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Summary

Background—Only around 20–30% of patients with non-small-cell lung cancer (NCSLC) 

have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, 

PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, 

radiographic images might holistically capture the underlying cancer biology. We aimed to 

investigate the application of deep learning on chest CT scans to derive an imaging signature 

of response to immune checkpoint inhibitors and evaluate its added value in the clinical context.

Methods—In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK wild-

type NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were 

enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model 

on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after 

treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the 

Deep-CT model in the context of existing clinicopathological and radiological metrics.

Findings—Our Deep-CT model demonstrated robust stratification of patient survival of the 

MD Anderson testing set, which was validated in the external Stanford set. The performance of 

the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, 

age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, 

including histology, smoking status, and PD-L1 expression, and remained an independent 

predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk 

factors demonstrated significantly improved prediction performance, with overall survival C-index 

increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other 

hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone 

could not reach the performance level of deep learning, indicating that the deep learning model 

effectively captured additional imaging patterns beyond known radiomics features.

Interpretation—This proof-of-concept study shows that automated profiling of radiographic 

scans through deep learning can provide orthogonal information independent of existing 

clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with 

NSCLC closer.
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Introduction

Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death in the 

USA and worldwide.1 Immune checkpoint inhibitors targeting PD-1 or PD-L1 have become 

the mainstay of therapy for patients without targeted treatment options. However, durable 

response remains limited to a minority of patients (20–30%).2 Robust predictive biomarkers 

might help identify patients who are likely to benefit from immune checkpoint inhibitor-

based therapies versus those who might benefit from alternative therapeutic strategies.

Although many molecular predictors of immune checkpoint inhibition response have 

been proposed,3 and the US Food and Drug Administration have approved PD-L1 and 

tumour mutational burden as biomarkers to guide treatment selection in patients with 

NSCLC,4,5 none of these features fully capture the variability in outcomes, suggesting 

that benefit from immune checkpoint inhibition is orchestrated by the interaction of 

the tumour, the microenvironment, and the host.6 These tissue-based tests are further 

limited by inadequate biopsy specimens,7,8 intratumour heterogeneity,9,10 and high cost. 

By contrast, radiological images are already routinely obtained for cancer staging and 

therapeutic response assessment and can capture the entire tumour as well as its background 

parenchyma non-invasively. Moreover, the distinct biology of the tumour and its interaction 

with the tumour immune microenvironment give rise to distinct imaging phenotypes that, 

with machine learning and deep learning algorithms, can be mined to predict clinical 

outcomes and genomic features, known as radiomics and radiogenomics.11–15 Consequently, 

radiological images coupled with deep learning might provide a non-invasive means of 

identifying the biology relevant to immune checkpoint inhibition response, and developing 

predictive biomarkers to inform immune checkpoint inhibitor treatment selection.

Previous studies have shown the feasibility of developing radiomic or deep learning markers 

to predict immunotherapy outcomes.16–19 However, these analyses have used under-powered 

patient cohorts mixed with biologically heterogeneous cancer phenotypes. Furthermore, 

they aimed to use radiogenomics to develop imaging surrogates for already imperfect 

molecular signatures (PD-L1, EGFR mutation status, and CD8+ T-cell infiltrate), rather than 

determining whether radiographic features can independently improve outcome prediction.

In this study, we aimed to assess whether machine learning analysis could extract clinically 

relevant features from routine CT scans that are predictive of immune checkpoint inhibition 

outcomes and are complementary to known clinicopathological and radiological risk factors. 

We launched a multi-institutional, multidisciplinary collaboration to develop and validate 

a deep learning framework to comprehensively characterise individual patients’ imaging 

patterns and predict their clinical benefit from immune checkpoint inhibition.

Methods

Study design and participants

In this retrospective modelling study, clinicopathological data, radiographic reports, and 

patient prognostic information were retrieved from Epic electronic medical record software 

and baseline CT images were curated from the IntelliSpace PACS system (Philips). These 
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data were used for model development and testing. To mitigate the heterogeneous protocols 

in image acquisition, we applied a series of image processing algorithms to harmonise the 

CT data and facilitate robust feature extraction (appendix p 27).

