Workgroup (PGC-AUT), the Danish iPSYCH study (https://ipsych.dk/en/about-

ipsych), and the Simons Powering Autism Research for Knowledge (or SPARK) study 

(pfeliciano@simonsfoundation.org & Consortium, 2018). The possible combined effect of 

common genetic variants has also been calculated as a “polygenic score” for ASD, or 

an aggregate genome-wide value indicating the number of ASD variants carried by an 

individual (Antaki et al., 2022; Guo et al., 2017) (Figure 2A). Although genetic factors 

clearly contribute to the development of ASD, this does not exclude the possibility of 

environmental effects. Although ASD has a high heritability estimate, the statistical models 

used in heritability studies often assume that genes do not interact with the environment, or 

with other genes, to influence phenotype, which is clearly not the case. Additionally, while 

an increasing number of genetic variants associated with ASD have been identified, the 

population level effect sizes are invariably small, and any individual variant is insufficient to 

explain the heritability estimates (Owen & Williams, 2021).

3. Environmental Factors in ASD

Just as numerous genetic variants have been linked to ASD, several environmental 

factors have also been identified. Given the early manifestation of symptoms in ASD, 

epidemiological research has focused on the pre- and peri-natal periods, identifying risk 

factors such as gestational hypertension and diabetes, fetal distress, birth injury or trauma, 

low birth weight, small for gestational age, and advanced parental age (Modabbernia, 

Velthorst, & Reichenberg, 2017; Wang, Geng, Liu, & Zhang, 2017). In utero exposure 

to valproate has likewise been associated with ASD-like symptoms in animals and human 

studies, potentially via oxidative stress-induced damage to the brain (Chaliha et al., 2020; 

Ornoy, 2009). A meta-analysis also found an increased risk of ASD in the children of 

mothers who used selective serotonin reuptake inhibitor (SSRI) drugs during pregnancy. 

However, when SSRI-exposed mothers were compared to non-SSRI-exposed mothers with 

psychiatric conditions, no significant difference in ASD risk was observed (Ames et al., 
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2021; Kobayashi, Matsuyama, Takeuchi, & Ito, 2016). Considering that maternal depression 

may itself be a risk factor for ASD (Rai et al., 2013; Wiggins et al., 2019) maternal 

psychiatric history may have been a confounding factor in these studies of anti-depressant 

use in pregnancy.

Early life exposure to pollutants has also been associated with ASD. However, a recent 

study by McGuinn et al. (2019) found this association to be confounded by environmental 

deprivation, defined by eight measures of socioeconomic status. Some studies have found 

higher median income to be associated with higher risk, but this is likely biased by increased 

access to healthcare services (Durkin et al., 2017; Thomas et al., 2011). When access 

biases are eliminated, such as in studies in countries with universal healthcare and routine 

developmental screenings, children of families with lower median incomes are at higher risk 

of ASD (Delobel-Ayoub et al., 2015; Rai et al., 2012).

Social experience is known to profoundly affect social and cognitive development, as 

demonstrated by decades of animal research (Caldji et al., 1998; F. Champagne & Meaney, 

2001; F. A. Champagne & Meaney, 2007; Francis & Meaney, 1999; Ladd et al., 2000; 

Meaney, 2001; Weaver et al., 2004) and by human experimental and epidemiological studies 

(Bick & Nelson, 2017; Kuhl, 2004; Strathearn et al., 2020). Both Dawson (2008) and 

Schultz (2005) have hypothesized that basic deficits in social perception and experience 

may underlie many developmental and behavioral differences seen in ASD, and that a set 

of defining experiences early in life (or lack thereof) may adversely affect the development 

of multiple cascading neural pathways. Just as visual deprivation during a critical period of 

development may result in permanent disruption of the visual pathways and long-term visual 

impairment (Wiesel & Hubel, 1965), restricted social experience—either extrinsically or 

intrinsically derived—may lead to long-lasting impairment in social development. A child’s 

social experience may be affected by a variety of factors, ranging from perinatal stress and 

premature birth to socioeconomic adversity and parental psychopathology (Figure 2).

Prior studies have demonstrated associations between early social experience and the 

development of social communicative abilities in both neurotypical and neurodivergent 

populations. A prospective study of infant siblings of children with ASD showed links 

between language exposure at home during the first year of life and subsequent language 

development in toddlers later diagnosed with ASD (Swanson et al., 2019). Specific 

characteristics have also been noted in children at-risk of ASD, based on videotaped 

behavior and naturalistic recording of vocalizations and language exposure, including an 

impaired ability to respond to a caregiver’s social bids (Gangi, Ibanez, & Messinger, 

2014; Swanson et al., 2018). Infants who are later diagnosed with ASD previously 

exhibited a reduced frequency of vocalizing with speech sounds (consonant-vowel syllables) 

(pfeliciano@simonsfoundation.org & Consortium, 2018; Plumb & Wetherby, 2013). 

