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Abstract

Chronic pain syndromes are often refractory to treatment and cause substantial suffering and 

disability. Pain severity is often measured through subjective report, while objective biomarkers 

that may guide diagnosis and treatment are lacking. Also, which brain activity underlies chronic 

pain on clinically relevant timescales, or how this relates to acute pain, remains unclear. Here four 

individuals with refractory neuropathic pain were implanted with chronic intracranial electrodes 

Reprints and permissions information is available at www.nature.com/reprints.
✉Correspondence and requests for materials should be addressed to Prasad Shirvalkar. prasad.shirvalkar@ucsf.edu.
Author contributions
P. Shirvalkar, P. Starr and E.F.C. conceptualized and designed the study and acquired funding. P. Shirvalkar, G.C., M.D. and A.S. 
collected all data and maintained data integrity. P. Shirvalkar, J.P., G.C., P.A. and O.G.S. had full access to all the data and performed 
formal analysis. M.M.S. supervised the state space modeling of data. P. Shirvalkar drafted the paper. All authors participated 
substantially in the critical revision of the paper for intellectual content. H.D. performed project administration. Study supervision was 
conducted by P. Starr and E.F.C.

Code availability
MATLAB and Python analytical software code used to generate the main results and figures is available on the NIH Brain Initiative 
platform above and at GitHub: https://github.com/shirvalkarlab/ChronicPain2023_NatNeuro.git/.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s41593-023-01338-z.

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2023 July 10.

Published in final edited form as:
Nat Neurosci. 2023 June ; 26(6): 1090–1099. doi:10.1038/s41593-023-01338-z.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints
https://github.com/shirvalkarlab/ChronicPain2023_NatNeuro.git/


in the anterior cingulate cortex and orbitofrontal cortex (OFC). Participants reported pain metrics 

coincident with ambulatory, direct neural recordings obtained multiple times daily over months. 

We successfully predicted intraindividual chronic pain severity scores from neural activity with 

high sensitivity using machine learning methods. Chronic pain decoding relied on sustained power 

changes from the OFC, which tended to differ from transient patterns of activity associated with 

acute, evoked pain states during a task. Thus, intracranial OFC signals can be used to predict 

spontaneous, chronic pain state in patients.

Chronic pain syndromes pose a major healthcare problem and are leading contributors 

to disability worldwide1. Neuropathic pain syndromes such as post-stroke and phantom 

limb pain are particularly refractory to treatment and impose substantial suffering. 

A hurdle to a mechanistic understanding of chronic pain, and the development of 

effective diagnostics and therapeutics, is the lack of objective measures of pain severity 

or underlying neurophysiology. Of necessity, chronic pain is commonly measured by 

the individual’s subjective report, an interrogative approach limited by difficulties in 

quantitation, reliability and interindividual comparability. Objective biomarkers for chronic 

pain would greatly facilitate diagnosis and classification of pain pathophysiology, assist 

with disease prognostication or prediction of therapy response, and catalyze therapeutic 

development2,3.

Most previous attempts to identify pain biomarkers have focused on healthy participants and 

experimental thermal pain, which ignores natural, spontaneous fluctuations in individuals’ 

chronic pain experience4–7. Even studies of spontaneous chronic pain severity are 

limited by characterization over short timescales (minutes) due to reliance on ex vivo 

technologies such as electroencephalography7 and blood-oxygen-level-dependent functional 

magnetic resonance imaging8,9 that are not amenable to frequent, long-term measurement. 

Further, interpretation of blood-oxygen-level-dependent functional magnetic resonance 

imaging responses associated with chronic back pain is complicated due to inclusion of 

participants with heterogeneous sources of pain (for example, inflammatory, myofascial 

and neuropathic). It is unclear whether lessons learned from healthy human participants or 

mixed pain syndromes translate to individuals with chronic neuropathic pain over clinically 

relevant time periods. A growing body of evidence from humans and animals suggests that 

chronic pain processing engages the medial frontal cortex in a manner distinct from acute, 

thermal pain10–13.

Frontal brain regions harbor important signals that integrate the somatosensory, affective 

and cognitive dimensions of pain. The rostral anterior cingulate cortex (ACC) has been 

extensively implicated in affective/emotional processing related to both acute and chronic 

pain10,14 and proposed as a therapeutic stimulation target to treat chronic pain15. The 

orbitofrontal cortex (OFC) has rarely been studied in pain, but its reciprocal connections 

with the ACC and many other regions in the functional pain network such as the amygdala, 

insula and ventral striatum16,17 make it well positioned to influence pain perception. 

Functional imaging has revealed increased OFC activity in response to multimodal sensory 

stimuli during tasks requiring the integration of bodily signals to guide behavior (for 

example, interoception)18,19, reversal learning and pain expectation related to monetary 
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reward20. Direct recordings from the OFC have confirmed key signals that track internal 

deliberation of reward choices21 and OFC stimulation can improve mood state in depressed 

patients22. Other studies have identified the ventromedial prefrontal cortex, a region 

overlapping with definitions of OFC, as an important region associated with interindividual 

variability in acute pain perception23 and negative affective responses to multimodal 

stimuli24. Specific coactivation of the dorsal ACC and OFC is seen both during opioid 

consumption and in response to placebo analgesia25, implicating these regions in myriad 

functions ranging from sensory perception and expectation to cognitive flexibility and 

mood regulation. While long-distance connections between the ACC/OFC and subcortical 

structures may support plasticity underlying chronic pain, signals from either brain region 

alone may be sufficient to track pain state. It remains an open question whether previous 

studies of chronic back pain due to heterogeneous pain generators generalize to true 

neuropathic pain states or is reflected in direct brain activity in vivo. Therefore, we targeted 

two relatively less-studied, non-somatosensory brain regions as part of a larger deep brain 

stimulation (DBS) clinical trial. We hypothesized that neural activity from the ACC or OFC 

may provide an integrated biomarker of the subjective experience underlying chronic pain 

severity. To our knowledge, long-term direct brain measurement of chronic pain-related 

neural activity has never been done.

By studying brain biomarkers with high resolution across both short (sub-second) and 

long (months) timescales in humans, we aimed to develop a sensitive test of high pain 

states and study the neurophysiologic basis of spontaneous chronic pain. Such insights 

potentially bring new clarity to pain biology and help to inform personalized treatments 

such as tailored closed-loop DBS therapies for chronic pain26,27. We collected pain reports 

and intracranial recordings in the ambulatory setting using a novel bidirectional brain 

implant (Medtronic Activa PC + S) in four human participants with long-standing refractory, 

chronic neuropathic pain over 3–6 months. These are first-in-human chronic in vivo neural 

recordings of key pain-related cortical regions8,14, the ACC and OFC. We analyzed local 

field potentials (LFPs) with machine learning to develop personalized neural signatures 

for chronic pain severity and characterize the relative feature importance from each brain 

region. By comparing brain-based signatures for spontaneous, chronic pain with signatures 

derived for acute, evoked thermal pain, we identify distinct neural substrates for each. Brain 

biomarkers of chronic pain reflected sustained changes in neural power features that tended 

to rely more on the OFC, which only generalized to the acute pain condition within one 

participant. Acute pain decoding tended to reflect greater contributions from the ACC with 

more frequent, transient changes in power. Biomarker decoding was superior for current 

versus recent changes in pain state and largely stable over time. These data demonstrate that 

spontaneous, chronic pain states can be predicted from direct brain activity over ecological 

timescales in the ambulatory setting.

Results

Longitudinal pain-state tracking

Each participant provided pain score reports multiple times daily (range 2–8/d) over a 

range of 78–184 d (mean 320 reports/participant; Supplementary Table 1). All participants 
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reported 11-point pain intensity using a numerical rating score (NRS; 0–10), while two 

participants (CP3 and CP4) also provided pain intensity via a visual analog score (VAS), 

the short-form McGill Pain Questionnaire (SF-MPQ) and pain unpleasantness (NRS and 

VAS). Pain NRS values were high for all participants (mean ± s.d., 7.8 ± 0.9), and all ratings 

exhibited fluctuation exceeding established minimal clinically important differences (MCID 

for SF-MPQ > 5 (ref. 28), NRS > 2 (ref. 29), VAS > 1.6; Fig. 1b,c). To assess the internal 

validity of pain score reporting, we computed Pearson’s correlations between VAS and NRS 

for pain intensity and unpleasantness, which were highly correlated within participants 

(Figure 1d; R2 range 0.84–0.96). We evaluated periodicity in chronic pain fluctuation 

by computing an autocorrelation for each participant’s pain NRS (Fig. 1e). While all 

participants showed diurnal cycles in their pain states, we also observed clinically significant 

multidien cycles of pain fluctuation, with two participants exhibiting pain fluctuation nearly 

every 3 d (72 h, CP1 and CP3).

