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Abstract

Increased intracranial pressure (ICP) causes disability and mortality in the neuro-intensive care 

population. Current methods for monitoring ICP are invasive. We designed a deep learning 

framework using a domain adversarial neural network to estimate noninvasive ICP, from blood 

pressure, electrocardiogram, and cerebral blood flow velocity. Our model had a mean of median 

absolute error (MAE) of 3.88+/−3.26 mmHg for the Domain adversarial neural network and 

3.94+/−1.71 mmHg for the Domain Adversarial Transformers. Compared to non-linear approaches 

such as support vector regression, this was 26.7% and 25.7% lower. Our proposed framework 

provides more accurate non-invasive ICP estimates than currently available.
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INTRODUCTION

Increased intracranial pressure (ICP) is one of the leading causes of neurological disability 

and mortality in neurointensive care population.1 The current standard for clinical 

monitoring of ICP requires a hole drilled in the skull to allow a pressure probe or catheter 

into the parenchyma or ventricular space. Risks associated with invasive monitoring include 

hemorrhage, dislodgement, blockage, and infection.2 Some clinical situations would benefit 

from goal-directed cerebral perfusion but the thresholds to place ICP probes are high (e.g. 

cardiac arrest, pediatrics, acute liver failure, coagulopathic states, bacterial central nervous 

system (CNS) infections).

If not for its invasiveness and risks, ICP monitoring could benefit a much larger patient 

population.3 There is a need for non-invasive ICP monitoring with clinically acceptable 

accuracy to provide ICP monitoring for a larger patient population.

Non-invasive intracranial pressure (nICP) estimation4–7 is an active area of investigation. 

A detailed review is provided in5–8. Of particular interest in the field are techniques 

that leverage the physiological model of ICP dynamics using noninvasive CNS related 

measurement inputs (e.g., transcranial doppler (TCD) measurements of cerebral blood flow 

velocity (CBFV), arterial blood pressure (ABP)). These techniques estimate nICP either 

using data-driven9–11 or model-based3,12 approaches. Model-based approaches have the 

advantage of relying on the fundamental mechanics of the intracranial compartment,3 yet 

lack the ability to provide accurate ICP. Data-driven approaches aim to construct a mapping 
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between non-invasive CNS signals and ICP using supervised techniques including kernel 

spectral regression(KSR),9 support vector machines (SVR, SV-Nu) 10 or neural networks.11 

The limitation of these techniques is the requirement of sufficient training data limiting 

generalizability.

There are no noninvasive methods that demonstrate sufficient accuracy for continuous 

monitoring in routine clinical care.13 According to the Association for the Advancement 

of Medical Instrumentation, when measuring ICP the margin of error between nICP and 

real ICP should be less than 10%.14,15 For ICP measurements between 0 and 20 mmHg, a 

maximum difference of 2 mmHg is acceptable For data-driven techniques, the mean error 

varies from +/−5 mmHg to about +/− 20 mmHg with high standard deviation.13

We hypothesize that the high errors in data-driven techniques could be due simplistic 

models that don’t capture non-linear temporal dynamics and lack of unseen examples 

during the training phase. Transfer learning and domain adaptation can adapt to new 

unseen examples by transferring knowledge from previously seen examples. We developed 

a domain adaptation approach using TCD and ABP and compared to existing data-driven 

approaches for nICP estimation.9,10

Materials and methods

Patient consent

We studied consecutive subarachnoid hemorrhage patients admitted to the neurocritical 

care unit at Columbia University Irving Medical Center between 2017–2022 who had 

external ventricular drainage (EVD).16 During clamping trials, waveform measurements of 

flow velocity (FV), electrocardiogram (ECG), arterial blood pressure (ABP), and ICP were 

digitally acquired. The study was approved by the Institutional Review Board at Columbia 

University. In all cases, written informed consent was obtained from the patient or surrogate.

Monitoring and Data Acquisition

ICP was monitored using the Integra External Drainage and Monitoring System with 

Medtronic EVDs (antibiotic impregnated VentriClear II or nonantibiotic impregnated 

large translucent). EVDs were placed following cefazolin prophylaxis for symptomatic 

hydrocephalus. Physiologic data for the duration of the intensive care unit stay was acquired 

using ICM+ software (Cambridge Enterprise, Ltd, UK) from Philips Intellivue MX700 

monitors (Netherlands) at 125 samples per second. TCD measurements were acquired 

by a trained technician or physician using a 2-MHz handheld transducer probe (Delica 

EMS-9PB; Shenzhen Medical Equipment, China).