We queried the MD Anderson GEMINI database (a database containing detailed 

clinicopathological, radiological, and survival information, as well as molecular data for 

patients with lung disease) for patients with metastatic NSCLC enrolled from Jan 1, 2014, to 

Feb 29, 2020. Patients were included if they met the following criteria: (1) histologically 

confirmed NSCLC; (2) metastatic disease at the time of immune checkpoint inhibitor 

initiation; (3) treatment with anti-PD-1 or anti-PDL1 inhibitors for at least two cycles, 

either as monotherapy or combined with chemotherapy; (4) EGFR and ALK wild-type; 

(5) available follow-up data for progression-free survival and overall survival analysis; 

and (6) available high quality CT images that were obtained within 3 months before the 

start of immune checkpoint inhibition. Through balancing the distribution of demographics, 

radiological factors, and histopathological factors, we divided the MD Anderson cohort into 

training, validation, and testing cohorts at a ratio of 6:1:3 for use in model development and 

validation.

The same inclusion and exclusion criteria were applied to a previously published 

cohort from Stanford University of patients with metastatic lung cancer treated with 

immunotherapy20 for use as an external validation cohort with overall survival as the 

primary endpoint. Progression-free survival data were not available for this cohort.

This study was granted ethical approval by the institutional review board of The University 

of Texas MD Anderson Cancer Center and Stanford University, and was performed in 

accordance with the ethical standards of the 1964 Declaration of Helsinki. Informed consent 

was waived due to the retrospective nature of the study.

Model construction

Our overall approach is summarised in figure 1A. Briefly, we performed patient and imaging 

curation, then trained, internally validated, and tested a CT-derived deep learning signature 

using an ensemble learning scheme to stratify a patient’s progression-free survival and 

overall survival after immune checkpoint inhibitor therapy. We then tested this model on 

the external Stanford cohort, and interpreted it through correlating to hand-crafted radiomic 

features as well as blood and genomic biomarkers. In parallel, we derived a benchmark 

clinical model by using informative clinicopathological and radiological variables to fit 

into a random survival forest model. After verifying that our newly proposed CT-based 

deep learning model complemented the benchmark clinical model, we integrated these two 

approaches into a composite model and further evaluated its clinical performance. These 

steps are described in more detail in the following sections.

For step 1, ensembled CT deep learning model for patient subtyping (hereafter referred to 

as Deep-CT), we aimed to develop a deep learning-powered prognostic framework applied 

to baseline CT images to automate the quantification of patients’ risk of progression or 

death on immune checkpoint inhibitors. Given the clinical observation that the metastatic 

patterns as manifested on CT can vary substantially between patients with stage IV lung 
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cancer, we focused on lung parenchymal and tumour lesions. To mitigate the uncertainty 

inevitable in one particular type of network model, we adopted an ensemble learning 

strategy to integrate fundamentally different but potentially complementary convolutional 

neural network architectures to increase the model’s generalisability. The ensemble 

framework consisted of four three-dimensional convolutional neural network models (figure 

1B), including a supervised learning network (subnetwork 1), two hybrid networks that 

merged supervised and unsupervised learning differently (subnetworks 2 and 3), and an 

unsupervised learning network (subnetwork 4). The key difference between subnetwork 

2 and subnetwork 3 was the way they integrated supervised and unsupervised modules: 

in subnetwork 2, a sequential scheme was used to optimise the unsupervised module 

before tuning the supervised one, whereas in subnetwork 3, both modules were optimised 

simultaneously. The individual models are described in detail in the appendix (pp 4–5, 30).

For the four subnetwork model training and validation in step 1, we adopted a state-of-

the-art deep learning training strategy to develop a model on the MD Anderson cohort, 

where our training set was used for hyper-parameter tuning and the validation set was 

assessed to select the model with optimal performance. To mitigate overfitting, we used data 

augmentation (including rotation, flipping, scale, and contrast adjustment), dropout, and L1 

regularisation for network parameters. We used the Adam algorithm for optimisation. The 

epoch was set as 300; batch size to 40; learning rate was set to 0·001; and learning rate 

decay and early stop were used. All subnetworks were developed using open source PyTorch 

version 1.4.0 and trained independently on NVIDIA DGX A100 station.