Cross-validated decoding of chronic pain state

To identify biomarkers of chronic pain state, we used ambulatory, intracranial LFP 

recordings from the ACC and OFC (Fig. 2a,b) to build models decoding participants’ 

pain severity scores. Candidate biomarkers consisted of spectral power in frequency bands 

of interest, which showed no clear trend over time to suggest non-neural changes in 

recordings (Supplementary Fig. 1). We first tried predicting exact reported pain metrics 

using cross-validated multivariate least absolute shrinkage and selection operator (LASSO) 

regression on neural band-power data (Supplementary Fig. 3). First, we created subregion 

decoding models using band-power values sub-selected from individual brain regions and/or 

hemispheres and full models using all available data (that is, bilateral ACC/OFC; Fig. 

2c,d). For participants with bihemispheric electrode implants (CP2–4), there were nine 

possible subregion models through possible combinations of contralateral, ipsilateral or 

both hemispheres (relative to side of pain) from the ACC, OFC or both regions. Overall 

regression-based prediction showed mixed results (Supplementary Fig. 3), often poor but 

at other times comparable to classification (below). Regression of NRS pain intensity 

was poor in all participants with multivariate coefficients of determination (R2) between 

observed versus predicted scores ranging from −0.2 to 0.1 across all subregion and full 

models. LASSO regression performance on the alternative metrics of pain intensity VAS and 

unpleasantness NRS in two participants showed R2 values as high as 0.3 (CP4). Even an R2 

value of 0.18 (CP3 VAS) is equivalent to a Pearson’s r = 0.42, a moderate effect size which 

corresponds a binary classification area under the curve (AUC) = 0.74 assuming normally 

distributed, equal samples30. Notably, regression performed well when predicting MPQ in 

two participants, as evidenced by many values of R2 > 0.7 (CP4). In summary, regression 

models performed moderately at best, when predicting pain intensity (NRS or VAS), but 

fared better for other pain metrics. Specifically for tracking pain intensity, these results may 

further support previous observations that a forced choice between low versus high pain 

states may be more pragmatic for clinical application6.

To investigate the role of different cortical circuits in a forced-choice framework, we 

turned our attention to predicting dichotomized pain scores (high versus low divided by 

median). Using cross-validated linear discriminant analysis (LDA; Methods) with at least 
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one subregion model, dichotomized chronic pain NRSs could be classified in all participants 

(Fig. 2d,e, highest LDA AUCs (P value), and Supplementary Fig. 4): 0.673 (0.016), 0.851 

(0.001), 0.721 (0.001), 0.802 (0.001) for CP1–CP4, respectively. Ranges for chronic pain 

NRS decoding statistics were as follows: positive predictive value 0.83–0.93, sensitivity 

0.62–0.84 and specificity 0.56–0.82 (Supplementary Table 2). In three participants, the best 

decoding performance resulted from either full models or combining ACC and OFC activity 

in either hemisphere. Overall, chronic pain state could be significantly decoded across 

all participants using contralateral OFC alone. Misclassified pain states were distributed 

across timepoints spanning months and the range of pain scores (that is, not only near 

the dichotomized boundary), confirming robustness of prediction (Supplementary Fig. 5). 

Decoding and biomarkers appeared stable over time. Compared to the leave-one-out cross-

validation (LOOCV) method (which leaves out power values and pain score class associated 

with one recording clip at a time), we observed better performance when we trained LDA 

pain NRS models on the first 70% of data and tested on the remaining 30% with AUCs near 

0.9 in all but in one participant (CP1), with the fewest number of recordings (Supplementary 

Fig. 6). This suggests stability in the biomarkers tracking pain intensity NRSs over the 

timescale of months.

To test performance of an independent method (linear state space model, LSSM) that may 

be used to flexibly guide brain stimulation, we used full models (Supplementary Fig. 7) 

to predict pain intensity NRSs. LSSM had similar performance to LDA in all participants 

except CP1. Moreover, two participants reported additional pain metrics including pain 

intensity VAS, pain unpleasantness NRS/VAS and SF-MPQ. Full models could significantly 

decode these pain metrics using both LDA and LSSM (Supplementary Figs. 4, 5a, 7 and 8) 

except for CP3 unpleasantness VAS using LSSM. Using LDA, SF-MPQ decoding showed 

equally high performance using either the full model or contralateral OFC/ACC subregion 

model (AUC (P value) CP3 = 0.623 (0.004); CP4 = 0.995 (0.001)), with positive predictive 

values ranging from 0.77 to 0.99 (Supplementary Table 2). Further, using single region LDA 

models for classification of chronic pain unpleasantness NRS, a measure of the affective 

dimension of pain, showed the highest AUCs for data from contralateral ACC (AUC 0.69 

(CP3) and 0.84 (CP4)) as expected.

By visualizing the normalized, mean LDA feature weights supporting successful LDA 

decoding (Fig. 2e), we observed that the most important power features varied across 

participants. Despite this variability, a single brain region was sufficient to track chronic pain 

states in each participant, with contralateral OFC being common across all participants.

It is possible that neural features may track the relative fluctuation of pain, rather than the 

current pain state. To test for this possibility, we constructed regression and LDA models of 

successive pain score differences (that is, prior pain score subtracted from current pain score; 

Supplementary Fig. 9a,b). Dichotomizing these difference values by those equal to zero 

(no change) versus those that were non-zero (increasing or decreasing) may identify neural 

activity distinguishing stable versus fluctuating pain states. Classification of stable versus 

fluctuating pain NRSs was broadly significant only in one participant (CP4). Consistent with 

previous results8, we observed that stable versus changing pain scores in two participants 

(CP2 and CP3) could be distinguished only when models included neural signals from 
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ACC. All LDA model AUC values were inferior to contemporaneous pain-state prediction 

(Supplementary Fig. 9a). Further, regression of pain NRS difference was poor across 

participants (R2 range −0.2 to 0.1) and alternative pain metric regression (for example, 

VAS) was not successful except for unpleasantness NRS and VAS each in one participant 

(Supplementary Fig. 9b). The failure of regression to robustly predict increases or decreases 

in sequential pain scores over many hours may imply that ACC and OFC harbor weak 

signals for prediction errors over these timescales or that subjective pain experience is 

integrated over shorter historical durations than many hours. Therefore, while LFPs from 

the ACC and OFC may contain information relevant to recent changes in pain, the current 

chronic pain experience appears to be more reliably represented across participants and 

pain-related metrics compared to pain fluctuations.

Cross-validated decoding of acute pain state

To compare with neural mechanisms supporting chronic pain, we next sought to identify 

biomarkers of acute, experimental thermal pain state. Brain recordings and pain ratings 

were collected while participants participated in quantitative sensory testing (Fig. 3a). 

Background chronic pain ratings just before the acute task were equivalent to the mode 

of participants’ reported scores (participants CP1–4 and NRS 9, 8, 7 and 8/10, respectively; 

compare to Supplementary Table 1). Heat stimuli at five different temperatures, calibrated 

for each participant, were applied with a thermal probe to the most painful region on 

the side of the body affected by chronic pain (aff-ACUTE) and the same body part on 

the unaffected side (unaff-ACUTE) for five trials per target temperature; pain intensity 

NRS was reported 3 s after target temperature was reached (Fig. 3b–d). Participants were 

extensively trained on the task to avoid potential reporting confounds with respect to usual 

chronic pain (Methods). Subregion LDA models demonstrated significant prediction of high 

versus low acute pain in the aff-ACUTE condition in two participants, only when trained 

on data including ACC (CP1 AUCLDA = 0.738, P = 0.045; CP2, AUCLDA = 0.74, P = 

0.037; Fig. 3e and Supplementary Fig. 10). Given unsuccessful decoding from any models 

trained on OFC alone, these data may suggest preferential involvement of ACC in circuits 

harboring acute pain signals. Tested models could not significantly predict acute pain in the 

unaff-ACUTE condition (Fig. 3f). In contrast to acute pain metrics on the affected side, we 

found no significant decoding of the actual delivered temperature on the affected side in any 

participant (Supplementary Fig. 11). One participant (CP4) showed significant decoding of 

temperature when applied to the unaffected side.

Again, key neural features supporting acute pain-state prediction varied between the two 

participants in whom decoding was possible, with the highest magnitude feature weight 

coming from the ACC for each (CP1 contra ACC alpha, CP2 contra ACC beta; Fig. 3g). 

Notably, features supporting acute pain decoding visually differed from those supporting 

chronic pain (compare to Fig. 2e). If neural features that drive decoding of chronic pain 

state are similarly important for supporting acute pain decoding, full LDA models trained 

on the former should perform well when tested on data from the latter. We only observed 

such generalization from chronic to acute pain in one participant (CP2) who did not have a 

preexisting brain lesion (Supplementary Fig. 12). The lack of such generalization between 
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acute and chronic pain representation in the remaining three participants suggests distinct 

neural codes in the ACC and OFC in these participants.

