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Abstract

Colloidal particles with mobile binding molecules constitute a powerful platform for probing 

the physics of self-assembly. Binding molecules are free to diffuse and rearrange on the 

surface, giving rise to spontaneous control over the number of droplet-droplet bonds, i.e., 

valence, as a function of the concentration of binders. This type of valence control has been 

realized experimentally by tuning the interaction strength between DNA-coated emulsion droplets. 

Optimizing for valence two yields droplet polymer chains, termed ‘colloidomers’, which have 

recently been used to probe the physics of folding. To understand the underlying self-assembly 

mechanisms, here we present a coarse-grained molecular dynamics (CGMD) model to study 

the self-assembly of this class of systems using explicit representations of mobile binding 
sites. We explore how valence of assembled structures can be tuned through kinetic control 

in the strong binding limit. More specifically, we optimize experimental control parameters to 

obtain the highest yield of long linear colloidomer chains. Subsequently tuning the dynamics of 

binding and unbinding via a temperature-dependent model allows us to observe a heptamer chain 

collapse into all possible rigid structures, in good agreement with recent folding experiments. Our 

CGMD platform and dynamic bonding model (implemented as an open-source custom plugin 

†Electronic Supplementary Information (ESI) available: Electronic supporting information contains additional figures and tables as 
described in the main text. Additionally, four movies are available: M1. Movies showing the growth and saturation of the adhesion 
patch in a dimer for the exact same conditions as illustrated in Fig. 4. M2. Movies showing the growth and saturation of the two 
adhesion patches in a trimer for the exact same conditions as illustrated in Fig. 4. M3. Movies showing self-assembly of 50/50 
mixtures of C and D droplets with R = 50, Nb = 100, ε = 20.7, γA = 1.0 for 4 area fractions ϕ = 0.1, 0.2, 0.3, 0.4 (See Fig. 5). 

M4. A movie showing 15 heating-cooling cycles for a 7-mer of droplets with R = 20, Nb = 200, γA = 0.1, εDD = 4.6, εCC = ∞
and Tmelt, DD = 1.2 (See Fig. 7a).
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to HOOMD-blue) reveal the molecular features governing the binding patch size and valence 

control, and opens the study of pathways in colloidomer folding. This model can therefore guide 

programmable design in experiments.

1 Introduction

Self-assembly of colloidal materials can create non-trivial and programmable structures with 

wide-ranging and tunable material properties. The spatio-temporal visualization of colloids 

renders them as useful model systems for probing the underlying physics behind assembly 

processes of molecular systems1-4. The synthesis of colloidal particles with chemically or 

physically patterned solid surfaces—“patches”—has been an active area of research due to 

the desire to control the bond valence and orientation, going beyond what can be achieved 

through isotropic interactions4-7. For example, a long-desired target is a diamond lattice, 

with an open structure that is difficult to achieve without an imposed tetrahedral symmetry8.

The most common approach to engineering specific interactions between patches is to use 

complementary strands of DNA, whose interaction strength can be tuned by the length 

and specific sequence of nucleotides.2,9-13. Each DNA duplex has an associated melting 

temperature (Tmelt) and it is possible to employ multiple sets of complementary strands 

exhibiting different Tmelt to control the types of bonds present during an annealing protocol14.

Self-assembly of patchy particles can be studied in simulations using short-range directional 

non-bonded interactions15 or using only pairwise interactions in combination with specific 

geometric constraints that prevent multiple bonding to the same patch6,16-18. Interactions 

due to many DNAs on a colloidal surface can also be computed using more detailed MD 

simulations19, or through a mean-field approach20. An alternative strategy to modeling 

explicit patches is to develop pair-potentials from inverse design principles, which have been 

successfully leveraged to produce systems that assemble with low valence, such as dimers or 

chains21,22.

An intriguing alternative to patchy particles of fixed valence is a system of particles coated 

with mobile adhesion molecules. In this case, it is possible for particles to “choose” their 

valence based on the number of available neighbors with complementary binding molecules, 

minimizing the total free energy of the system. Experimentally, using oil droplets in water 

provides a mobile interface on which the DNA linkers segregate into patches by diffusion to 

give rise to e.g., dimers when all the DNA is recruited into a single patch or droplet chains 

at higher concentrations of DNA where two patches per droplet are favored23. Colloids with 

mobile binders can also be formed by coating solid particles with fluid lipid bilayers24,25, 

or by directly functionalizing liposomes or giant unilamellar vesicles26-29. The mobility of 

the linkers broadens the melting temperature window of the DNA, facilitating equilibrium 

self-assembly2,30. Particles with mobile binders can also serve as a physical mimic for 

biological adhesion, where cells use a variety of dynamic binding molecules to stick to each 

other and to surfaces31. To this end, biomimetic emulsion droplets have been successfully 

functionalized with adhesive mobile proteins, such as biotin-streptavidin complexes32,33, 

cadherin ectodomains34, or other ligand-binder pairs relevant for immunotherapy35. Early 
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theoretical work expanding on the model of Ref.20 predicts that such particles could have 

an equilibrium valence that depends on the number of available neighboring particles in the 

system36.

Our previous work shows that monodisperse PDMS oil droplets functionalized with 

different flavors of single-stranded DNA on the surface can self-assemble into structures 

of tunable valence23,25,37-40. Under conditions where DNA bonds are reversible at room 

temperature, these systems achieve their equilibrium valence configuration. These results are 

predicted by a free-energy functional that takes into account the molecular properties of the 

system, including DNA binding strength, flexibility, steric repulsion, and concentration41. 

Optimizing for valence two, the self-assembly of complementary DNA-coated droplets 

yields linear colloidomer chains23. Further programming the secondary interactions along 

the chains offers a physical model system to probe the energy landscape of biopolymer 

folding, and for building small ‘foldamer’ structures that can serve as the basis for larger 

scale assemblies42-44. A complementary work demonstrated the formation of reconfigurable 

colloidal molecules using polydisperse droplets surrounded by ligands45. It has also 

been shown previously through both experiments and simulation studies that anisotropic 

interactions between polymer-grafted nanoparticles (NPs)46-49 can result in self-assembly of 

sheets and string-like structures. The graft density of the polymers and the relative size of 

the graft to the NP can play a crucial role in determining the kind of structures observed 

during self-assembly, quite analogous to how the density of the mobile DNA binders on the 

surface of oil droplets can be used to tune the droplet valence.

