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Abstract

Embedded pragmatic clinical trials (ePCTs) are conducted during routine clinical care and have 

the potential to increase knowledge about the effectiveness of interventions under real world 

conditions. However, many pragmatic trials rely on data from the electronic health record (EHR) 

data, which are subject to bias from incomplete data, poor data quality, lack of representation 

from people who are medically underserved, and implicit bias in EHR design. This commentary 

examines how the use of EHR data might exacerbate bias and potentially increase health 

inequities. We offer recommendations for how to increase generalizability of ePCT results and 

begin to mitigate bias to promote health equity.

Keywords

Health equity; patient-reported outcomes; social determinants of health; community engagement; 
health literacy

Introduction

By using data collected during clinical care, embedded pragmatic clinical trials (ePCTs) 

increase knowledge about the effectiveness of clinical interventions under real world 
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conditions. However, the electronic health record (EHR) data upon which many ePCTs are 

designed are subject to implicit bias in EHR design; bias from incomplete data and poor data 

quality; and overrepresentation of data from people with structural privilege.1 These biases 

can limit the relevance and generalizability of results, and subsequently increase health 

inequities.

This commentary draws our collective experience to examine how the use of EHR data 

might exacerbate bias and potentially increase health inequities. We offer recommendations 

for how to increase generalizability of ePCT results to begin to mitigate bias and promote 

health equity.

Strategies to address bias in health research using the EHR

Research leveraging EHRs must be deliberately designed to identify and address bias to 

promote health equity. The Health Equity Lens framework, initially developed for public 

health professionals, outlines five health equity concepts for framing health disparities.2 We 

use these concepts to explore sources of bias and provide recommendations.

1. Systemic, Social and Health Inequity Bias

Problem: The use of EHR-derived data requires careful attention to mitigate the 

unintended consequences of using data that mirrors US social and structural inequities. 

Moreover, insufficient attention has been paid to collecting data about the social 

determinants of health (SDoH).3 Critically and more difficult to resolve, the available data 

from EHRs only reflects those who access healthcare. Those who are not represented 

in EHR datasets are a direct consequence of historical and ongoing forms of oppression 

causing ubiquitous health inequities that limit who can access care. Further, EHR data 

completeness and accuracy may reflect additional biases resulting from institutional policy, 

training practices, and implicit provider bias.4 When patient-reported outcomes (PROs) are 

collected using patient-facing EHR modalities alone (i.e., patient portals), a portion of the 

population that does not use portals will also be excluded for various reasons (e.g., literacy 

and/or technology barriers).

Recommendation: Data sources such as PROs and Z-codes (included in the International 

Classification of Diseases-10) can be used to collect the demographic and SDoH variables 

needed to understand outcomes and, ultimately, improve clinical practice. While there is no 

consensus about best practices for equity-based data collection and which SDoH measures 

should be minimally included, we suggest that ePCT teams should strive to collect and 

report standardized SDoH measures. The HL7 Gravity5,6 is one initiative aiming to identify 

and harmonize SDoH data so these are interoperable for electronic health information 

exchange. The increased national and global attention to health equity is driving not only 

standards but also incentives and tools to support SDOH data collection. To reduce bias in 

patient reported data often collected through patient portals to EHR systems, health systems 

and researchers will need to invest in the design of portals and engagement features, such 

as text messaging, and conduct specific research efforts to better understand the clinical 

effectiveness of these optimized EHR features in improving patients’ effective use of EHRs 

and engagement in their health and health care.
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2. Representation and Diversity

Problem: Much of current medical evidence was generated from clinical trials with 

predominately white participants which does not ensure conclusions drawn are safe and 

effective for all populations.7 From these trials and knowledge, algorithms are built into 