ACC and OFC distinguish acute and chronic pain states

The extent to which neural representations of chronic pain and acute pain states resemble 

one another is a major gap in knowledge. One way to gain additional insight into associated 

neurophysiologic mechanisms underlying chronic versus acute pain is to compare the 

importance of neural features driving prediction of each pain type. We assessed the relative 

importance of OFC versus ACC by subtracting each normalized ACC feature weight 

from the corresponding normalized OFC feature weight to obtain a distribution of feature 

importance differences; this difference distribution was then compared to a permuted, null 

distribution to assess if activity from the OFC or ACC was more important to pain decoding 

than by chance (see ‘LDA feature importance’ and Fig. 4a,b). Values greater than 0 indicate 

greater OFC importance. We observed that the OFC was more important than the ACC 

to chronic pain NRS decoding in a greater proportion of all features for three participants 

(OFC proportion of significant features: CP1 = 100%, CP3 = 75%, CP4 = 58%). Common 

for all participants, contralateral OFC delta power was consistently more important than 

contralateral ACC delta power to decoding chronic pain NRS (Wilcoxon rank-sum tes, z 
= 13–36.3, P = 10−6). In contrast, for acute pain decoding in two participants, the ACC 

appeared more important than the OFC for a greater proportion of all significant features 

when compared to chronic pain (Fig. 4b; acute versus chronic pain ACC proportion: CP1 = 

100% versus 0%, CP2 = 64% versus 58%). Because feature importance for acute pain was 

only assessed in two participants showing successful acute pain decoding, caution is advised 

in interpretation due to low participant numbers.

Neural time dynamics distinguish acute and chronic pain

We next sought to characterize the temporal dynamics of these power bands by analyzing 

patterns of power changes at short-term (seconds, within a recording) and long-term 

(diurnal, across recordings) scales. Chronic and acute pain decoding model features 

consisted of band-pass filtered power, averaged by time over the duration of the recording 

clip (30 s for chronic, 3 s for acute), which variably showed increases or decreases 

associated with predicting a ‘high pain’ state (Figs. 2e and 3g).

It is possible that if a feature was important to ‘high pain’ decoding, power changes may 

be associated with either transient or sustained changes within specific frequency bands 

over time or some combination of the two. To distinguish these possibilities, we calculated 

the power time series of each feature over the duration of the recording clip and averaged 

among clips in the high versus low pain groups (Fig. 5a and Supplementary Fig. 13). This 

analysis provides an impression of how average power associated with high or low pain 

fluctuates in real time. As expected, we observed that if a feature weight was positive or 

negative (Figs. 2e and 3g), then that feature’s average power was respectively increased 

or decreased over time during high pain states, compared to low pain states (Fig. 5a and 

Supplementary Fig. 13). For example, a negative-signed feature weight for contralateral 

OFC delta indicates that the contralateral OFC delta power was concordantly decreased 

during high pain states. Across each 30-s recording clip for chronic pain decoding, the total 
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power amplitude maintained this concordant relationship 76% of the time (group mean ± 

s.d. = 22.8 ± 6.2 s; Fig. 5b) across all participants. Although we observed fluctuations in 

the power values over the 30-s duration, the top five power features were associated with 

sustained changes lasting a mean of 4.4 s (±8.8 s.d.) above or below the low pain-state 

average. We rarely observed transient bouts of fluctuation among chronic pain features, 

suggesting that temporal dynamics in decoding features reflected sustained oscillations 

relevant to ongoing perceived pain.

Despite a shorter 3-s recording clip duration for acute pain trials, we observed that power 

increases and decreases occupied a similar total proportion of recording clip time for both 

acute and chronic pain features (76.4% of total time acute versus 76% chronic; acute group 

mean ± s.d. = 2.1 s ± 0.3 s, rank sum P > 0.08; Fig. 5b). In contrast to chronic pain; however, 

the top five acute pain features showed more temporal variability with more transient bouts 

of fluctuation lasting an average of 0.56 s (s.d. = 0.18 s, rank sum P < 10−14; Fig. 5c). 

Notably, we rarely observed such bouts of increases or decreases approaching 3 s, which 

was the theoretical upper limit given acute recording duration of 3 s. Because these bouts 

of power increases or decreases occurred for a similar proportion of recording clip duration 

for chronic and acute pain data, we expected that the more transient bouts would occur 

more frequently for acute pain features. As expected, acute pain features showed many 

more frequent bouts of increases or decreases compared to chronic pain features (acute = 

1.3 ± 0.29 bouts per second versus chronic = 0.23 ± 0.18, rank sum P < 10−19; Fig. 5d). 

Therefore, compared to chronic pain, the top five acute ‘high pain’ biomarkers exhibited 

shorter, more frequent bursts of power changes, resulting in a similar total percentage of 

time with increases or decreases between high and low pain states.

To characterize longer timescale dynamics of chronic pain neural features, we performed 

a diurnal analysis by organizing both pain scores and neural features by time of day 

of report and resampling this diurnal pattern at a 3-h time resolution to model diurnal 

fluctuations (Methods, Supplementary Fig. 14 and Supplementary Table 3). We did not 

observe significant correlations between the diurnal trends of neural features and of pain 

NRS for any feature, in any participant. Overall, chronic pain decoding was associated with 

sustained power changes over time, distinct from more transient bursts of power changes 

supporting acute pain decoding. Diurnal time dynamics of neural features did not appear 

grossly related to diurnal fluctuations in pain metrics, suggesting a possible importance for 

short timescales in encoding subjective pain states.

Discussion

Objective biomarkers of spontaneous chronic pain severity are requisite for understanding 

basic mechanisms of clinically relevant pain, diagnosing pain syndromes, prognosticating 

disease course and devising new therapies. Using first-in-human long-term, ambulatory, 

intracranial recordings in four participants with chronic, neuropathic pain, we used LFP 

signals from the ACC and OFC to predict various measures of chronic pain severity, 

with high sensitivity. While we could predict dichotomized pain state using two different 

methods, regardless of pain etiology, duration of symptoms or nervous system lesion, 

prediction of continuous metrics using regression was not as successful. Chronic pain 
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biomarkers appeared stable over months in three of four participants and were more 

predictive of current pain state rather than recent transitions in pain report. In two 

participants, we could also predict acute, evoked thermal pain during an experimental heat 

pain task. We observed that chronic pain decoding tended to rely more on activity in the 

OFC (for example, contralateral OFC delta) as evidenced by OFC subregion models and 

greater OFC feature weights across participants. Acute pain decoding was supported more 

by ACC activity. Finally, the time course of neural activity supporting chronic pain decoding 

reflected sustained increases or decreases in power in the order of seconds, while acute pain 

decoding was associated with more frequent and transient changes in power. These results 

provide a proof of principle that signals from key neural hubs can be used to track clinically 

relevant chronic pain states in humans and have important implications for understanding 

circuit mechanisms underlying the chronification of pain.

While a complex neural network underlies the maintenance of chronic pain states17,31, we 

found that activity from either ACC or OFC alone was sufficient to track pathological 

network activity underlying chronic pain fluctuation. Previous neuroimaging studies of 

chronic back pain established the importance of the ACC and medial prefrontal cortex32,33, 

although notably failed to identify a role for the OFC, possibly due to sparse time resolution 

of up to 4 visits over 1 year. Consistent with prior studies of spontaneous, chronic back pain 

measured over seconds to minutes in a single visit, we observed that ACC activity in three 

participants could discriminate when spontaneous pain was stable versus fluctuating8,12. The 

present findings suggest that signals in the OFC can track current chronic pain severity 

for neuropathic pain syndromes such as central post-stroke pain (CPSP) or phantom limb 

pain. In the context of previous studies supporting a broad role of the OFC in reward, 

punishment and the placebo effect18,25, OFC circuits may integrate pain expectation and 

context-dependent predictions that influence subjective pain evaluation, which may include 

rumination or engagement of coping mechanisms. Areas we indicate as OFC in this 

study also overlap with prior definitions of ventromedial prefrontal cortex, which has 

been associated with interindividual variability in pain perception and aversiveness23,24. 

In two participants with CPSP, decoding of pain unpleasantness was driven more by ACC 

activity, also consistent with prior roles of ACC circuits in affective14,34 dimensions of pain 

processing. However, the preferential importance of ACC in acute pain decoding (which 

is described as having a smaller affective component than chronic pain states) challenges 

prior concepts of a medial pain pathway35 from the medial thalamus to ACC as selective for 

affective processing11.

In contrast to the spontaneous and enduring phenomenology of chronic pain, acute thermal 

pain administered to patients reflects a transient, externally evoked pain experience. In 

two participants, acute, evoked pain was associated with distinct spatiotemporal activation 

patterns consisting of transient power fluctuations biased toward ACC. This observation is 

consistent with numerous imaging studies showing the ACC as a key node activated with 

experimental pain stimuli across individuals4,6,12,23,36. Transient bursts of power among 

cingulate neurons may reflect facilitation of nociceptive hypersensitivity by recruitment 

of descending serotonergic projections to the spinal cord11 or ascending information flow 

from the medial thalamus37. Although most participants exhibited thermal allodynia, the 

transient power change patterns underlying acute pain decoding in the current study 
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were found in two participants (both women): one with severe allodynia and hyperpathia 

(CP1) and one with a normal neurological sensory exam (CP2), which may suggest 

preserved information processing mechanisms across disparate phenotypes. However, 

within-participant generalization of chronic to acute pain biomarkers was only found in one 

participant with phantom pain (CP2), without an ischemic brain lesion, suggesting that more 

robust models that directly incorporate acute versus chronic pain classes may potentially aid 

in discriminating pain syndrome subtypes or reflect cortical reorganization after a lesion33. 