Motivated by these experimental studies, our work develops a coarse-grained molecular 

dynamics (CGMD) simulation model and framework to study the self-assembly of these 

colloidal chains with mobile binders, and their subsequent folding. The crucial feature 

of our model is the use of explicit mobile linkers with bonds between complementary 

binding partners. Prior work on these types of systems used implicit models of binding 

between neighboring droplets via the formation of adhesion patches, and some models 

included approximations to account for the dynamics of adhesion26,36,50-53. The use of 

explicit mobile binders allows us to test the underlying assumptions in a more realistic 

model, albeit at the cost of additional complexity. For example, our model explicitly shows 

how steric repulsion between binders (designed to mimic electrostatic repulsion between 

DNA strands) affects the adhesion patch size and the concentration of binders therein. 

These results in turn explain the overall valence distribution that results from the assembly 

process. To demonstrate the capabilities of our model, we describe the parameters that 

optimize the formation of colloidal chains under kinetic control, and show that it exhibits 

the folding behavior of two-dimensional colloidal chains commensurate with what has been 

recently demonstrated experimentally44. Our scheme lays the groundwork for studying the 

mechano-sensitive effects of mobile binders at interfaces, including the role of catch bonds, 

lateral interactions, or cooperativity in strengthening adhesions34,54.
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2 Description of the model

2.1 Coarse-Grained model for colloidal particles with explicit mobile binders

The central unit of our simulation model is a droplet, as shown in Fig. 1a. Each droplet 

consists of a central spherical particle of radius R (type A) with Nb binders distributed on 

the surface. Each binder is composed of two particles — the outer particle (type C or D) 

is responsible for binding complementary partners, while the inner one (type B) is used to 

modulate excluded volume between binders. The positions of the binders are initialized in 

a “Fibonacci” arrangement to prevent overlap between any adjacent binders in the initial 

configurations55. This pair of particles mimics the combination of the double-stranded tether 

and the single-stranded sticky-end DNA used in experiments23 (Fig. 1a). This configuration 

also allows us to apply an angular term to tune the propensity of the binder to stand 

vertically from the surface. The binders diffuse on the surface25 due to a harmonic bond 

between the center of the droplet and that of the inner binder particle with a spring constant 

kAB and rest length lAB
0 .

The inner and outer particles in the binder are similarly held together by a harmonic bond 

with spring constant kBC and lBC = rB + rC, the sum of their radii. To have the binder stick 

outward from the droplet, the two binder particles are forced to align along the radial vector 

from the center of the droplet, by introducing a harmonic angular potential between the 

triplet of particles with parameters kABC and rest angle θABC
0 = 180°

. In each case, the spring 

constants are chosen such that the thermal standard deviation σ = kBT ∕ k (where kB is the 

Boltzmann’s constant) is a small fraction of the rest length or angle (see Table S5). As a 

trade-off between enforcing rigid bonds and using an infinitesimal MD time step, we chose 

to use spring constants where the standard deviation is 1 — 2%.

2.2 Non-bonded interactions

To prevent overlap between particles, we use a soft repulsion given by

Usoft(r) = εsoft 1 − r
rcut

4
if r < rcut

0 if r ≥ rcut

(1)

, a smoothed version of which (Section A1) is applied between all particle types except 

between pairs of outer binder particles of complementary types (otherwise repulsion can 

prevent binding). Here, εsoft is the strength of the interaction potential (in units of kBT ) and 

rcut is the cut-off distance, as shown by the dotted green curve in Fig. A1. By tuning the 

effective diameter of B particles, we tune the steric repulsion between adjacent binders, 

which corresponds to the case of altering the screening of the electrostatic interactions 

between DNA strands on the surface41.

Our CGMD model can be used to study droplet interactions in three dimensions, but we 

add an optional confining potential for comparison with recent experiments where droplets 

are found in a plane due to the effect of gravity. To replicate a quasi two-dimensional 

arrangement in our system, we use a force-shifted Lennard-Jones wall potential56 on each 
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droplet, between a fixed z-position and the center of the droplet A particle. The origins of 

the walls are given by (0,0,2.5R) and (0,0,−2.5R).

2.3 Dynamic bonding model

We model interactions between binders through covalent bonds. To do so, we develop 

a plugin to HOOMD-blue57 58 that builds upon a model for epoxy binding developed 

in Ref.59. Adhesive bonds form only between complementary outer binder particles of 

respective droplets, as shown in Fig. 1b. In the simplest case, we have a mixture of droplets 

containing outer binder particles that are 100% of types C and D, respectively. The model 

allows for individual droplets to contain mixtures of binder types, and there may be many 

more than two types, as designated by the user. In this study, harmonic bonds are added with 

spring constant kdyn and length ldyn = rC + rD, the sum of the radii of particles forming a bond. 

Here, we choose harmonic bonds, but any form of bond implemented in HOOMD-blue 

could be used, since our algorithm only changes the bond table within the MD simulation, 

and does not compute or apply forces.*

In our approach, we enforce that each binder can only participate in one possible binding 

reaction at a time, such that all binding events are independent. In this case, each reaction 

can be characterized as a two-state reaction, where the effective free energy difference 

between a bound and an unbound state is given by

ΔG = kBT ln kon

koff
≡ ε (2)

Here, kon and koff are the rate constants for binding and unbinding, respectively. Below, we 

tune ε to modulate the affinity between individual binders.

In Section A2 we describe details of the algorithm for binding and unbinding, satisfying 

detailed balance. Additionally, in Section A3 we describe how the binding and unbinding 

rates are made temperature dependent in such a way that the fraction of bound pairs at the 

equilibrium distance tends smoothly to zero at high T , with 50% bound pairs at a specified 

melting temperature Tmelt (Fig. A2).