Step 1 also included patient subtyping by ensemble learning of predictions from the 

four subnetwork models. Using the individual risk stratification from the four subnetwork 

models, we built an integrated model using different ensemble strategies, including voting-

based, attention-based, clustering-based, and tree-based algorithms. The aim was to capture 

common and complimentary signals (strong similarities) present across different networks 

while reducing individual models’ bias and variance by aggregating across multiple model 

predictions. The optimal ensemble algorithm was locked, then tested on the discovery cohort 

for validation.

For comparison purposes, in step 2 we trained a benchmark model from existing 

conventional clinicopathological factors and radiological factors for predicting progression-

free survival and overall survival by implementing a two-step strategy on the training 

cohort. First, by fitting a univariate Cox proportional hazards model we evaluated the 

clinical value of individual features: (1) demographic features, including age, sex, race, 

BMI, and smoking status; (2) radiological features, including stage, metastasis patterns 

(liver, adrenal, bone, and brain), and number of metastatic organs; (3) pathological features, 

including histology and PD-L1 tumour proportion score; (4) treatment features, including 

line of treatment, therapy regimen, and previous local therapy; and (5) Eastern Cooperative 

Oncology Group performance score. To build a benchmark clinicopathological predictive 

model, four different machine learning models were trained, including LASSO, Elastic Net 

with Cox model, random survival forest, and gradient boosting, and the model with optimal 

performance on the discovery cohort was locked for validation on the testing cohort.
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In step 3, we assessed the added clinical value of Deep-CT in addition to the benchmark 

model, and integrated them to form a composite model. Given patient stratification by either 

Deep-CT or the benchmark model, we first evaluated the effect of their joint stratification on 

the prediction of specified clinical endpoints. In particular, we assessed the progression-free 

survival or overall survival differences when both models agreed on predicting as high-risk 

versus when only one model predicted as high-risk. Second, we built a composite model that 

integrated patient stratification by Deep-CT (high risk versus low risk) and risk score from 

the benchmark model in random survival forests.

Clinical value assessment

We evaluated the prognostic value of the developed models for predicting progression-free 

survival and overall survival. The ensemble Deep-CT model was trained on the training 

cohort and internally validated on the validation cohort from the MD Anderson set. To 

be consistent, the benchmark model and composite model were also trained and validated 

on the training and validation sets, respectively. To prevent information leakage, the Deep-

CT model was locked in order to be rigorously evaluated on the hold-out discovery 

cohort from the MD Anderson cohort as well as the external Stanford cohort. To assess 

whether Deep-CT was predictive for immune checkpoint inhibition rather than prognostic, 

we also tested it on a set of radiotherapy-treated patients with NSCLC (n=240). Then, 

we correlated Deep-CT stratification with clinicopathological and radiological risk factors. 

Furthermore, to evaluate any potential complementary effects among Deep-CT and existing 

clinicopathological variables, we modelled their relation to survival time in a multivariate 

Cox model and reported their effects (as measured by hazard ratio) in a forest plot analysis.

We further evaluated the prognostic significance of the proposed signatures (Deep-CT 

model and composite model) in clinically relevant subgroups, as separately stratified by (1) 

demographic information, including race (White vs non-White), sex, age (≥65 years vs <65 

years); (2) tissue-derived metrics, including histology (adenocarcinoma vs squamous cell 

carcinoma vs other types), PD-L1 tumour proportion score (high [≥50%] vs intermediate 

[1–49%] vs low [<1%]); (3) metastasis pattern and stage, including stage at immune 

checkpoint inhibitor start (IVA vs IVB), liver metastasis status, and bone metastasis status; 

(4) treatment regimen, including line of therapy (first line vs second line vs other lines) 

and therapeutic regimens (immune checkpoint inhibitor-monotherapy vs immune checkpoint 

inhibitor plus chemotherapy); (5) previous local treatment (with surgery or radiotherapy vs 
without surgery or radiotherapy); and (6) CT modality (with contrast vs without contrast).