As acute, evoked pain was only decodable when the painful stimulus was applied to the 

same body side as ongoing chronic pain, the absence of evidence of successful decoding 

should not be interpreted as evidence of absence, possibly due to sample size of participants, 

trial number or environmental context (for example, at-home versus in-clinic testing).

Global cerebral pain networks in all participants likely underwent rewiring over many years 

living with chronic pain32. Still, ongoing ‘background’ chronic pain may have influenced 

acute pain perception even in the unaffected body side (see Methods for testing precautions 

used). Rather, the inability to decode acute pain in the unaffected side may suggest that the 

ACC and OFC are either sensitive to pain on one side of the body or perhaps more sensitive 

to representing pain in body regions where chronic pain is ongoing. It is possible that an 

acute pain signal may be detectable in the OFC if a task explicitly requires decision-making 

or pain anticipation components as seen in prior studies38. If the contributions of ascending 

versus descending pathways to acute versus chronic pain processing can be elucidated in 

future studies, this would help to explain the common clinical observation that the chronic 

pain experience is not simply a more enduring version of acute pain.

Classical models of the role of neural oscillations propose that frequency-specific activity 

serves to flexibly route information flow through networks to support selective attention39 

and working memory40. Oscillations within a particular brain region may represent 

modulation of postsynaptic excitability, which itself impacts input gain39. The present 

observation that chronic pain intensity was associated with sustained increases or decreases 

in OFC power may therefore reflect maladaptive plasticity or changes in excitation/

inhibition41 between the OFC and afferent primary sensory cortices, magnocellular cells of 

the medial thalamus or reciprocal connections with the ACC18 to perpetuate pathological 

sensory integration. In contrast, transient burst-like oscillatory activity associated with 

acute pain intensity may reflect stochastic packets reflecting fast computations42 between 

ascending medial thalamic inputs or descending rostral brainstem outputs supporting 

allodynia or evoked pain. Similar transient ‘high current spikes’ in rodent ACC have 

been observed to shift to more transient states in response to acute noxious stimuli 

and more sustained spiking states in a rodent model of post-stroke pain37. We further 

speculate that transient burst-like power changes may support aberrant sensory, affective 

and cognitive integration in chronic pain in a manner analogous to how pathological beta 

bursting influences motor processing in Parkinson’s disease43. Of note, because our decoder 

inputs consisted of time-averaged power values, it is unlikely that these disparate temporal 

dynamics were responsible for the lack of generalization between acute and chronic pain we 

observed here.
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Although we could reliably predict multiple metrics of chronic pain severity when scores 

were dichotomized into ‘high’ and ‘low’ categories, prediction of exact pain scores with 

linear regression faired relatively poorer for metrics tracking pain intensity. One reason for 

this may be that subjective pain perception is psychophysically non-linear44, in a manner 

that binarization may better capture45. Binary classification yielded high sensitivities across 

participants, which is crucial for practical diagnostic or therapeutic biomarkers. Consistent 

with prior suggestions3, such a binary biomarker could be more useful for diagnosis or 

disease classification, while continuous measures or grading scales may be more useful 

for assessing treatment response. Future analysis of neural signatures that predict treatment 

response would lend further insights to basic pain mechanisms.

Three of four participants suffered from CPSP, due to ischemic brain injuries acquired 

greater than 2 years before data collection. Despite potential concern that a previous stroke 

may have induced brain plasticity specifically related to stroke symptoms, all participants 

had stable symptoms and physical exams over the study period. While OFC activity 

was sufficient to decode chronic pain in these participants despite varying locations of 

ischemic infarcts or stable use of various pain medications, in many cases activity from 

the ACC also performed as well. Given the small sample size of the present study, and 

idiosyncratic decoding observations in acute pain from 1–2 participants, caution must be 

used to avoid overinterpretation. Further studies are required to establish greater confidence 

in the specificity of the OFC for chronic pain prediction across larger groups.

A further limitation of the current study is that rather than directly predicting pain state per 

se, it is possible that machine learning models may be predicting other variables strongly 

correlated with reported pain metrics such as arousal or attention. However, as the adaptive 

value of pain may be to alert the organism to impending tissue damage, arousal effects may 

be a fundamental component of the complex subjective perception of pain itself. Further, 

in the diurnal analyses, we found many nonsignificant correlation values with large effect 

size (r > 0.5). Because we did not explicitly quantify Bayes’ factors related to the null 

hypothesis, the absence of evidence should not be interpreted as evidence of absence for a 

particular effect, particularly in cases of nonsignificant model results where the effect size 

may be high.

The development of personalized pain biomarkers will be central to accurate diagnosis, 

tracking prognosis and for future therapeutic drug and device development. Individualized 

biomarkers are also critical to the growing field of adaptive neurostimulation, where a 

participant’s ongoing neural activity may be used to control therapeutic brain stimulation46. 

Personalized biomarkers of chronic pain state may be used as input signals in real time, 

to control the amplitude or frequency of therapeutic electrical brain stimulation for treating 

refractory pain as they have for movement disorders. By adaptively delivering intermittent 

bouts of stimulation or adjusting parameters based on pain-state biomarkers, it may be 

possible to mitigate known effects of adaptation and loss of efficacy demonstrated in nearly 

all open-loop continuous DBS paradigms. It remains to be seen if similar signals may be 

non-invasively recorded using electroencephalography to track disease state or inform drug 

development.
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Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41593-023-01338-z.

Methods

General trial methods

This current study was undertaken as part of an ongoing multiyear clinical trial aimed at 

developing closed-loop control algorithms for DBS to treat chronic neuropathic pain. The 

clinical trial protocol (NCT03029884) was approved by UCSF Human Research Protection 

Program (IRB) and the Food and Drug Administration (FDA).

Inclusion and exclusion criteria were:

Inclusion criteria.

• Age ≥ 21 years

• Clinical diagnosis of post-stroke pain (thalamic pain), spinal cord injury or 

phantom limb pain with allodynia or dysesthesia with pinprick anesthesia or 

hypoesthesia on the affected hemi-body or limb (anesthesia dolorosa).

• For post-stroke pain: stroke of ischemic etiology only. MRI done within 1 year 

of surgery showing a lesion that involves the contralateral brainstem, thalamus 

or cortex. The lesion involves cortical–subcortical areas in topography consistent 

with sensory thalamocortical connections. This will include participants with 

infarcts in the territory of the middle cerebral artery. A more recent MRI may be 

required if the participant’s condition changed within the previous year.

• For phantom limb pain: MRI done within 1 year does not show any 

contraindication to surgery such as mass, lesion, hemorrhage or other 

abnormality near target.

• For spinal cord injury pain: MRI done within 1 year does not show 

contraindication to surgery such as mass, lesion, hemorrhage or other 

abnormality near target.

• One year or more of medically refractory severe pain (see below).

• Average daily pain for the past 30 d reported as >5 on a 0–10 NRS.

• Failure to respond adequately to at least one antidepressant, one anti-seizure 

medication and one oral narcotic with current stable doses of medications.

• Ability to speak/read English.

• Capable of understanding and providing informed consent.
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• Stable doses of pain medications (for example, anticonvulsant drug, 

antidepressants and opioids) for at least 30 d.

• Women of childbearing age must regularly use an accepted contraceptive 

method(s).

Exclusion criteria.

• Pregnancy or breastfeeding.

• Inability to speak and/or read English.

• Inability to give informed consent.

• Significant cognitive impairment or dementia (MoCA < 25).

• Aphasia severe enough to limit the consent process or communication between 

the investigators and the participant. Participants with mild or recovering aphasia 

may be considered candidates at the discretion of the Principal Investigator (PI).

• Recommendation of exclusion by evaluating psychiatrist based on 

comprehensive neuropsychological evaluation, which may include: active 

depression (Beck Depression Inventory > 20) or other untreated or uncontrolled 

psychiatric illness (active general anxiety disorder, schizophrenia, bipolar 

disorder, obsessive–compulsive disorder or personality disorders (for example, 

multiple personality disorder and borderline personality disorder).

• Suicide attempt within the previous 12 months or imminent suicide risk.

• History of substance abuse in the previous 3 years.

• Major medical comorbidities increasing the risk of surgery including 

uncontrolled hypertension, severe diabetes, major organ system failure, history 

of hemorrhagic stroke, need for chronic anticoagulation other than aspirin, 

active infection and immunocompromised state or malignancy with <5 years 

life expectancy.

• Inability to stop Coumadin (warfarin) or platelet anti-aggregation therapy for 

surgery and after surgery. Participants taking these medications will need to 

discuss the need/risk of continuing these medications with their physicians, and 

the PI or study personnel may contact the treating physician(s) as well to discuss 

the risks of anticoagulation/anti-aggregation therapy discontinuation.