Proposed Framework Using Domain Adaptation

Generalizing machine learning models can be challenging due to differences in data 

acquisition, disease etiologies, and sampling frequency.17 Transfer learning and domain 

adaptation can improve generalization. Domain adaptation enhances model training when 

there are statistical differences in the distribution of data, known as data shift. The 

goal is to improve the performance of a machine learning model on a target domain 
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with insufficient data by using/transferring the knowledge from model trained on a 

labelled source domain. Adversarial networks, a recent domain adaptation technique, have 

shown promise in estimating blood pressure non-invasively.18 We propose using domain 

adversarial networks using convolution neural network(DACNN), residual network(DARN), 

and Transformer(DAT) for estimating patient-specific nICP by leveraging the nonlinear 

relationship between ABP and TCD-derived CBFV and compared with other data-driven 

approaches KSR, SV-R, and SV-Nu.

The Network: The proposed network (Figure 1) has three parts: a) Domain Classifier 
to learn subject-specific ICP dynamics, b) ICP Estimator, and c) Feature Extractor. Using 

labelled data (ABP, ECG, FV, and ICP) from a subject in the training set and unlabeled 

data from subject whose ICP needs to be calculated, the unsupervised domain a adaptation 

algorithm treats each subject as a separate domain. The Domain Classifier discriminates 

between source and target domains, while the ICP Estimator maximizes ICP regression 

accuracy. The Feature Extractor is trained using both losses, but with the gradient reversed 

for domain classification. This adversarial component ensures that the extracted features are 

subject-invariant. The model is updated using backpropagation.

Training Phase: During training, the feature extractor is fed with labelled data from 

source domain and unlabeled data from target. The goal is to find the optimal balance 

between producing features that are domain invariant and useful for the ICP Estimator. 

The Feature Extractor parameters are optimized to minimize the ICP Estimator’s loss and 

maximize the domain classifier’s loss, which involves the use of a gradient reversal layer.

Estimating ICP: Once the network is trained, then during testing phase the target 

unlabeled data is passed through Feature Extractor and ICP estimator to derive ICP:

As in linear and non-linear approaches4,10 we selected our batch size to be spread over 3 

cardiac cycles. We used n(=200) points equally spread over one cardiac cycle as our time 

steps. The optimal learning rate was derived using the grid-search approach. We reported the 

performance using mean squared error (MSE) +/− standard deviation (SD), Bland-Altman 

plots for comparing true ICP and non-invasive ICP. We used leave one session out cross-

validation technique to report the performance of the models.

We used Python 3.8 with Keras 2.4.3 with Tensorflow 2.4.1 to develop these models.

Results

From 2017 and 2022, data was collected from 13 patients with ICP monitors and TCD. Of 

13 patients, 11 were used for analysis, 2 patients were excluded because of data quality 

issues. Mean age was 51.7±17.3 years and 61.5% were female. We acquired 544,590 data 

points from 15 sessions (mean: 49508) from these 11 patients (Table 1) with ICP ranging 

from [0 – 57] mmHg.
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Performance of KSR and SVR for nICP

We achieved similar results on our dataset as reported in the literature for SVR with mean 

+/− SD of 6.82+/−5.03 mmHg. SV Nu performed better with 5.3+/−4.19 mmHg (Figure 

2,S1). KSR model did not perform well with 10.11+/−4.99 mmHg.

Performance of the proposed approaches

The performance of the baseline deep learning model (LSTM Resnet, CNN LSTM Resnet, 

Transformers) without domain adaptation are 4.75+/−4.48, 4.74+/−4.57 mmHg and 4.37+/

−4.32. The domain adapted versions DANN, DARN, DACNN and DAT performed better 

with 3.88+/−3.26 mmHg, 4.57+/−3.32 mmHg 4.43+/−3.15 mmHg and 3.94+/−1.71 mmHg 

respectively. (Figure 2,S1). All the deep learning models performed better than the existing 

non-linear approaches.

Statistical Analysis

Figure 3 shows the Bland Altman plots for SV-NU, DANN and DAT approaches. In our 

proposed approach, 74.45.4% (DAT) and 72.78% (DANN) have ICP error less than 5 

mmHg, which is better when compared with 61.8 % (SV Nu) and 39.02 % (SVR) for 

existing non-linear approaches.

Discussion

We developed a domain adversarial model that performed better than the existing data driven 

approaches for deriving non-invasive ICP waveforms from TCD. To our knowledge, this is 

the first study that shows the use of recurrent neural networks, transformers, and the domain 

adversarial models for deriving patient-specific nICP. We were able to exploit the non-linear 

relationship between physiologic parameters that translated into a lower error.

Patient-specific nICP estimation techniques with clinically acceptable accuracy would 

enable or justify monitoring in patients for whom the risk of an invasive procedure is high, 

allowing for more robust identification of elevated ICP and opportunities for improving 

patient outcome. This is also the first time a transfer learning using domain adversarial 

technique is used to derive a patient-specific model, a step towards creating generalizable 

ML models.