2.4 Comparison of model and experiment geometry

While this CGMD model is generic, Fig. A3 shows how the geometry can be compared to 

the experimental setup in Ref.23. The radius of one binder sphere corresponds to the sticky 

end of length ~ 5.1nm, which is our reduced unit of length. Therefore, a droplet radius of 

R = 300 corresponds to the droplet size of ~ 1530nm used in Ref.23. Smaller particle sizes 

studied in Section 4 are also used in experiments.

Practically, our simulations are computationally limited to hundreds of binders per droplet. 

Therefore, we equate the scale of the simulations to experiments by matching the excluded 

*The Metropolis criterion employed for binding/unbinding described later requires knowing the energy of adding or removing a bond. 
At this time only a harmonic interaction is supported, but this can be trivially extended.
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volume of all binders to that of DNA surface coverage in the experiment. More specifically, 

the surface coverage, p is defined as

p = 4πrB
2Nb

4πR2 = Nb
rB

R
2

. (3)

In the experiment, for droplets of radius R = 1530 nm, an effective repulsive radius of DNA 

of 1.5nm41,60,61, and an estimated 1 × 103 − 2 × 104 DNA strands23,41, p ranges from ~ 0.001 

– 0.02 or 0.1 – 2% coverage. For many simulations below, we use rB = 1, R = 50, and 

Nb = 100, in which case p = 0.04. From this perspective, each binder plays the collective role 

of hundreds of DNA.

3 Simulation methods

MD simulations62 of droplets coated with mobile binders were performed using HOOMD-

blue version 2.9.657,58,63. The Langevin integrator64 was used to integrate all particles 

forward in time. Two different values of the drag coefficient γ were used: one for the 

droplets (γA) and the other for the binders (γbinder).

The equation of motion for each particle i in Langevin dynamics65 is given by:

mi rï (t) = F i − γi ri

.
(t) + 2γikBT η (t) (4)

where, mi is the mass of the particle, kB is the Boltzmann constant, γi is the drag coefficient, 

ri

.
(t) is the velocity of the particle, F i = − ∇Ui is the force on particle i derived from the 

total potential energy function of the system, and η(t) is the delta-correlated random white 

noise, with zero mean and unit variance. We use the tree neighbor list66,67 to accelerate 

non-bonded calculations, and in the construction of our list of possible pairs to bond as 

described above.

4 Results and Discussion

4.1 Main objectives

In this section, we optimize simulation conditions to robustly self-assemble long 

colloidomers, suppressing branched structures. We explore both the molecular properties 

of the system (droplet radius, binder concentration, and binder interaction strength), and the 

experimental conditions for assembly (particle concentration and solution viscosity). The 

detailed parameters used for our MD simulations are listed in tables S5 to S8. Our results 

indicate that kinetic factors can be rationally employed to target the desired outcome with 

high yield and fidelity for fixed-time experiments. We subsequently show that our model 

allows us to study the folding process for colloidomer chains.

4.2 Adhesion patch formation is a two-stage process for high bond strengths

The formation of chains requires that each droplet has two contacting neighbors. Monomers 

first form dimers, after which they either combine with monomers to make trimers, or with 
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other dimers to make tetramers. We therefore first probe the physical processes involved in 

forming a patch in a dimer or trimer configuration, and then consider de novo assembly in 

Section 4.5 .

Simulations of patch formation begin with dimers and trimers in an initial configuration with 

a single bond already formed between the droplets. Subsequently, the patches progressively 

grow until they reach steady-state. We find that patch formation (at intermediate and high 

binding affinities, around ε > 13) happens in two stages, as illustrated in Fig. 2 (see Fig. 

S1). Fitting the fraction of unbound binders versus time with a double exponential function 

reveals two time scales, as shown in Section S1.1. Initially, the fast time scale of recruitment 

of binders describes the formation of a stable adhesion patch (τ1), while the saturation of 

the patch is captured by a 1–2 orders of magnitude slower timescale (τ2). Table S1 reports 

values of τ1 and τ2 for some of these conditions. Slowing binder motion by increasing γbinder or 

slowing binding by decreasing kon at fixed bond strength ε increase the recruitment time τ1, 

as shown in Fig. S2; these changes should increase the yield of higher valences, discussed 

in Section 4.5. Modulation of kon could perhaps be realized in experiment by modifying the 

length of the spacer molecule, which would change the probability of finding a binding 

partner. The two-step patch recruitment has important consequences for the kinetically 

controlled assembly mechanism of colloidal chains at high ε.

4.3 Optimizing bond strength, droplet size, and binder concentration for 

colloidomerization

Optimal conditions for colloidomerization require considering both the dimer and the trimer 

assembly, since we must find a condition where not all binders are exhausted in the dimer, 

where ~50% of binders are available on a terminal droplet of a trimer, and where very few 

are left on the trimer middle droplet, preventing branching. Fig. 3a shows a systematic study 

of the self-assembly of droplets of varying R and ε, for a fixed total number of binders 

Nb = 100. The heat maps show the fraction of unbound binders in three configurations: 

a droplet-droplet dimer, a terminal droplet in a trimer, and a central droplet in a trimer. 

Conditions for colloidomerization are satisfied in the region where the dashed ovals overlap. 

Later, we choose R = 50, ε = 20.7 and Nb = 100 to demonstrate that this condition results in 

the robust assembly of colloidomers.

The number of binders in a patch at equilibrium is dictated by the free energy of patch 

formation, which can be considered as the difference in the chemical potential inside and 

outside the patch41. The driving force for a binder to enter the adhesion patch is determined 

by the energy of forming individual bonds, ε, and opposed by steric repulsion between 

binders, the stretching of binders at the interface, as well as the loss of entropy as the 

binder motion is constrained in a patch. As ε increases, the fraction of free binders decreases 

monotonically in the case of both dimers and trimers until it reaches an asymptotic value 

that is limited by the steric repulsion between binders.

Similarly, increasing droplet size in the strong binding limit recruits progressively more 

binders into the patch, since there is more space at the interface between larger droplets (Fig. 
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3a). For large R in both dimers and trimers, we observe that the transition from no binding 

to all binders in the patch is very sharp as energy gain overtakes entropic losses without a 

penalty from steric repulsion. In contrast, for small radii, the recruitment of binders into the 

patch is more gradual with ε due to crowding.