• Coagulopathy. Participants will be excluded unless assessed and cleared by 

hematology.

• MRI (done within 1 year of surgery) showing significant abnormalities other 

than those associated with the neurological disorder causing chronic pain.

• Implantable hardware not compatible with MRI or with the study.

• Inability to comply with study follow-up visits.
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• Previous ablative intracranial surgery for the management of thalamic pain 

syndrome.

• Previously implanted with DBS system or any previously implanted device 

treatment involving brain stimulation.

• Major neurological disorder other than the one that led to the chronic pain 

including epilepsy, neurodegenerative condition or any history of seizure.

• Requires diathermy, electroconvulsive therapy or transcranial magnetic 

stimulation to treat a chronic condition.

• Has an implanted electronic device such as a neurostimulator, cardiac pacemaker 

or medication pump.

• Allergies or known hypersensitivity to materials in the Activa PC + S system 

(that is, titanium, polyurethane, silicone, polyetherimide and stainless steel).

• Pregnancy or lack of regular use of contraceptives. Participants who become 

pregnant after enrollment may be excluded from the study. Participants who 

become pregnant before the surgical implantation of the DBS systems will be 

excluded from the study.

• Participants may be excluded from enrollment due to a condition that, in the 

judgment of the PI, significantly increases risk or reduces significantly the 

likelihood of benefit from brain stimulation.

Participants

Four right-handed participants (CP1–4) with refractory neuropathic pain limited to one 

side of the body for >1 year were enrolled in an ongoing study to devise adaptive brain 

stimulation for pain. Three participants had post-stroke pain and one had phantom limb 

pain (Fig. 1a and Supplementary Table 1). Half were women and the mean (±s.d.) age was 

58.5 ± 3.1 years; all were free from untreated depression, recent substance use disorder 

and cognitive impairment. All participants maintained constant doses of medications for 3 

months. Each participant signed written informed consent and the study was approved by 

both FDA under an Investigational Device Exemption and UCSF Committee on Human 

Research. Participants were reimbursed for travel and accommodation but not otherwise 

compensated.

Brief participant descriptions.—See Supplementary Table 3 for task-related 

temperature calibration quantitatively reflecting allodynia.

CP1.—Woman aged 58 years old with a history of CPSP syndrome, after right middle 

cerebral artery infarct in 2013. Approximately 12 weeks after her stroke, she began having 

sharp, burning, stabbing pain in the left hemi-body from her head to foot, most severely 

concentrated over the left hand/arm and leg. A pain-focused neurological exam was notable 

for hemiparesis in the left arm and leg, with reduced sensation to light touch and temperature 

along the whole left arm, ankle and foot. She experienced dynamic mechanical, cold and 

Shirvalkar et al. Page 14

Nat Neurosci. Author manuscript; available in PMC 2023 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heat allodynia with symptoms of hyperpathia involving the spatial spread of lingering pain 

in response to rapidly repeated stimuli (interval <3 s).

CP2.—Woman aged 63 years old with elective above-the-knee amputation of the right 

leg in 2016 (for pain) and refractory phantom limb pain with right leg, calf and foot pain 

involving burning and pressure sensation. Her leg pain began 4.5 years before enrollment 

resulting from compartment syndrome as a complication from total knee arthroplasty. A 

pain-focused neurological exam was normal, with no stump pain nor evoked sensations on 

palpation of the stump (negative Tinel’s sign). She did not have sensory loss, weakness or 

allodynia.

CP3.—Man aged 56 years old with history of hypertension and left thalamic infarct in 

2014, with persistent CPSP involving the right-sided face, arm and leg. Beginning 5 d 

after stroke, he developed severe burning pain associated with dysesthesias of the right 

bicep, forearm and leg. A pain-focused neurological exam showed intact motor and sensory 

function with notable hyperalgesia and allodynia in the right arm and leg. Allodynia was 

confined to cold and heat allodynia, with minimal mechanical allodynia.

CP4.—Man aged 59 years old with history of prostate cancer (no current disease), a solitary 

episode of atrial fibrillation and CPSP after left posterior cerebral artery infarct in April 

2017. Approximately 6 weeks after his stroke, he began having burning and stabbing pain 

in the right arm as well as the right ankle which progressed to involve the entire right 

hemi-body after 1 year. A pain-focused neurological exam was notable for mild hemiparesis 

in the right arm, with intact sensation to light touch and temperature all over. There was 

dynamic mechanical, cold and heat allodynia in the right arm (worst distal to the elbow 

circumferentially) and leg (worst below mid-calf on the right including whole ankle and 

foot).

Device implant surgery

All participants underwent chronic intracranial electrode and neurostimulator implant 

targeting the ACC and OFC using Medtronic electrodes connected to the Activa PC 

+ S device26 (bilateral in three participants, unilateral in CP1 contralateral to side of 

pain). Multielectrode leads targeted the dorsal ACC (models 3389/3387) and subdural 

surface of the OFC (paddle nos. 3587A/0930A) using frame-based stereotaxy under 

general anesthesia. Individual trajectories were determined using neurosurgical mapping 

software from BrainLab and Medtronic Stealth 8.0 based on preoperative 3T MRI scans 

(Supplementary Fig. 1).

For the dorsal ACC, target locations for each electrode tip were determined by computing 

diffusion tractography images (55 directions) and identifying the cingulum bundle in a 

region 20–25 mm posterior to the anterior border of the lateral ventricle (Supplementary Fig. 

1 and Supplementary Methods) as in a previous study34. For the OFC, a burr hole was made 

through the temporal bone to allow passage of the paddle lead to the subdural surface. We 

targeted both medial and lateral OFC, areas that overlap with definitions of the ventrolateral 

medial prefrontal cortex in other studies. Electrodes were advanced through frontal burr 
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holes, with correct placement confirmed by intraoperative computed tomography (CT) and 

reconfirmed by CT at the 2-month visit. Stim-loc devices were used for electrode lead 

anchoring, with a strain relief loop anterior to the site of anchoring to prevent movement 

or torque on the lead over time. The free ends of the leads were then placed in a subgaleal 

pocket, created by blunt dissection in the parietal area. A lead extender was tunneled 

subcutaneously between the parietal incision and a 5-cm incision over the pectoralis muscle, 

where a pocket was bluntly dissected for the Activa implantable neurostimulator system. A 

small amount of Medtronic medical glue was applied to the junction of the lead and each 

barrel of the implantable neurostimulator to mitigate electrical cardiac artifacts. Participants 

had at least 10 d of recovery before neural data collection began.

Electrode localization and brain imaging

Electrode (depth and paddle electrocorticography (ECoG)) contact locations were 

reconstructed using a CT scan taken 2–3 months after implantation and fused with the 

preoperative T1-weighted volumetric MRI. The T1 MRI was used to construct cortical 

surface models in FreeSurfer (version 7.1.1)47,48. We projected ECoG contacts onto 

the cortical surface mesh with the imgpipe toolbox49 using a surface vector projection 

method50. Once we identified locations for each ECoG and depth electrode, we projected 

all participants’ electrodes onto Montreal Neurological Institute 152 space for plotting and 

comparison.

In addition to the stereotactic preoperative MRI scans, high angular resolution diffusion 

imaging was acquired on the same 3 Tesla MR scanner (General Electric), using a spin-echo 

echo-planar imaging pulse sequence (TE = 71 ms, TR = 7,765 ms, flip angle alpha = 90°), 

field of view 28 × 28 cm, at least 70 axial slices, 2 mm3 isotropic voxels, b value = 2,000 

s mm−2 in 55 non-collinear gradient directions and a signal-to-noise ratio >60. A single non-

diffusion-weighted b0 image was also obtained. The diffusion-weighted tractography was 

processed using BrainLab software. Preoperative MRI, postoperative CT and high angular 

resolution diffusion imaging scans were automatically merged and corrected for distortion. 

The contacts used for recordings were segmented on the CT scan based on visible contacts 

and known spacing measurements. The regions of interest were created using manual tracing 

of bilateral dorsal ACC, using a fractional anisotropy threshold between 0.2 and 0.3 and a 

minimum length of at least 8 cm.

Ambulatory data collection

We collected neural recordings coincident with pain reports multiple times daily (mean 

3.5 per day) from morning to evening. The Activa PC + S system is an investigational, 

implantable ‘bidirectional’ neural interface, that can sense and store patient-triggered neural 

recordings (LFP time series) that can be analyzed offline or used for adaptive DBS26. 

Participants initiated a 30-s neural recording using their remote control while sitting quietly, 

immediately following a pain report. Each 30-s neural recording was self-triggered by 

participants by pressing a button on their remote control. Participants were instructed 

to space out recordings at least three times daily, once each in the morning, afternoon 

and evening. In rare instances (<10% of all recordings), devices were programmed to 

automatically capture a 30-s recording at prespecified times throughout the day, to increase 
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recording frequency. In such cases, we attempt to vary specific times of recordings every 

2 weeks to more equally sample morning, afternoon and evening periods. Also, in these 

cases participants were notified of the imminent start of a recording via text message and 

prompted to submit a pain report via text message or by clicking a hyperlink to a REDCap 

survey page. Neural recordings were included in analysis only if they occurred within 15 

min of reported scores.