One of the limitations of the proposed technique is the limited number of subjects used to 

train these models. Second, our proposed models are still not within the acceptable limits 

of 2 mmHg for ICP<20 mmHg as advised by Association for the Advancement of Medical 

Instrumentation, but we have achieved a remarkable improvement when compared with 

existing methods. Deep learning models perform better with more data and our future work 

is to include more patients to translate these models and achieve an MSE within clinically 

acceptable limits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

ABP Arterial Blood Pressure

CNN Convolution Neural Network

CSF cerebrospinal fluid

DANN Domain adversarial neural network

DACNN Domain adversarial convolution neural network

DARN Domain adversarial residual network

DAT Domain adversarial Transformers

ECG Electrocardiogram

FV Flow velocity

ICP Intracranial pressure

LSTM Long short term memory

nICP Non-invasive intracranial pressure

SV nu Support Vector

SVR Support Vector Regression
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Figure 1: 
The proposed Domain Adversarial Residual Network framework, the input xi

0 to 

the framework ABP i, ECGi, FV . It consists of three layers: a) Feature extractor, b) ICP 

Estimator, and c) Domain classifier.
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Figure 2: Illustrates the performance of different models for deriving non-invasive intracranial 
pressure (nICP).
The proposed frameworks DANN and DAT performed best when compared to the current 

state of the art methods for nICP estimation. Green dot represents the mean.

SV nu: Support Vector, SVR: Support Vector Regression, CNN: Convolutional Neural 

Network, LSTM: Long short-term memory, DACNN: Domain adversarial convolutional 

neural network, DANN: Domain adversarial neural network, DARN: Domain adversarial 

residual network, MAE: Median absolute error, DAT: Domain adversarial transformers.
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Figure 3: Bland-Altman Plots for comparing true intracranial pressure (ICP) vs non-invasive 
ICP.
Panels A, B, and C display the reference ICP (mmHg) versus the ICP error (mmHg) for 

three different methods: SV Nu, DANN, and DAT. Corresponding scatter plots of true ICP 

versus predicted ICP are shown in panels A1, B1, and C1. Panel D shows the percentage of 

data with an error of less than 5mmHg for each method. The standard error for the proposed 

DARN and DANN network is between +/− 10 mmHg, when compared to the current state 

of the art technique using SV nu. The percentage of ICP error less than 5 mmHg is 74.45% 

for the proposed framework (DAT), which is better when compared with 61.8% (SV Nu) and 

39.02 % (SVR) for current non-linear approaches.

SV nu: Support Vector, SVR: Support Vector Regression, CNN: Convolutional Neural 

Network, LSTM: Long short-term memory, DACNN: Domain adversarial convolutional 
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neural network, DANN: Domain adversarial neural network, DARN: Domain adversarial 

residual network, DAT: Domain adversarial transformers.
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Table 1

Demographics of the patients

Identifier MFS HH GCS 
(admission) WFNS Etiology

# TOTAL 
DATA 

POINTS

# ARTIFACT 
FREE Data 

Points

Data 
QualitY (G-

Good/P-
poor)

P1 N/A N/A 6 5 Left basal ganglia IPH 611252 0 P

P2 3 4 4 5 L MCA aneurysmal SAH 601253 113952 G

P3 N/A N/A 5 5
CSF leak and 

pneumocephalus 357500 20836 G

P4 4 4 9 4 SAH/IVH 630002 47042 G

P5 4 4 6 5 aSAH 503750 132963 G

P6 N/A N/A 15 1
5cm pineal mass with 

obstructive hydrocephalus 197500 0 P

P7 2 3 15 1 SAH/IVH 153125 33925 G

P8 4 5 4 5 SAH/IVH 66212 46683 G

P9 4 2 14 2 SAH/IVH 165000 35835 G

P10 3 3 6 5 SAH 130176 38693 G

P11 4 2 7 4 SAH/IVH 314375 33068 G

P12 4 5 3 5 SAH 146875 3554 G

P13 N/A N/A 6 5 Diffuse axonal injury 457502 38039 G

WFNS: World federation of neurosurgical societies scale, MFS: Modified Fisher scale, GCS: Glasgow coma scale, HH: Hunt and Hess scale, 
aSAH: aneurysmal Subarachnoid Hemorrhage, IVH: Intraventricular Hemorrhage

Ann Neurol. Author manuscript; available in PMC 2024 July 01.


	Abstract
	GRAPHICAL ABSTRACT:
	INTRODUCTION
	Materials and methods
	Patient consent
	Monitoring and Data Acquisition
	Proposed Framework Using Domain Adaptation
	The Network:
	Training Phase:
	Estimating ICP:


	Results
	Performance of KSR and SVR for nICP
	Performance of the proposed approaches
	Statistical Analysis

	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1