Likewise, toddlers later diagnosed with ASD used fewer deictic gestures (show/give/point) 

and initiated joint attention at a lower rate than typically developing toddlers (Shumway 

& Wetherby, 2009). Each of these developmental characteristics may be associated with 

variation in early social experience.
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Extreme examples of the impact of restricted social experience are found in multiple 

studies of children raised in Romanian orphanages. Exposed to severe physical and 

social deprivation before they were adopted into the U.K., over 10% these children were 

clinically indistinguishable from children with “typical” ASD at age 4, and almost 20% 

had autistic-like features (Sonuga-Barke et al., 2017). Furthermore, the children’s symptom 

severity was directly correlated with length of time spent in the institution. A more recent 

randomized intervention study confirmed that children raised in institutions, compared 

with non-institutional family-centered care, were at increased risk of ASD and deficits in 

social communication, whereas children randomly assigned to live in foster care showed 

an intermediate risk (Levin, Fox, Zeanah, & Nelson, 2015). That is, living in a home 

environment characterized with richer social experiences was a protective factor, and the 

earlier a child was placed into foster care, the less likely the child was to develop ASD-like 

symptoms. While most children do not experience these extreme social conditions, and a 

direct causal relationship between social deprivation and ASD is not implied, these studies 

provide insight into possible modifiable environmental factors that could be enriched, for 

example, to potentially ameliorate or reduce symptoms of ASD. Furthermore, differences 

in social experiences and perception may also underlie many other developmental and 

behavioral differences experienced by individuals diagnosed with ASD. Numerous studies 

have also shown that ASD interventions focused on providing parents with additional 

parenting tools and supports (e.g., training parents in Applied Behavior Analysis) are 

more likely to produce sustained improvements in child behavior and social development 

(Lindgren et al., 2020; Pickles et al., 2016; Steiner, Koegel, Koegel, & Ence, 2012; B. 

Tonge, Brereton, Kiomall, Mackinnon, & Rinehart, 2014; B. J. Tonge, Bull, Brereton, & 

Wilson, 2014). In fact, randomized trials of parent-mediated interventions for children at 

increased likelihood of developing ASD revealed significant reductions in symptoms which 

persisted up to three years post-intervention (Green et al., 2017; Whitehouse et al., 2021).

4. Epigenetics, Social Experience, and ASD

Given the evidence that gene and environment may both play a role in the etiology of ASD, 

the study of epigenetic mechanisms such as DNAm may be particularly relevant (Yoon, 

Choi, Lee, & Do, 2020). DNAm, or the addition of a methyl or hydroxymethyl group to the 

5’ cytosine residue on DNA (Greenberg & Bourc’his, 2019), has been shown to vary across 

the lifespan, and involves both genetic and epigenetic contributions (Szyf & Bick, 2013). 

In general, DNAm regulates gene expression with this reversible modification, particularly 

when cytosine (C) is adjacent to guanine (G), separated by a phosphate bond (CpG). These 

CpG-rich regions often occur in gene regulatory regions, such as promoters. DNAm, the 

most studied epigenetic modification, has a critical role in human development and has the 

potential to be used as a biomarker for neurodevelopment and health conditions. DNAm has 

also been associated with environmental exposures and conditions, leading to investigations 

of its use as a marker of environmental influences. There is broad evidence supporting 

DNAm differences in ASD, utilizing both blood and brain tissue (Andrews et al., 2017; 

Ladd-Acosta et al., 2014). One study identified 20 loci in Danish newborn dried blood spots 

with differential methylation patterns seen in children later diagnosed with ASD (Table 1, 

Set A) (Hannon et al., 2018). A meta-analysis of post-diagnosis case-control blood samples 
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from 796 ASD cases and 858 controls, aged 5–17 years, identified seven methylation 

differences, with suggestive ASD association p-values (Table 1, Set B) (Andrews et al., 

2018). Several of these loci had a similar direction of hypo/hyper-methylation, and an even 

greater effect size, in brain samples. While some CpG sites remain unchanged between 

birth and later ASD diagnosis (Hannon et al., 2018), it is unknown whether these 27 

ASD-related DNAm profiles change between birth and ASD diagnosis, and whether these 

changes are associated with social experience. Broadly, the genes identified in the latter 

study are involved in methylation machinery (Kundakovic et al., 2014; Siu & Weksberg, 

2017), hippocampal plasticity (Henriquez et al., 2013), epigenetic modulation of social and 

motivational behavior (Johnstone et al., 2018), neural cell differentiation (Carelli et al., 

2019), and glucocorticoid metabolism and stress response (Lester et al., 2018; Weaver et al., 

2004).