Pain metrics were reported using mobile text message or the online REDCap platform 

version 10.0.33 (REDCap, Vanderbilt). Reported metrics included pain intensity NRS (0–

10) and VAS (where 0 is no pain and 10 is the worst pain they have ever experienced); pain 

unpleasantness NRS and VAS (where 0 is not bothersome at all and 10 is most bothersome 

ever felt) and the SF-MPQ (version 2)28. Although VAS and NRS may provide redundant 

information, both were collected when possible to assess reporting consistency within 

participants (Fig. 1c). While data from all metrics were not available from all participants, 

pain intensity NRS was reported by all and so prioritized in the study.

Participants provided pain reports at least 2 weeks before surgery, and reported score means 

did not change after surgery. To standardize reporting, participants were trained to report 

pain intensity NRS values based on a narrative description of each number (0–10) from a 

comparative pain severity scale table51. VAS sliders contained only the numbers 0 or 10 

at each end and were presented horizontally with the slider bar starting at a value of 5/10. 

The SF-MPQ2 is a multidimensional survey tool that requires participants to rate the extent 

(none, mild, moderate, severe) to which each of 15 pain words matches their symptoms. 

We reported the SF-MPQ2 score as the sum of all verbal descriptor ratings (maximum = 

45). The magnitude by which pain scores differed between the high and low group within 

each participant was confirmed to be clinically significant and surpassed a meaningful 

threshold for each participant. All participants confirmed that individual successive numbers 

in reported ranges carried discernable clinical meaning, and so an NRS difference of 1 of 

10 was therefore noted separately by each participant to have different clinical meaning with 

reliability over repeated reports (Fig. 1d). Brain recordings commenced immediately after 

pain reports were submitted.

Activa PC + S neural recordings and preprocessing

Each recording sampled two bipolar referenced time-series channels capturing LFPs at a 

422-Hz sampling rate. The contacts used for sampling were chosen based on those showing 

the largest root-mean-square voltage in the raw tracings as determined by investigators (for 

example, for the ACC we chose 0–3+ as one possible bipolar channel, where 0 was the 

deepest contact). Data download of collected recordings was performed every 2–3 weeks by 

either participants or investigators using the Medtronic sensing programmer (version 1.5.0.0) 

via a wand resting on the skin over the Activa device.

Data analysis used MATLAB 2022b (MathWorks) and Python 3.7.4 with the Scikit-learn 

library (version 1.0.2). To identify pain-state biomarkers, LFPs were high-pass filtered above 

1 Hz and low-pass filtered below 100 Hz, converted to frequency domain using multitaper 

spectral estimation52, log10 transformed and z-scored within frequency band. Standardized 

power values for each 30-s recording were averaged within canonical frequency bands: δ 

Shirvalkar et al. Page 17

Nat Neurosci. Author manuscript; available in PMC 2023 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz), low γ (30–70 Hz) and high γ (70–100 

Hz). Bandwidths containing idiosyncratic noise sources (known from Activa PC + S by the 

manufacturer) were visually identified for each participant (by an investigator blinded to 

results) and excluded from power averages. Outlier recordings were excluded from analysis 

if power within three or more frequency bands (of six in total) contained power averages 

greater than three scaled median absolute deviations from the median, in a manner blinded 

to the results.

Acute/experimental thermal pain protocol

We applied transient heat stimuli of varying intensity to each participant’s most painful body 

part (and contralateral side) using the Medoc TSA 2001 while recording brain LFP activity. 

Heat temperatures were calibrated separately for each body side and participant, such that 

reported NRS values ranged from 0 to 9 out of 10. Background chronic pain NRSs were 

collected before starting acute pain trials. Participants underwent five trials at each of five 

intensities, where temperature first increased at a rate of 1 °C s−1 from a baseline of 32 °C, 

was held at target intensity for 3 s, and then returned to baseline. Around 10 to 15 s elapsed 

between trials, and participants were cued to trial start, although 3 s of neural data was only 

included after target temperatures were reached. Target temperatures ranged from 34 to 48 

°C. Participants verbally reported pain NRSs 3 s after reaching target temperature. Trials 

with movement or uncertain pain report were discarded.

To mitigate the possibility that participants may ‘merge’ or conflate ratings of chronic 

and acute pain (even subconsciously), we took three precautionary steps: (1) Participants 

were exposed to at least four different blocks of the acute pain paradigm before formal 

testing, so that they became accustomed to the pacing and attention to acute, thermal 

pain phenomenology. (2) Thermal pain was applied adjacent to, instead of directly over, 

anatomical regions where background chronic pain was experienced, tailored to each 

participant. This was done to avoid confounding spontaneous underlying pain in the same 

body part that was in physical contact with the thermode. (3) Participants were explicitly 

trained to provide only the pain score corresponding in time (by verbal cueing at the 3-s 

plateau time point) and in space (in only the anatomical area contacted by the thermode). 

To specifically train participants to understand this difference, they were given visual 

feedback of the temperature as it ramped to target temperature during training blocks, so that 

they could understand the relationship between stimulus delivery and perceived sensation. 

However, to avoid bias, they were not shown the visual temperature during actual testing 

blocks.

Pain decoding models and biomarker analysis

Separate models were constructed for each participant and each reported pain score, using 

as input features the standardized mean spectral power in each frequency band, per brain 

region, per hemisphere (that is, CP1 model used 12 features (6 each from unilateral 

implants in the ACC and OFC); CP2–4 models contained 24 features from bihemispheric 

recordings). We computed multivariate regularized regression (LASSO) on continuous pain 

metrics and two types of classification on dichotomized pain metrics (LDA and LSSM). 

For classification, binary response variables were pain scores dichotomized into ‘high pain 
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state’ and ‘low pain state’ categories for each participant, based on dividing scores above 

and below that participant’s median value (test data point was not included in the median 

calculation for full independence; see ‘Cross-validation’). To ensure robust decoding of pain 

state, we used independent machine learning approaches: LDA, LSSM (Supplementary Fig. 

2) and LASSO regression. While LDA produces directly interpretable feature weights that 

can be programmed into currently available adaptive DBS devices, LSSM is a dynamical 

systems approach that can more flexibly represent complex brain activity53.

The approaches below were used to predict multiple pain metric responses that were 

available for each participant (Supplementary Table 1): All participants: chronic pain 

intensity NRS, acute pain verbal NRS, acute pain temperature; CP3 and CP4: pain intensity 

VAS, pain unpleasantness NRS/VAS, SF-MPQ2.

LASSO regression.—In addition to predicting binarized chronic and acute pain states, 

we also trained multivariate LASSO regression models to predict continuous pain scores. 

LASSO regression models implicitly perform variable selection through regularization 

whereby the weighting factors of multicollinear or extraneous input variables are shrunk, 

thereby having less influence on the outcome prediction. Similarly to LDA models, we 

stratified our regression analyses by constructing models trained on data separately from 

each available subregion. All models were fit with a regularization parameter of 0.001 and 

validated with our modified LOOCV. Model fit was evaluated by calculating the coefficient 

of determination (R2) values of the models, which can range from below 0 to 1, and root 

mean square error.

LDA decoding.—LDA is a common supervised classification method used to categorize 

labeled samples into two or more classes by determining an optimal decision boundary 

that best separates samples from each class54. LDA makes predictions by estimating the 

probability that each input belongs to a particular class based on variance in the input 

features.

We used LDA to classify high versus low dichotomized pain states for two main reasons. 

First, LDA produces an interpretable set of feature weights for each trained model, 

permitting inference of the importance of specific neural features (that is, brain regions, 

hemisphere, power bands)54. Second, the Activa PC + S, Summit RC + S and Percept 

sensing-enabled brain stimulation devices (Medtronic) exclusively use device-embedded 

LDA algorithms for ambulatory closed-loop control55,56. Results from LDA-based decoding 

can therefore be directly implemented for closed-loop control in current clinical devices and 

for future stimulation studies.

We constructed multiple LDA classification models using data sub-selected from different 

brain regions and/or hemispheres, which we called subregion models (for example, right 

hemisphere ACC and OFC, left ACC and left OFC). One model consisting of all available 

data (for example, both hemispheres and brain regions) was termed the full model (that 

is, contralateral ACC/OFC for CP1 and bilateral ACC/OFC for CP2–4 represent the full 

model). Separate full and subregion models were constructed to classify each available pain 

metric for each participant (that is, pain intensity NRS and VAS, pain unpleasantness NRS 
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and VAS and SF-MPQ2)28. However, pain intensity NRS was reported by all participants 

and so is emphasized in the main study. For the acute pain data, we also sought to predict 

the delivered temperature as a response variable. For all participants, we optimized the 

shrinkage parameter used for discriminant analysis, which was set to the default value for 

all participants except for CP1 for whom it was set to a value of 1, indicating maximum 

shrinkage. Shrinkage is a form of regularization used to improve model estimation in 

scenarios when the number of training samples is low relative to input features57. Setting 

shrinkage to a value of 1 effectively maximizes regularization. All other hyperparameters 

were set to default values (for example, prior probabilities = 0.5 for each class) in Python 

3.7.4 with the Scikit-learn library (version 1.0.2)57.