Changing the droplet size not only changes the cost of packing binders into a patch, but 

also the entropic cost of patch formation, which increases with droplet size. Therefore, at 

intermediate values of ε we observe a non-monotonic recruitment of binders into the patch 

as a function of droplet size. While crowding dominates in small droplets, entropic costs 

dominate in large droplets, giving rise to an optimal size for binder recruitment, e.g. R = 120
for ε = 15 in the dimer configuration. We thus show that competition between the energy of 

binding, steric repulsion between binders, and the entropy of free binders can collectively 

result in non-monotonic patch density when tuning e.g. the droplet radius.

We can now consider the transition from dimer to trimer, where two adhesion patches 

are formed. Competition between the two adhesion patches results in an approximately 

equal split of binders on the middle droplet; therefore, even in cases where more than 

half of binders can pack into a patch, only half of the binders on each terminal droplet 

are exhausted. This situation occurs for higher ε, whereas for weaker binding, entropy 

dominates and many binders remain outside of the two adhesion patches on both the central 

and terminal droplets. We note that for high ε, rearrangement of binders between patches 

is expected to be slow. In Fig. S3 we show that there is some asymmetry between patches 

except at weak binding, and therefore conclude that the onset of effectively irreversible patch 

formation occurs roughly at ε ∼ 10.

In Fig. 3b we fix ε = 20.7 at the goldilocks value from Fig. 3a, and explore the effect of 

varying binder surface coverage. In this strong binding regime, we eventually saturate the 

geometric limit set by the droplet size and binder repulsion (see also Fig. S4). If Nb is 

increased above this limit, it simply results in additional free binders. For small droplets, we 

quickly reach the situation where not all binders on the middle droplet of a trimer can fit 

into two patches, but we see that for larger droplets there is a very wide tolerance for binder 

concentration which might be useful for colloidomerization.

In summary, for certain parameters (including ε = 20.7, R = 50, Nb = 100) we find that < 

100% of the binders are recruited for dimers, while in trimers patches contain exactly half 

of the binders due to the competition between neighbors. This is an optimal situation for 

the self-assembly of colloidomers, and we proceed to study assembly of these droplets in 

Section 4.5.

4.4 Illustrating a molecular recipe for colloidomers

Fig. 4 illustrates scenarios that are predicted to be good or bad for colloidomer assembly, 

as described above; full trajectories for these conditions are also shown in Supplementary 

movies M1 and M2. Considering the dimer, we see that large droplets and high ε allow 

almost all the binders to fit into a patch, which is detrimental for colloidomer assembly 

because it terminates the polymerization reaction. Decreasing droplet size to R = 50 limits 
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binders due to their steric repulsion in the patch, leaving just enough binders to seed a trimer 

with no remaining binders on the middle droplet, thus imposing the self-assembly of linear 

chains. Lowering the droplet size further or decreasing the binding strength leaves too many 

binders free on the trimer middle droplet at equilibrium, which would eventually lead to the 

self-assembly of branched colloidomers. Fig. 4b illustrates that for a fixed droplet size and 

bond strength, the number of binders must be chosen such that dimers have free binders to 

grow the chain, while trimers have no free binders for branching via the middle droplet, as is 

the case for Nb = 100. On the other hand, Nb = 50 has almost all the binders (97%) recruited 

in the case of the dimer, terminating colloidomer assembly. For Nb = 300, the central droplet 

of a trimer has 21% binders remaining on the surface, which would result in the branching 

of colloidomers.

4.5 Kinetic optimization of colloidomerization

Beyond dimers and trimers, the self-assembly of chains requires further optimization 

of competing experimental timescales. Combining a 1:1 mixture of droplets containing 

complementary binders of particles type ‘C’ and ‘D’ mimics the experiments in Ref.23. 

Tuning the density ϕ (area fraction) of droplets modulates the thermodynamic driving force 

for assembly, but also controls the collision time between droplets and allows us to optimize 

the formation of long colloidomers out of equilibrium for fixed time of assembly. Given that 

the droplets are undergoing simple diffusion, the collision time τcollision ∼ 〈l2〉 ∕ D, where l is 

the distance between droplets and D is the diffusion constant. In two dimensions, l2 ∼ ϕ−1, 

such that the collision time is inversely proportional to the droplet density. The Einstein 

relation gives D = kBT ∕ γ, therefore τcollision ∼ γ, the drag on a particle.

In Fig. 5, we show that by fixing the previously optimized R, Nb, ε parameters and varying ϕ
and γA, we can maximize the yield of colloidomers (with results from two lower values of ε
shown in Figs. S8-S10). Previous arguments suggest that higher valences would be preferred 

at equilibrium50-52, but in this case our goal is to maximize the yield of linear chains. We 

therefore adopt the strategy of kinetic control, where we predict that chains can be formed 

whenever adhesion patches form and exhaust approximately half of available binders before 

subsequent droplet collisions and patch formation, based on the strategies in the previous 

section. To achieve this control, we first vary the droplet density ϕ. Since droplet collisions 

are fast in dense suspensions, we observe many droplets with valence three or four at the 

highest initial density. At lower densities, valence two predominates as predicted based on 

our dimer or trimer experiments; whenever that does not occur “defects” result, producing 

branched structures.

A second way to modulate our kinetic yield of chains can be achieved is by increasing γA

for the droplet, which slows down the collision rates without changing the thermodynamic 

driving force for assembly and increases the yield of linear chains, while also avoiding 

loop formation (Fig. 5–upper row); full trajectories for the upper row are also provided 

in Supplementary movie M3. As described in the simulation methods (Section 3), it is 

important to note that we control drag on the central droplet and binders separately; here we 

only varied the drag on the droplet particle ‘A’ (γA) and kept γbinder at a very small constant 
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value, because increasing γ for each of the binder particles can also slow down the diffusion 

of the droplet as a whole. We also predict that decreasing the binding rate kon at fixed bond 

strength ε would be detrimental to our goal of assembling chains, since as described earlier 

it would take longer to assemble a patch as compared to the collision time of droplets 

(See Fig. S2). The relative speeds of the two competing processes of patch recruitment 

and droplet-droplet collision can thus be tuned to dictate the kind of structures observed in 

self-assembly and provide more insights on kinetic control.