The oxytocin receptor gene (OXTR in humans, Oxtr in rodents) is also of particular interest, 

given that its substrate, oxytocin, is a neuropeptide implicated in social salience, including 

eye gaze, empathy, and pair-bonding behavior (Mitre, Minder, Morina, Chao, & Froemke, 

2018). Oxytocin and OXTR are programmed by early life experience, influence patterns 

of eye gaze and face perception, and play crucial roles in mammalian social development. 

Moreover, there are several DNAm sites in OXTR associated with ASD in humans. Oxtr 
expression in rodents appears to be programmed by early life experience, with decreased 

expression seen in the blood and brains of animals who receive lower levels of social 

experience in infancy (Beery et al., 2016; Francis, Champagne, & Meaney, 2000), and Oxtr 
knockout mice have impaired social memory and recognition (Lee, Caldwell, Macbeth, 

Tolu, & Young, 2008) and impaired mother-offspring interactions (Nishimori et al., 2008). 

In addition, OXTR hypermethylation has been associated with suppressed gene expression 

(Kusui et al., 2001), reduced circulating oxytocin (Dadds et al., 2014), and decreased OXTR 
expression in the temporal cortex of the brain of ASD vs. non-ASD controls (Elagoz 

Yuksel, Yuceturk, Karatas, Ozen, & Dogangun, 2016) (Table 1, Set C). More recently, a 

human longitudinal study showed that decreased social experience during infancy predicted 

increased methylation in a conserved regulatory site of the OXTR gene one year later, 

and that increased OXTR methylation at 18 months reflected differences in child behavior 

relevant to ASD (Krol et al., 2019). Thus, early life social experience may influence 

epigenetic levels, and ultimately, affect gene expression in the brain and social behaviors 

relevant to ASD.

5. The Intersection of Genome and Epigenome in ASD

Understanding cross-omics relationships, e.g. how genetic variation is related to gene 

expression, DNAm, or protein levels, can provide important biologic insights into how 

genetic risk variants manifest into phenotypes and health outcomes. With the emergence of 

cost-efficient genome-scale measurement tools, many studies have now measured multiple 

-omics from the same individuals and have shown that gene expression levels can be 

controlled by genetic variation, including in a tissue specific manner. Single nucleotide 

polymorphisms (SNPs) that control gene expression levels are called expression quantitative 

trait loci (eQTLs). Similarly, SNPs can also regulate DNAm levels; these are commonly 

referred to as meQTLs. These relationships can occur in -cis, i.e. in close genomic 
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proximity, or in -trans, where the SNP and the gene whose expression or methylation that it 

regulates is very far away in linear distance or even on a different chromosome.

Multiple studies have identified SNPs that control blood DNAm levels at specific CpGs 

in the OXTR gene locus (Reiner et al., 2015; Rijlaarsdam et al., 2017; Smearman et al., 

2016). For example, a recent analysis revealed methylation levels at 18 OXTR gene CpGs 

are controlled by nearby SNP genotypes (Smearman et al., 2016). Furthermore, one CpG 

methylation target associated with two SNPs modified the effect of social adversity (abuse) 

exposure on depression outcomes which suggests potential epigenetic mechanisms for gene-

environment interactions at this locus. In addition to results reported in publications, a 

query of publicly available databases such as GTeX (https://www.gtexportal.org/home/gene/

OXTR) the meQLT portals (http://www.mqtldb.orgfl) reveals dozens of SNPs control OXTR 
gene expression and DNAm levels in numerous brain regions. Targeted studies are needed 

to fully evaluate the relationship of these cross-omics data and in the context of social 

environments, ASD, and ASD-related quantitative traits. Genetic variants associated with 

ASD diagnosis are postulated to play an important role in gene regulation. Identification 

of ASD genetic variants that regulate gene expression or DNAm levels, and in which cell 

types, can provide information on biologic mechanisms that contribute to ASD etiology. 

This can provide candidate genes and/or biologic pathways that could be intervened upon 

to reduce disabilities associated with ASD (Pavlides et al., 2016; Zhu et al., 2014). Studies 

using eQTL and meQTL maps have shown ASD risk variants, discovered via GWAS, 

are enriched for being eQTLs (Cheng, Quinn, & Weiss, 2013; Davis et al., 2012) and 

meQTLs (Andrews et al., 2017) when compared to non-ASD SNPs with similar properties, 

particularly in neurodevelopmentally relevant tissue types such as fetal brain. Additionally, 

these studies have identified potential regulatory gene targets of ASD SNPs that would 

not have been otherwise identified when considering genomic location of the SNP alone. 