Radiological characteristics associated with patient subtyping

To overcome the challenge of pinpointing the areas or appearances on original CT scans that 

contributed to the inferred machine-learning output, we correlated Deep-CT stratification 

with interpretable radiomics metrics, including the disease burden measurements from 

radiologists’ manual annotation as well as classic radiomic metrics21 extracted from primary 

tumour or lung region measuring intensity and texture (the full list of 54 features is shown 

in appendix pp 16–17). Then, we linked these metrics with patient risk predictions and 

stratifications by the deep learning models. To understand the difference between radiomics 

Saad et al. Page 9

Lancet Digit Health. Author manuscript; available in PMC 2023 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the Deep-CT model, we built a radiomics model and compared it with a deep-learning-

based model (appendix pp 5–6).

Biological characteristics associated with patient subtyping

We evaluated the gene mutation patterns associated with Deep-CT model risk stratifications 

using genomic data obtained as part of the MD Anderson database through routine 

clinical-panel-based sequencing from tissue or blood. Furthermore, the imaging model was 

correlated to lung immune prognostic index, based on the ratio of derived neutrophils to 

leukocytes minus neutrophils and lactate dehydrogenase concentration within 30 days before 

immune checkpoint inhibitor treatment.22

Statistical analysis

The primary endpoint was overall survival and the secondary endpoint was progression-free 

survival. Overall survival was defined as the time from immune checkpoint inhibitor start 

until death from any cause. Patients who were alive at the last follow-up were censored for 

the overall survival analysis. Progression-free survival was defined as the time from immune 

checkpoint inhibitor initiation until progression or death. Progression was identified on the 

basis of imaging reports of tumour growth or new disease sites and the assessment by the 

treating physician. Patients who were alive without disease progression were censored at 

their last image assessment. Clinical data collection was locked for outcome analysis on Sept 

10, 2020. Given the retrospective nature of this study, we chose not to perform a power 

calculation.

A Cox proportional hazard regression model was used to adjust for relevant 

clinicopathological variables in multivariable analysis. Kaplan-Meier analysis and log-rank 

tests were used to evaluate statistical significance of patient stratification by the proposed 

signatures. The cutoff value of a continuous risk score was optimised by the log-rank 

test based on the training and validation cohorts, which was locked for testing. Antolini’s 

concordance index (C-index) was used to measure the goodness of fit between models 

predicted by risk scores and progression-free survival or overall survival time. The net 

reclassification index was used to quantify the incremental value of the new model compared 

with the baseline model. The Wilcoxon signed-rank test and χ² test were used to test the 

differences for continuous and categorical variables, respectively. To adjust for multiple 

statistical testing, the Benjamini-Hochberg method was used to control the false discovery 

rate. All statistical tests were two-sided, with a p value less than 0·05 considered statistically 

significant. All statistical analyses were performed in R version 3.6.1.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.

Results

We identified 3428 patients with metastatic NSCLC in the MD Anderson GEMINI database, 

of whom 916 (27%) were EGFR/ALK wild-type, had received immune checkpoint inhibitor 
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treatment, and met the other inclusion criteria (appendix p 28). Detailed information on 

demographic and clinical characteristics are shown in the table, and the change in line-of-

therapy and immune checkpoint inhibitor regimen over time is shown in the appendix (p 

29). Patients were stratified into training (n=564), validation (n=78), and testing cohorts 

(n=274) for model discovery, validation, and independent evaluation, respectively, at a ratio 

of 6:1:3. We conducted a balanced split across demographic variables, with no statistically 

significant differences in training, validation, and testing cohorts (table), and imaging 

scanner parameters and protocols were similar across cohorts (appendix p 7). The overall 

mean age at immune checkpoint inhibitor start was 65·2 years (SD 9·9), 498 (54%) patients 

were male, and 418 (46%) were female. There were 152 (17%) patients who had never 

smoked, and 202 (22%) patients with high PD-L1 expression (tumour proportion score 

≥50%). An external cohort with the same inclusion criteria from Stanford (n=60) was used 

for external validation (appendix p 8).

We developed an ensemble-based deep learning model to predict patients’ risk of 

progression or death after immune checkpoint inhibition from their baseline lung CT images 

(figure 1). After image preprocessing (appendix p 27), we applied distinct convolutional 

neural network architectures to build four individual deep learning subnetworks (appendix p 

30), thereby mitigating the uncertainty inevitable to one particular type of network model. 

Each subnetwork significantly correlated to overall survival and progression-free survival 

(appendix pp 31–32), with similar performance across different models. The detailed 

ablation analysis to optimise subnetworks 1 and 2 is shown in the appendix (pp 9–10). 