More quantitatively, we compute the distribution of structures produced at the end of 

108 steps, averaging over 10 independent simulations. We partition every interconnected 

assembly using an algorithm described in Section S2.1, and then classify these structures 

as monomers, dimers, linear chains (N ≥ 3), loops, and ‘other’ (at least one droplet has 

valence ≥ 3). To define the best conditions for chain assembly, we sought to maximize 

three quantities that are shown in bar charts next to each condition in Fig. 5: (1) fraction of 

droplets present in structures that are not monomers or branched—which we call “success” 

(purple bar), (2) fraction of droplets with valence 2 (green bar), and (3) the average 

maximum chain length (blue bar, which we scale by the highest value 〈Nmax〉highest = 20
observed for the condition ϕ = 0.4, γA = 1.0).

While conditions at ϕ = 0.4 have the longest chains and a high fraction of particles with 

valence 2, there are also many ‘errors’ due to chain branching, and so we eliminate 

high density. Conditions at lower ϕ have fewer errors but also shorter chains. Based on 

maximizing these three metrics, we choose the condition (ϕ = 0.3, γA = 1.0) as our best, and 

we provide more details about the structures observed at this condition in Fig. 6.

In Fig. 6a, we show the evolution of bond valence versus time, which reflects on average, 

colloidomers are formed by conversion of monomers to dimers, followed by the conversion 

of dimers to trimers. Fig. 6b shows the distribution of valence, and for this condition, we 

observe that only ≈ 5% of droplets had valence higher than 2, which is indicative of a small 

number of branching points in chains. This result actually has a higher yield of linear chains 

than the best condition found experimentally in Ref.23. However, even a small fraction of 

droplets with valence 3 can prevent extremely high quality assembly of only chains, as 

shown in Fig. 6c, where we observe that ≈ 30% of droplets are present in structures that 

contain at least one particle of valence 3 (cyan bar), and hence are considered as errors. 

Finally, Fig. 6d shows that the distribution of chain lengths seems to follow an exponential 

distribution, with an average length longer than in the optimal conditions in Ref.23. An 

exponential distribution implies that it will be challenging to obtain a large median chain 

length via a simple self-assembly strategy. This comports with experimental findings, where 

for efficiency, a new methodology was developed to engineer longer chains using magnetic 

fields applied to a dispersion in a ferrofluid44.

4.6 Application of the model to colloidomer folding

Folding of colloidomer chains and the study of their pathways towards stable structures 

is an area of active research44. Here, we demonstrate that our CG model can capture 
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experimentally relevant folding behavior of colloidomer chains and use this to highlight 

additional features of our CG framework.

Our CG framework allows the user to generate an initial linear colloidomer chain of any 

length and an arbitrary sequence of binder types. Moreover, there can be multiple types 

of binders on the same droplet. To study colloidomer folding, we mimic the experimental 

setup of having two types of binders on the same droplet, C and D, each of which is 
self-complementary. Here, C-C bonds are intended to make up the backbone of the chain, 

while D-D bonds are the ones driving folding. As described earlier, our dynamic bonding 

model can also have temperature dependent binding/unbinding (see Section A3 for full 

details). We therefore choose different melting temperatures such that D-D bonds melt at a 

lower temperature, while C-C bonds stay in place.

Here, we generate folded structures using a square wave heating and cooling cycle. During 

the first segment at higher temperature, the backbone adhesion patches form and the chain 

explores unfolded configurations. After that, repeated cooling and heating are used to 

generate low energy structures.

In contrast to our work in Section 4.3 on optimizing colloidomer assembly, here we do 

want to produce higher valences. This is achieved through the use of smaller R = 20 and 

lower εDD = 4.6, where reversible bonding allows for rearrangements such that equilibrated 

structures form. Low R has the additional benefit of faster folding times, allowing us to 

generate many structures in relatively little computational time.

As a benchmark case to confirm that our model would be applicable in future studies of 

colloidomer chain folding, we investigate the heptamer case consisting of N = 7 droplets that 

has been experimentally realized in Ref.44. There are four possible rigid structures which 

are the low energy states of the heptamer. Scanning a small range of R and εDD over 15 

heating-cooling cycles we uncover the aforementioned condition (R = 20, εDD = 4.6) where 

all four possible structures are observed in a single simulation, as shown in Fig. 7a, and 

Supplementary movie M4.

Having obtained all structures in a single long simulation, we wished to quantify the 

population of each stable folded state. We ran 300 independent simulations each consisting 

of 5 folding/unfolding cycles and show in Fig. 7b the yields of each structure; the ladder and 

the chevron structures are kinetically accessible and have a higher yield than the rocket and 

flower geometries, in good agreement with Ref44.

From these preliminary studies of folding within our model, we have learned several key 

principles. Firstly, we only observe the flower structure—which has the highest bond count

—when εDD is very low; this is because folding to this structure is not fully downhill, and 

requires the breaking of a droplet-droplet bond (dissolving an entire adhesion patch) to reach 

the final state. Second, every droplet contains both C and D binders, and so it could be a 

concern that the D’s become exhausted in forming backbone bonds, which would tend to 

form faster than bonds farther away in sequence space. In our simulation, this is prevented 
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by choosing R and Nb where the patch is fully saturated by C’s (see Fig. S4 and S11), 

meaning that there is no opportunity for D’s to enter the backbone.

Moreover, the exclusion of D’s from the adhesion patches means there is a smaller area 

for them to occupy, which results in faster formation of bonds during the folding process. 

The factors which contribute to the speed of folding are also important to our results, since 

both in simulations and in experiments we do not want to wait arbitrarily long times in the 

cooling phase when generating low energy structures.

5 Conclusions

In this work, we report a CG model and simulation framework for colloidal liquid droplets 

with explicit mobile binders. The core of this model is a dynamic bonding protocol 

that satisfies detailed balance, that is very flexible in allowing one to control separately 

binding and unbinding rate constants, as well as implementing a tunable temperature 

dependence. Both the dynamic bonding code and the pyColloidomer framework are easy 

to use and freely available with examples from https://github.com/hocky-research-group/

pyColloidomer_2023.