Additional studies are needed to specifically evaluate associations between ASD genetic 

variants and gene expression and methylation patterns at OXTR in relevant biospecimen 

types. Integration of genome and epigenome data has provided insights into ASD etiology 

and may inform future avenues of treatment research. It is also worth investigating 

whether DNAm and expression patterns at loci targeted by genetic variants are also 

susceptible to environmental exposures, which could implicate shared pathways and targets 

for different risk factors and/or potential mechanisms for gene-environment interactions. 

Another important line of future research will be to expand integration of genetic data with 

other omics measures including the proteome, metabolome, and microbiome, among others. 

In addition to providing insights into biologic mechanisms, the genome and epigenome can 

be used for predictive biomarker purposes. While the proportion of phenotypic variance in 

a population that can be explained by genetic variants, in aggregate, is often very small, 

there is evidence that including epigenetic measures in predictive models can improve 

these estimates (McCartney et al., 2018). Finally, genetic and epigenetic variation may 

be important contributors to ASD comorbidities and co-occurring conditions, which have 

substantial impacts on the health and quality of life for individuals diagnosed with ASD. 

Future studies on this topic are also needed to identify biologic processes and pathways that 

could be targeted to reduce their impact on individuals diagnosed with ASD.
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6. Conclusion

Recognizing and understanding the significance of predictive markers for ASD has been a 

vexing challenge over the past two decades, especially in view of its dramatically increasing 

prevalence. While numerous genetic and environmental factors have been identified, 

the interaction between such factors is less well understood and warrants additional 

investigation. Of particular interest is the extent to which variability in social experiences 

may modify DNAm of genes that are known to be involved in social processes, such as 

OXTR, and thus confer risk for social deficits, a core feature of ASD. Understanding the 

intersection of genetic, epigenetic, and environmental factors in the etiology of ASD would 

transform our understanding of this disorder, and potentially identify modifiable pathways 

for intervention, which would likely have far-reaching impacts on individuals with ASD and 

their families.
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Highlights

• There is evidence that both genes and environment contribute to symptoms in 

autism

• Early social experience may be related to DNA methylation patterns in autism

• DNA methylation in the OXTR gene may influence social and cognitive 

outcomes

• Autism genetic risk variants may control DNA methylation and 

developmental outcomes
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Figure 1: 
ASD prevalence in children 0–8 years from 2000 to 2018, based on the 11-site ASD and 

Developmental Disabilities Monitoring Network.
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Figure 2: 
A. Model of intrinsic and extrinsic factors for increasing the likelihood of ASD. B. 
Theoretical model of how polygenic scores and social risk may predict the development 

of ASD, with examples given from each axis. C. Simulated model of intrinsic and 

extrinsic scores for ASD based on multiplicative interaction effects, along with unknown 

contributions to risk. For illustration purposes, half of the ASD liability derives from the 

combination of genetic and environmental factors, while unknown causes account for the 

other half. The shaded green area represents an estimate of the region where children are at 

high likelihood of ASD, based on an analysis of the simulated data.

CNV, copy number variation; SNV, single nucleotide variant.
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Table 1:

Proposed DNA methylation loci associated with the pathogenesis of ASD. Set A involves differentially 

methylated loci at birth; Set B at time of ASD diagnosis; and Set C involving OXTR promoter region.

Study Nearest Gene Chromosome CpG Loci ID Position

A.
Hannon et al (2018)
- Dried blood spots
- N=1263
- Infants at birth, who developed ASD

RALY
20 cg12699865 32583031

16 cg03697766 54848022

UNC84A
7 cg25203085 887678

5 cg20712043 16392700

TG
8 cg04918350 134124199

6 cg21986027 169238138

TRIM2 4 cg14001992 154073813

RD3
1 cg00692367 154073813

1 cg16254267 1073529

C2orf85 2 cg03270969 242813189

LHCGR 2 cg06995408 48977089

PAG1 8 cg09973676 82006417

ZCCHC24
10 cg25485956 81146099

14 cg23256480 93252030

KLF8 X cg22829182 56258808

CCDC147 10 cg02803139 106113391

LOC100128573
19 cg03260991 7539710

10 cg04089434 94516971

KDR 4 cg02723107 55987799

KCNJ10 1 cg20064848 160037877

B.
Andrews et al (2018)
- Blood
- N=1654
- Children/adolescents with ASD and controls

CENPM 22 cg21151899 42337657

FENDRR 16 cg03731974 86531598

SNRNP200 2 cg09962502 96971189

PGLYRP4 1 cg01798266 153347938

EZH1 17 cg01716316 40897182

DIO3 14 cg16234726 101632839

CCDC181 1 cg09671955 169460734

C.
Gregory et al (2009)
- Blood (PBMC)
- N=40
- ASD

OXTR 3 CpG-924, Intron 1, MT2

8769047*

8769121*

8769146*

* =
from Genome Reference Consortium Human Build 38 (hg38). All other position numbers from hg19.
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