AUC was calculated using the predictions from all test points compared to the ground truth 

pain states for all models. We also calculated sensitivity, specificity, positive predictive value 

and accuracy of binary classification.

To determine whether neural features correlated with chronic pain may generalize to acute 

(experimental) pain, we used full models trained on the chronic pain dataset to classify 

acute pain scores from the experimental thermal pain dataset, and vice versa (Fig. 4a). 

Specifically, for this acute/chronic generalization analysis, a particular participant’s neural 

features and pain reports from the chronic pain dataset were used as the training set, while 

that same participant’s neural features and pain reports from the acute, experimental thermal 

pain dataset were used as the test set. The same analysis was done by reversing the test and 

training sets for completeness. Neural input features and pain score response variables were 

standardized by subtracting the mean and dividing by the standard deviation for each model.

LSSM decoding.—Neural decoding of pain may benefit from dynamic models that can 

predict how neural dynamics lead to pain score variations over time. Such an approach 

was previously used to decode interindividual mood state in patients with epilepsy and can 

reduce the dimensionality of neural features to fewer ‘latent states’, which can then be 

used to guide stimulation in a potential future control scheme (Supplementary Fig. 2). We 

thus independently assessed the feasibility of decoding chronic pain states using dynamic 

LSSM53.

In this case, in nonoverlapping 1-s windows, we computed the log of signal power within the 

six canonical frequency bands (Methods) resulting in power time series with 30 time-steps 

during each 30-s recording. We modeled the dynamics of the power time series as the 

outputs of an LSSM with a latent state and used the subspace identification algorithm and 

Akaike’s information criterion to learn the LSSM parameters and determine its latent state 

dimension53. Given the learned LSSM, we then applied the associated Kalman filter to the 

power time series in each recording to extract the latent state time series and decoded the 

pain state from the latent state at the end of each recording. Decoding was evaluated as 

above with a modified LOOCV and performance was quantified by computing the AUC. 

As LSSM methods may predict neural dynamics over time, they could hold promise for 

informing the closed-loop adaptive DBS system58, although present technology relies on 

LDA approaches26,46.
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Cross-validation

To mitigate model overfitting, we used LOOCV in which one test sample was iteratively 

omitted from the training set (see Supplementary Table 1 for the number of recordings for 

each participant). Specifically, for all models, we predicted each test data point individually 

using a model trained on all other points. For all models, the median value used for 

dichotomizing pain scores was computed using only the training dataset (excluding the test 

data sample) to maintain strict independence between training and testing sets. Decoding 

AUCs were averaged across all runs to compute the model average AUC reported in the text 

and figures.

It is possible that autocorrelations in the pain score metric time series could result in 

potentially overfitted models and inflate prediction accuracy. Therefore, we performed a 

separate ‘modified cross-validation’ procedure, which omitted ±3 samples around the test 

point, from the training data. We chose a window of three samples based on the average 

number of pain scores reported per day across participants (3.2 reports per day). For 

participants CP2–4, the ‘modified cross-validation’ method resulted in significant decoding 

of pain intensity NRS for all subregion models containing the ACC or OFC from the 

contralateral hemisphere (6 of 9 models per participant). For the one participant with 

the smallest number of data samples (CP1), this method failed to produce significant 

classification of pain intensity NRS, due to the omission of substantially more training data 

than the standard LOOCV method. Consistent with shown results for the two participants 

with pain unpleasantness NRS reporting, the ‘modified cross-validation’ method resulted in 

significant decoding when the ACC was included in subregion models (CP3: 7 of 9 models; 

CP4: 6 of 9 models). For SF-MPQ2, all subregion models were significant for CP3, and 7 of 

9 models were significant for CP4 (excluding those containing ipsilateral OFC).

Sequential pain difference/pain fluctuation analysis

Predicting changes in successive pain scores versus state (Supplementary Fig. 9a,b): 

We were interested in understanding whether the neural features tracked fluctuations 

or differences between sequential pain ratings (instead of the actual reported individual 

pain scores/states). Pain score differences were calculated by subtracting the immediately 

preceding pain score from the current one to generate a metric of whether pain state recently 

increased or decreased. Therefore, pain scores that were previously higher than the current 

one would result in negative difference scores, while those that were previously lower 

would result in positive difference scores. To assess whether neural features discriminated 

changes in pain, we generated binary LDA classification models trained to distinguish stable 

pain scores (0 change in pain NRS) versus fluctuating pain scores (non-zero changes in 

pain NRS). We also built regression models trained to predict the change from the prior 

pain score to the current score. We performed the same subregion model stratification and 

validation methods as described for other models.

Decoding stability (70/30 split).—To test whether the important neural features were 

stable across the ambulatory data collection period, we additionally performed a 70/30 train/

test split validation protocol using an LDA classifier. For each participant, we trained an 

LDA model on the first 70% of their collected data and tested the model on the remaining 
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30%. We then calculated the AUC on the test set. If AUC from this analysis is comparable to 

the AUC computed using modified LOOCV, this suggests that neural features important for 

decoding are stable over time.

LDA feature importance.—Model feature importance (Figs. 2e and 3g) was calculated 

by taking the mean value of each feature coefficient weight across all cross-validation runs 

(using LDA) and linearly rescaling the resulting values between −1 and 1 for each feature 

and participant. The feature importance values were visualized by plotting colored heat 

maps ranging from blue to red to compare across participants.

OFC versus ACC feature comparison.—To further assess the relative contribution of 

OFC versus ACC features on chronic and acute pain decoding, we computed the difference 

between the absolute magnitudes of each power band feature from the OFC and ACC 

in the same brain hemisphere (OFC minus ACC) for all recording clips. Values greater 

than 0 indicate greater OFC than ACC feature importance. To compare the distributions 

of these feature importance differences to a null hypothesis distribution, we generated null 

permuted distributions by randomly shuffling the OFC/ACC labels and recalculating feature 

differences 1,000 times. Real versus shuffled feature difference distributions were compared 

using two-tailed Wilcoxon rank-sum tests. Multiple-comparisons correction was performed 

across all features within each participant using false discovery rate correction as below.

Temporal feature analysis

1. To assess the time-varying characteristics of power features supporting pain-state 

decoding, we first computed multitaper spectrograms of neural recordings from 

each brain region52. Spectrograms were computed on 500-ms windows, with a 

50-ms window step, TW = 3 (1.5-Hz resolution) and five tapers, with signals 

zero padded to the next power of 2 number of samples. We then averaged power 

values within canonical frequency bands as above (that is, delta, theta, alpha, 

and so on) to obtain power time-series plots for each feature from each brain 

region. To understand the relative changes in power that underlie decoding of 

high versus low pain states, we next averaged the feature power time-series clips 

belonging to each high versus low pain-state group (Fig. 5a and Supplementary 

Fig. 13a). The same method was carried out for the acute-affected pain features 

for the two participants that had successful acute pain decoding (Supplementary 

Fig. 13b). Note that because the 30-s neural recording clips were collected 

at various times of day within 5 min preceding a pain report, there is no 

well-defined task onset/offset for each 30-s recording as there is for each 3-s 

recording clip in the acute pain task. Therefore, one may expect to see reliable 

increases/decreases in power if there were sustained power changes across this 

time. However, one might not see any difference between low versus high pain 

power curves if power only fluctuated in transient bursts because the timing of 

such bursts may cancel out when averaged across sessions. To quantify increases 

or decreases in power change patterns for chronic and acute pain features, we 

computed three metrics (Fig. 5b–d): (1) the number of bouts per second. A 

bout was defined as an event where the higher power curve crossed above the 
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low power curve before crossing below if at all (for example, if a feature had 

a negative feature weight sign, then low pain state was associated with higher 

power than high pain state for that feature). Instances where the higher power 

curve did not intersect with the lower power curve were counted as one bout. 

We divided the number of bouts by clip duration to obtain bouts per second. (2) 

Mean bout duration was computed by taking an average duration of all detected 

bouts for that feature. (3) The total proportion of recording clip time where the 

higher curve was sustained above the lower curve (that is, equivalent to summing 

all bout durations and dividing by clip duration).

2. To investigate diurnal patterns in the time series of each chronic pain neural 

feature, we separately plotted pain NRS and each feature’s clip averaged power 

as a function of time of day from midnight to midnight (Supplementary Fig. 