Previous modeling works have studied colloidal liquid droplets with implicit mobile linkers, 

such that bonds are formed or removed based on a statistical mechanical model that predicts 

the strength of a patch and which can include timescales for bonding. Our model with 

explicit binders complements these studies—while having many explicit binders makes 

the model higher resolution, and hence slower, it also allows us to build insight into the 

adhesion patch formation process. For example, the use of explicit binders allowed us to 

see the effects of excluding particles from patches once they are formed, which had major 

consequences for ensuring valence = 2 structures in optimizing colloidomer assembly, and 

in preventing binders from being used up in colloidomer backbones in our folding studies. 

We also observe that above a certain binding strength (around ε > 13), the growth of a 

patch can follow a process characterized by two timescales, where saturation can take 

much longer than initial formation and recruitment. This could have an important effect 

at higher densities and lower viscosities, where droplet collisions can take place before 

patches are fully recruited; this effect could be incorporated into simulation models that use 

a parameterized equation for the recruitment process, such as recently done in Ref.53. The 

separation of the timescales for the motion of the droplet and for the binders in our CGMD 

model can also be applied in the case of systems such as polymer-grafted nanoparticles 

(NPs)46-49 which can help in kinetically controlling the interactions and hence the formation 

of non-equilibrium structures such as sheets and strings.

In ongoing work, we are now using these explicit binders to test the contributions to the 

free energy of patch formation and patch shape predicted experimentally in Ref.41. We are 

also expanding our dynamic bonding model to include the effect of force on unbinding 

rates54,70,71 to probe its effect on adhesion patch formation23,41, a dependence which is 

known to play an important role in the behavior of biomimetic assemblies of cellular 

adhesion proteins33. Preliminary data shows that our model captures observed behavior for 

folding of two dimensional colloidomer homopolymer chains; in future work we can use 
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our model to compare the structures and pathways generated through the use of explicit 

binders with those using very reduced models44,72. We can also trivially expand our folding 

studies to three dimensions by removing confinement, which will allow us to detail folding 

pathways in ways that are difficult to quantify in experiment.

Our CG model is quite versatile and can also be adapted to represent the behavior of 

analogous systems of lipid bilayers mentioned earlier24-29; it can also be used to explore the 

assembly of colloidal nanoparticles coated with ligands that bond via formation of reversible 

dynamic bonds with secondary linker molecules73,74. Linker-mediated colloidal assembly is 

a ripe area for exploration because the mobility of the secondary linkers and the reversibility 

in bonding can lead to formation of kinetically controlled structures such as string-like gels. 

Tuning the ratio of the linker to the colloid concentration73,74 can appropriately control 

the phase behavior. It would be fascinating to explore the consequences of assembling our 

particles with mobile binders using explicit free linkers with complementary binding sites 

rather than using direct binding.

Although our model captures what we believe to be the most crucial features of systems with 

mobile binding sites, there are simplifications whose effects we would like to investigate 

in the future. For example, the presence of a spring between the center of the droplet and 

binders allows the binders’ vertical position to vary, and by tuning this parameter we can 

explore the tendency to form a planar adhesion patch — however, we are missing the lateral 

coupling between binders that could be important in the case of deformable droplets. Our 

work also currently employs harmonic springs, and we plan to investigate the differences 

where more complex stretching behavior is taken into account41. Our powerful and flexible 

framework is freely available and simple to use, and so we hope others will build upon our 

work and take these studies in new directions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendices

A1 Non-bonded interaction details

Usoft(r) = εsoft 1 − r
rcut

4
if r < rcut

0 if r ≥ rcut

(A1)

Here, εsoft is the strength of the interaction potential (in units of kBT ) and rcut is the cut-off 

distance, as shown by the dotted green curve in Fig. A1. A smoothing function was applied 

to this potential Usoft(r) that results in both the potential energy and the force going smoothly 

to 0 at r = rcut, in this case the XLPOR smoothing75 function S(r), given by

S(r) =

1 if r < ron

(rcut
2 − r2)2(rcut

2 + 2r2 − 3ron
2 )

(rcut
2 − ron

2 )3 if ron ≤ r ≤ rcut

0 if r > rcut

(A2)

Here, ron is chosen as the point at which the smoothing starts. We set ron = 0.1rcut for our 

simulations. The modified potential is shown in Fig. A1 and is given by

V soft(r) = S(r)Usoft(r) if ron < rcut

Usoft(r) − Usoft(rcut) if ron ≥ rcut
(A3)

The soft potential was implemented by using HOOMD-blue’s tabulated potential option 

(with 1000 interpolation points between rmin = 0 and rmax = 1.05 rcut).
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Fig. A1. 
The soft repulsive pair potential V (r) as a function of the distance r between two binder 

particles of radius rC = 1. In this figure, rcut = 2 is indicated by the vertical dotted line. The 

green dotted curve shows the potential U(r) without any smoothing function applied to it and 

the red solid curve shows the potential V (r) after it is multiplied by a suitable smoothing 

function S(r).

The wall potential is given by a shifted LJ potential with rcut = 21 ∕ 6(2R).

V wall(r) = V FLJ(r) − V FLJ(rcut) (A4)

where, V FLJ(r), the force-shifted Lennard-Jones pair potential is given by,

V FLJ(r) =
4εwall (σ

2 )12 − σ(σ
r )6 if r < rcut

+ΔV (r)

0 if r ≥ rcut

(A5)

ΔV (r) = − (r − rcut)∂V LJ

∂r (rcut) (A6)

where α = 1.
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A2 Algorithm for binding and unbinding

Every n steps of the MD simulation (run using HOOMD-blue), a Dynamic Bond Updater is 

called. The Dynamic Bond Updater is an open source C++ plugin (based on previous work 

on epoxy curing59) that stochastically adds or removes dynamic bonds during the course of 

the MD simulation. If there is more than one dynamic bond type present in the system, the 

Bond Updater has to be configured for each independently.