EHR clinical decision support (CDS) tools to suggest risk factors, diagnoses, treatments 

and supportive services, with potentially the same omission of areas of study. Since the 

range of patient populations are not proportionally represented, the underlying logic of these 

algorithms and CDS tools limit applicability.8

Recommendation: Given the identified limitations of EHR data sets, greater transparency 

is needed regarding sources, input, and missing data and modelling choices underlying 

clinical decision support tools.9 When planning ePCTs, sponsors and investigators should 

actively seek out and engage with a variety of settings serving diverse populations; efforts 

that support participatory research design should be prioritized. To address data collection 

barriers among people who have been historically marginalized and underrepresented, some 

investigators have enabled interventions using bidirectional text messaging that collect PRO 

measures and facilitate engagement with underrepresented populations who have high rates 

of cell phone ownership. To reduce bias that may arise from translated PRO or patient-facing 

measures that are used without cross-cultural validation, we recommend investing in the 

testing and psychometric validation of instruments used among different populations prior to 

use.10,11

3. Community Engagement

Problem: Community engaged approaches to EHR research are underutilized.

Recommendation: More than 25 years of evidence supports following the principles of 

community-based participatory health research.12,13 14 In ePCTs, patients and communities 

ultimately affected by the health condition of concern should inform the research questions, 

variables and instrument selection, implementation, and interpretation of clinical research to 

ensure the research is relevant. Human-centered design15,16 is one strategy that incorporates 

diverse stakeholders in the design and development of health technology interventions. 

Increasingly, these approaches focus on understanding and engaging with patients,17 and 

incorporate equity-centered or emancipatory lenses that place equity more centrally in the 

process.18–20

4. Intersectionality

Problem: EHR-based research rarely captures variables that allow for intersectionality 

analyses.

Recommendation: Intersectionality21 conceptualizes how political and economic power 

and oppression are linked and create systems of discrimination or disadvantage that are 

experienced by individuals based on identities (e.g., race, gender, sexual orientation, 

disability, immigration status, housing, education and income). Intersectionality is a lens 

that can be used to understand the differential effects of interventions tested through ePCTs. 

However, more refined data collection is needed to capture the identities and SDoH variables 
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that are not typically documented in the EHR. For example, offering identities write-in 

options can allow the social categories that are important to patient’s experiences to emerge. 

Such nuances will enable analyses of individual and combined (additive or multiplicative) 

associations. This level of clarity and granularity can help prevent inappropriate data 

aggregation and increase transparency regarding decisions on how variables are produced 

and used in analyses. Although studies may not be powered to control for every variable, 

allowing for more refined social categories will help ensure more people will benefit from 

the interventions being tested which promotes health equity.

5. Literacy and Health Literacy

Problem: Health information collected in PROs is often written above the NIH-

recommended 5th-grade level, or are developed without the input of patient end-users. 

Misunderstanding of the PROs due to reading grade level or lack of community knowledge 

could lead to incorrected data or unvalidated data collected by patients impacting clinical 

decisions.

Recommendation: The reading level of PROs should be formally evaluated, with 

potential cognitive testing to ensure suitability for the population of interest. As mentioned 

above, community partners should be involved in the review and validation of PRO content. 

As literacy and health literacy has a material impact on how patients interpret and respond 

to PRO tools, efforts should be made to appropriately capture SDoH of respondents; this 

includes the “digital” domains of literacy (e.g., digital health literacy, digital competence, 

digital agency) that may influence PRO data collection and interpretation.

Conclusion

EHR-based data collection within PCTs is increasing, leaving research vulnerable to biases 

in the design, collection, and use of electronic health data, and potentially propagating 

inequities in health and the healthcare system. Complex multilevel (national, state, and local) 

strategies and support from stakeholders are needed to address bias stemming from the use 

of EHR data for research and healthcare delivery. The embedded, ubiquitous, and often 

unknown biases in EHR data (due to variations in care delivery, experience, data capture or 

data quality, and lack of diverse representation) can limit the relevance and generalizability 

of results from pragmatic trials, and subsequently increase health inequities.
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