14). Because the time of day was non-uniformly sampled by each participant in 

the ambulatory setting, we resampled these diurnal plots with shape-preserving 

piecewise cubic interpolation (‘pchip’) using a uniform time resolution of 3 h to 

obtain a summary diurnal trend line for each feature. We chose a resolution of 

3 h because this was the shortest time interval across each participant’s reports, 

and because doing so did not introduce visible artifactual trends. The resampled 

trend lines for each feature were then correlated with the pain NRS trend line 

using Pearson’s correlation, within participants, to assess for correlated patterns 

between neural features and pain reports (Supplementary Table 3).

General statistical methods

False discovery rate correction for multiple comparisons used the Benjamini–Hochberg–

Yekutieli procedure59.

Autocorrelation.—Sample partial autocorrelations were calculated on reported pain 

intensity NRS using default parameters in MATLAB60. Because pain NRS was reported 

on an irregular timescale for each participant, we uniformly resampled the original pain NRS 

time series using shape-preserving piecewise cubic interpolation, rounded to the nearest 6 

min (that is, 1/10 of 1 h).

Permutation tests: empirical P values.—All machine learning model results (AUCs 

for LDA and LSSM and coefficient of determination R2 for regression) were compared 

against 5,000 (n) permuted results from null models (AUCs or R2) obtained by randomly 

shuffling the true response class labels or values (for example, randomly shuffling high or 

low pain class label) to obtain a distribution of chance level performance. We conservatively 

calculated empirical one-sided P values by comparing the number of randomly permuted 

AUCs or R2(k) greater than the actual model AUC or R2 using the following correction to 

avoid underestimation as previously demonstrated61: Pcorr = k + 1 / n + 1. Note that because 

R2 values can be <0, it is possible for very low R2 values to sometimes be significant, if the 

R2 results from shuffled/permuted, null models were largely negative.
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Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Long-term ambulatory tracking of chronic pain metrics.
a, Self-drawn body maps corresponding to the anatomical distribution of each of four 

participants’ spontaneous chronic pain location. Red and blue indicate areas of high and low 

pain, respectively. b, Scatterplot of an example participant’s report of overall pain intensity 

VASs over 105 d (mean 3.2 reports/d), with overlying moving average (red line; window = 

3 samples), demonstrating a range larger than MCID. Each black point represents one pain 

report simultaneous with a neural recording. c, Histogram of each participant’s reported pain 

intensity NRS; most values were high (>6/10) but similar across participants. d, Group data 

demonstrating high correlation between VAS and NRS for pain intensity and unpleasantness 
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across participants who reported them (CP3–4) with associated Pearson’s correlation R. e, 

Partial autocorrelation stem plots for each participant’s pain NRSs. Different pain score 

reporting frequencies for each participant resulted in different autocorrelation resolution. 

Bold stems indicate time lags achieving statistical significance (P < 0.05) based on two-

sided 95% confidence intervals (for CP1–4, respectively: ±0.12, 0.14, 0.13 and 0.09) not 

corrected for multiple comparisons.
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Fig. 2 |. Ambulatory neural recordings from ACC and OFC predict chronic pain state.
a, Example X-ray of a participant with bilateral implant of Activa PC + S DBS generators 

attached to depth leads in the ACC and paddle leads in the OFC (red highlights). b, Group 

localization of all electrode contacts in coronal (top) and sagittal (bottom) view. Blue shaded 

area is the ACC; yellow shaded area is OFC. Below are example raw LFP recordings from 

ACC (top) and OFC (bottom). c, Summary of the chronic pain-state decoding scheme for 

pain VAS using example data from one participant. Normalized power spectra are computed 

for each recording (ordered by increasing pain VAS (overlaid white circles) for display) 

and power values at each frequency are displayed across all recordings for an example 
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participant. Above the color bar scale, a horizontal histogram of pain VAS shows the 

distribution of pain scores, which are split by the median value to define a dichotomous 

response variable (high (1) versus low (0) pain states). Average power values in frequency 

bands of interest serve as predictive features in two complementary decoding schemes. 

Power features sub-selected from either brain region or hemisphere are used to train models 

that decode high versus low pain states using LDA. d, Bar plots of decoding performance 

with successful pain-state prediction based on NRS for all participants using LDA. CP1–

CP4 had n = 89, 137, 234 and 452 independent simultaneous recordings and pain score 

reports, respectively. One-sided empirical P values were calculated using permutation tests 

(n = 1,000; black dots), without correction for multiple comparisons (Methods) as reported 

in Supplementary Fig. 4 for all metrics and models. P values for NRS models in d from left 

to right are: CP1: 0.092, 0.801, 0.016; CP2: 0.001, 0.001, 0.001, 0.001, 0.001, 0.002, 0.001, 

0.003, 0.777; CP3: 0.001, 0.005, 0.041, 0.001, 0.002, 0.027, 0.001, 0.001, 0.143; CP4: 

0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.612, 0.001. e, Normalized mean feature 

weights (importance) for each participant from full models (bilateral OFC/ACC) in d. (Note 

CP1 only has a unilateral implant. Contra, brain hemisphere contralateral to participants’ 

body side with chronic pain; ipsi, ipsilateral. ‡P < 0.05, *P < 0.01, †P < 0.001).
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Fig. 3 |. Acute pain-state prediction with ACC and OFC neural recordings is unreliable.
Experimental scheme and decoding performance for acute, evoked pain state. a, Quantitative 

sensory testing thermode placement at most painful region on the side affected (aff-ACUTE) 

or unaffected (unaff-ACUTE) with chronic pain. b, Acute, thermal pain protocol (see text). 

c, Distribution of pain NRS during the task for all participants. d, Example temperature 

(blue) and NRS (red dot) data for one testing session. e,f, LDA decoder performance 

for high/low acute pain NRS is shown when thermal pain was applied on the side 

of the body either affected (e; for CP1–4; n = 13, 20, 25 and 25 independent trials, 

respectively) or unaffected (f, for CP1–4; n = 16, 16, 25 and 25 independent trials, 

respectively) by usual chronic pain. Gray points show chance level performance based 

on permutation tests (n = 1,000) used to calculate one-sided empirical P values without 

multiple-comparisons correction. Significant P values from left to right in e: CP1: 0.045; 

CP2: 0.012, 0.008, 0.037 and 0.013. See Supplementary Fig. 10 for all P values for e and f. 
g, Normalized mean feature weights (importance) from full models for the two participants 

that showed significant acute-affected pain decoding according to the color scale. *P < 0.05 

(Supplementary Fig. 10).
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Fig. 4 |. Decoding of chronic and acute pain states are differentially supported by ACC and OFC 
features across participants.
a, Relative importance of OFC versus ACC normalized power features to decoding of 

chronic pain NRS full models in each participant. Individual histograms show distributions 

of the magnitudes of OFC feature weights minus ACC feature weights across all recording 

sessions for real data (black, left facing) and shuffled surrogate data (gray, right facing; 

Methods). Values above 0 indicate greater OFC weights, and values below 0 indicate 

greater ACC weights. Contralateral OFC delta power was more important than ACC for 

discriminating high versus low pain across all participants (red highlight). b, Relative feature 

importance for acute-affected pain for the two participants that had significant decoding. 

For acute pain, there was a shift to greater ACC importance across frequencies compared 

with chronic pain. Two-sided Wilcoxon rank-sum test. P values corrected for multiple 

comparisons with the Benjamini–Hochberg method. In a, *P < 10−4; **P = 0.002 (CP1), 

**P = 0.043 (CP2), **P = 0.001 (CP3). In b, *P < 10−3; **P = 0.046 (CP1), **P = 0.042 

(CP2).
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Fig. 5 |. Temporal dynamics of power features distinguish chronic from acute pain states.
a, Example power time-series plot of a single feature (contralateral OFC delta) averaged 

across all recordings from low (blue line) versus high (red line) pain states, for one 

participant. Colored and shaded error bars show the s.e.m. The blue square in the upper-left 

corner represents that feature’s average weight as plotted in Fig. 2e (blue indicates negative 

weight ~ −1.0). This negative feature weight corresponds to decreased mean power during 

high pain states; periods of decreased power are highlighted with background gray shading. 

b, Box plots with overlying raw data of the percentage of total recording clip time on which 

increases or decreases occurred for chronic pain features (black dots) and acute pain features 

(red dots). c, Mean duration of bouts of increases and decreases similarly. d, Number of 

increases or decreases per second for chronic and acute pain features; the symbol legend in 

d applies to b–d. In b–d for CP1–4 chronic pain features, respectively, n = 215, 455, 880 

and 1,765 independent power time series. For CP1 and CP2 acute pain features, respectively, 

n = 35 and 60 independent power time series. Box plot bounds indicate the 25th and 

75th percentiles, the pink line shows median, and whiskers show the full extent of data 

from minima to maxima with points outside the whiskers considered outliers. Two-sided 

Wilcoxon rank-sum tests with correction for multiple comparisons. In c, ZCP1 = 7.7, *P = 
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10−14; ZCP2 = 11.6, *P = 10−30. In d, ZCP1 = −8.9, *P = 10−19; ZCP2 = −12.5, *P = 10−35. 

See Supplementary Fig. 13 for additional details and the top five features per participant.
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