Each time the Bond Updater is called, it first iterates over all the existing dynamic bonds to 

attempt unbinding. The probability of unbinding is calculated, given by

Poff
0 = nkoff dt (A7)

where, dt is the timestep of the MD simulation. For each bond in sequence, a uniform 

random number r ∈ [0, 1) is generated, and if r < Poff the bond is added to a list of bonds 

to be removed from the bond table. Once all the possible unbinding events are taken into 

consideration, we iterate over the list of bonds to be removed and perform unbinding.

After performing unbinding, we create a list of proposed bonds to add. We iterate over 

particles which were unbound at the start of the binding update (but not those freed by 

unbinding), and find the closest available complementary particle which is also unbound and 

whose distance from the particle under consideration is between lmin and lmax (by iterating over 

HOOMD-blue’s neighbor list). If an eligible neighbor exists, and neither particle is already 

in the proposed bonds list, then this pair is appended. Our binding algorithm is inspired by 

(but not identical) to the implementations in Refs.76-78.

We then iterate over the proposed bond list, generating new uniform random numbers and 

creating a bond if r < Pon. By default, Pon
0 = n kon dt. Here we choose Pon

0 = n kon dt such that 

kon, i.e. the fastest possible reaction rate for a specific time discretization because we want 

to form as many bonds as possible without rejecting too many Monte Carlo79 moves. 

We note that as a consequence, this scheme does not intend to match detailed chemical 

kinetics of the underlying processes, which would require schemes that would be more 

computationally demanding such as the Gillespie algorithm80 used in Ref.51. To ensure 

detailed balance for individual binding reactions, the probability of binding is modified71,81 

such that Pon = Pon
0 e−ΔU(d) ∕ kBT , where ΔU is the additional energy added by creating a bond 

of length d, possibly away from its rest length. Since we are only using harmonic bonds in 

this work,

Pon(d) = Pon
0 e−kdyn(d − ldyn)2 ∕ (2kBT ), (A8)

where kBT  is the instantaneous temperature of the system.

As in Ref.81, we are putting all of the energetic dependence into the binding step and none 

in the unbinding step, although other choices are possible71. The stretch dependent binding 

rates prevents formation of bonds which are very unlikely, so this helps in preventing 

non-equilibrium heating of the system. This choice of stretch-dependent on rate and constant 
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off rate does not correspond to our belief about the detailed molecular kinetics of DNA 

unbinding, but rather is an algorithmic choice that is valid because we are not currently 

interested in including the detailed effect of stretching on the rates, although we are planning 

to pursue this direction in the future.54,70,71

Detailed balance for the overall binding/unbinding reaction is satisfied to the best of our 

ability when performing a large set of binding/unbinding reactions at once (as compared 

to only doing one single binding/unbinding per trial) by ensuring that every event is 

independent such that the probability of the total change in bonded pairs factorizes, and each 

individually satisfies a Metropolis criterion.62,79 We ensure independence by generating a 

list of possible reactions in a deterministic order and only allowing a particle to possibly 

bind with one other particle. The only possibly weak breaking of detailed balance comes in 

the rare situation where upon unbinding, one or both of the particles was assigned a different 

binding partner since it was not bound to the neighbor from whom its distance is most close 

to the equilibrium bond length. In practice, because we use a stiff spring this is very unlikely, 

and moreover, the configuration evolves n steps between binding/unbinding trials, we do not 

expect this to cause any substantial non-equilibrium effects.

A3 Temperature dependence of binding/unbinding

Our dynamic bonding model allows us to use non-constant values of koff, kon. As one 

example, for this work we have incorporated an optional dependence of the rate constants 

on temperature. Since our binders here might represent double stranded DNA, which 

dissociates in a cooperative manner, we implemented an optional tunable sigmoidal 

dependence on temperature for the rate constants. Without trying to match the behavior 

of any specific module, we implemented a two parameter sigmoidal dependence on 

temperature to represent cooperative melting,

g(T ) = 1
2 tanh α T − Tmelt + 1 , (A9)

kon∕off(T ) = kon∕off
init 1 − g(T ) + kon∕off

melt g(T ) (A10)

where, kon∕off
melt  is the value of the binding (or unbinding) rate constant after the 

melting of bonds. The dependence on T − Tmelt arises in a two state melting 

model82 where ΔHmelt and ΔSmelt are taken to be constants; in this case 

ΔG = ΔHmelt − TΔSmelt = ΔHmelt − TΔHmelt ∕ Tmelt = ΔHmelt
Tmelt

(Tmelt − T ) ∝ T − Tmelt; ΔS = ΔH ∕ Tmelt

because ΔG(T = Tmelt) = 0.

Combining these results in for either off or on rates and ΔT = T − Tmelt,

kon∕off(T ) = kon∕off
melt − kon∕off

init

2 tanh(αΔT ) + kon∕off
melt + kon∕off

init

2 , (A11)

such that when ΔT ≫ 0, k kmelt and ΔT ≪ 0, k kint. Here, we can set the steepness of 

the transition with the parameter α (which in experiment could be tuned by changing the 
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DNA sequence and sequence length). Tmelt should be the temperature where the fraction of 

bonds formed is 0.5.

For a two-state model, the bound fraction is given by

fbound(T ) = Keq(T )
1 + Keq(T ) (A12)

where, Keq(T ) = kon(T ) ∕ koff(T ). Ensuring fbound(Tmelt) = 0.5 requires kon(Tmelt) = koff(Tmelt). 
Therefore

kon
init + kon

melt = koff
init + koff

melt
(A13)

since, g(Tmelt) = 0.5. We choose kon
melt = 0, so that there is no binding at T ≫ Tmelt, at which 

point koff
melt can be determined from Eq. A13. Fig. A2(b) shows how fbound depends on Tmelt

using this model.

Combining all of these facts together, we get

kon(T ) = kon
init 1 − tanh(αΔT )

2 , (A14)

koff(T ) = kon
init − 2koff

init

2 tanh(αΔT ) + kon
init

2 , (A15)

which satisfy all the correct limits for ΔT ≪ 0, ΔT ≫ 0 and T = 0.

We note that the on rate expression is the commonly used Glauber rule83 from Monte Carlo 

simulations62,79,84 assuming a difference in (free) energy between two states proportional 

to ΔT  as explained above, but here the off rate is a modification of this Glauber rule that 

switches between two finite rates rather than zero and infinity.
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Fig. A2. 
(a) g(T ) vs. T (b) Fraction fbound(T ) of DNA that is bound for a single DNA pair vs. T  for two 

different binding strengths ε = 3.0 and 16.0. (The temperature is in units of T ∗).
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A4 Comparison of our droplet model with experimental geometry

Fig. A3. 
Complementary binders in our CG model mapped onto the dsDNA and ssDNA 

configuration of Ref. 23 for scale. Complementary outer binder particles (red and blue) form 

a dynamic bond representing the interaction between complementary DNA strands (Figure 

created with https://biorender.com/).
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Fig. 1. 
(a) The initial configuration of a droplet with binders adhered to its surface, arrayed in their 

initial “Fibonacci” structure. As shown in the inset, each binder consists of two constituent 

particles, which in the case of DNA corresponds to a spacer double-stranded sequence and 

a single stranded sequence which is available to bind to a complementary strand. (b) A 

schematic showing dynamic binding between the outer binder particles of two droplets. 

Different particle types used in our python framework are schematically labeled A–D, with 

C and D representing a pair of complementary binders.
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Fig. 2. 
Illustration of adhesion patch formation for a dimer of droplets. Patch formation under 

conditions with high binding affinity occurs via a process with two time scales (τ1 and τ2), 

one for recruitment of most linkers into a patch, and a second proceeding to saturation. The 

conditions for this particular simulation are R = 50, Nb = 100 and ε = 20.7. See Section S1.1 

and Table S1 for more details.
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Fig. 3. 
Heat maps showing the percentage of binders remaining on the surface of a droplet in a 

dimer geometry, and on the terminal or central droplets in a trimer geometry. Conditions 

predicted to be “good” for colloidomer assembly are indicated by dashed ovals, and selected 

conditions marked by red open circles are illustrated in Fig. 4. (a) Fraction of remaining 

binders at fixed number of binders, varying droplet radius and bond strength. (b) Fraction of 

remaining binders at fixed high bond strength, varying number of binders and droplet radius.
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Fig. 4. 
Illustrations showing the dimer and trimer geometries simulated in Fig. 3, and the 

“molecular” features of our droplet model that can be tuned to optimize for linear 

chains. Both results for dimers and trimers must be considered to predict the resulting 

polymerization reaction. (a) Varying R and ε at fixed number of binders Nb = 100, with 

dimer on left and trimer on right. (b) Varying the number of binders Nb at fixed R = 50 and 

ε = 20.7. In (a) and (b), the % of free binders available (averaged over 10 independent runs) 

is indicated in parentheses beside each of these conditions for a droplet in a dimer as well as 

the terminal and central droplet(s) of a trimer. Based on the values of the percentage of free 

binders available, the conditions which are not suitable for colloidomer assembly (almost all 

used up in dimer, too many remaining on central droplet in a trimer) are indicated by a red 

X.
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Fig. 5. 
Effect of area fraction ϕ and the droplet drag coefficient γA on self-assembly in a 1:1 mixture 

of 81 R = 50 droplets containing Nb = 100 complementary binders of type C and D (with 

one surplus droplet of C/D). ε = 20.7. Here, ϕ = 0.1, 0.2, 0.3, 0.4 (increasing from left to right) 

and γA = 0.01, 1.0 (bottom and top). Every system is the same size, but each snapshot has 

identically sized field of view by area, meaning droplets are cropped at ϕ < 0.4. Droplets 

are colored according to structure as shown in the key. Each condition is accompanied with 

bar charts representing quantities computed over 10 independent runs that can quantitatively 

help in collectively deciding the ‘winning condition’ for colloidomer formation. These 

quantities are labeled in the second key, and described in detail in the main text, and for 

each quantity, optimal would be a larger bar. The few droplets that have valence 3 or 

higher are also marked with a ‘cross’ in the representative configurations to reinforce that 

even the branched structures which are considered part of ‘errors’ have long segments of 

droplets with valence=2. The condition we consider optimal, ϕ = 0.3, γA = 1.0 is highlighted 

with a red box. Snapshots at ϕ = 0.4 show periodic images to emphasize that structures are 

extended across the periodic boundaries. The distributions of structures obtained, particle 

valences, and of colloidomer chain lengths for each of these 8 conditions are provided in 

Fig. S5-S7 respectively. Timing data for these simulations as well as larger systems are given 

in Tables S2, S3.
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Fig. 6. 
Best choice of parameters for obtaining maximum quality of colloidomer chains: Nb = 100, 

R = 50, ϕ = 0.3, ε = 20.7, γA = 1.0. (a) Fraction of droplets in each possible valence versus 

time. (b) Final valence distribution obtained across the 10 simulations. Open squares show 

optimal valence distribution from Fig. 2g in Ref. 23. (c) A combined histogram showing the 

fraction of the total number of droplets present as a particular kind of structure from 10 

different final configurations for this condition. (d) Distribution of linear chain lengths P (N)
obtained for this condition, with the errorbars computed using a bootstrapping procedure 

described in Section S2.3.68,69 Open squares show experimental length distribution from 

Fig. 3a in Ref. 23.
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Fig. 7. 
(a) Folding and unfolding cycles shown for a heptamer of droplets with 100 ‘C’ binders 

and 100 ‘D’ binders on each droplet, R = 20, εDD = 4.6, εCC = ∞, and γA = 0.1. Tmelt = 1.2 for 

D-D bonds and temperature is cycled between 1.0 and 1.3. The variation of the average 

bond valence 〈Bn〉 (red) with simulation time is shown, as the temperature (navy blue) is 

alternately raised and lowered. An expected 〈Bn〉 = 1.7 is obtained when the structures unfold 

back to chains. (b) Histogram showing the yield of each of the four possible folded rigid 

structures (ladder, chevron, rocket and flower)44 from a total of 1500 folded structures 

obtained from 300 independent simulations each consisting of 5 folding and unfolding 

cycles. (only 5/1500 did not reach one of these structures, and are not shown in this 

histogram).
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