Among several integration algorithms investigated to ensemble the individual subnetworks 

(four standalone deep learning models), the tree-based ensemble strategy achieved the 

optimal performance (appendix p 11), and was thus used to build an ensemble deep learning 

model (Deep-CT model, figure 1B). The ablation test showed that use of all four models 

was needed to achieve the optimal performance (appendix p 12). The optimised Deep-CT 

model clustered patients into two groups and showed a more stable C-index and a more 

consistently significant p value across training, validation, and testing sets than any of the 

individual deep learning models (appendix pp 13–14), suggesting superior robustness and 

reduced overfitting from the ensemble approach. Furthermore, the ensemble Deep-CT model 

achieved higher net reclassification index value than any individual model (appendix p 15), 

suggesting its superior added value.

The Deep-CT model stratified patients with significant differences in overall survival 

(figure 2A–C) and progression-free survival (figure 2D–F). Compared with the high-risk 

groups, in the low-risk groups median overall survival was 5·4–6·5 months longer and 

median progression-free survival was 15·5–17·3 months longer. When tested on the Stanford 

external validation dataset, the locked Deep-CT model stratified patients into high-risk and 

low-risk groups (figure 2G). The ensemble Deep-CT model again had superior performance 

compared with the individual deep learning models on overall stratification (appendix p 

33). Because the Stanford cohort was small, we ran additional simulations to compare 

the Deep-CT model performance between external validation (on the Stanford set) and 

internal testing (on the hold-out MD Anderson set). We observed that the simulated C-index 

distributions and widths from the randomly sampled MD Anderson set were similar to the 
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Stanford set testing (appendix p 34), adding confidence for the validation results on Stanford 

data to warrant its further validation on a larger set.

When testing the Deep-CT model on a stage III NSCLC radiotherapy set (n=240), there 

was no statistically significant difference for overall survival between the predicted high-risk 

versus low-risk groups in the overall population or in the stage IIIa or stage IIIb subgroups 

(appendix p 34). When mixing the radiotherapy cohort with the immune checkpoint 

inhibitor-treated MD Anderson cohort, we tested the interaction between therapeutic 

regimens (radiotherapy versus immune checkpoint inhibitor) and risk stratification from 

the deep learning model and observed a strong interaction effect (p=0·0008).

To understand the attention mechanism of the deep learning model, we plotted out the 

attention map (appendix p 35) and observed that the model weighted more on the tumour 

regions. To better understand the imaging characteristics underlying the predictive power 

of the CT models (including the four subnetwork models and their final ensemble model), 

we correlated their risk score stratifications with hand-crafted radiomics features, including 

those that measure disease burden, intensity, or texture heterogeneity from tumour or lung 

regions defined by a radiologist’s manual annotation (see feature list in appendix pp 16–

17). Some of these radiomics features were significantly associated with the deep learning 

predictions from the individual subnetworks and the ensemble model (appendix p 36). 13 

features positively correlated with all deep learning models, and an additional six features 

negatively correlated with all deep learning models (see detailed lists in appendix pp 18–20). 

Inspection of these features showed that they measured intratumoural and background lung 

texture heterogeneity (figure 3A). To illustrate these differences, we focused on two pairs of 

patients who had similar primary tumour volume and total disease burden but significantly 

different overall survival and progression-free survival outcomes and risk score predictions 

from the deep learning model (figure 3B). We observed that the textural heterogeneity 

from lung and tumour regions captured by Deep-CT separated these pairs, indicating its 

added value over disease burden alone for predicting a patient’s benefit from immune 

checkpoint inhibition. However, the radiomics model based solely on these hand-crafted 

features fluctuated substantially during model training, validation, and testing, and did not 

reach the robust performance level of Deep-CT, indicating there are additional imaging 

patterns learned by Deep-CT beyond the conventional radiomics domain.

To understand how the high-risk and low-risk groups from Deep-CT mapped onto 

known clinicopathological and radiographical factors, we assessed whether there were 

any correlations between the risk groups and these factors; we did not observe any 

correlations (appendix pp 21–23). When we compared the predictive power of the Deep-

CT signature versus clinicopathological features, the deep learning signature showed a 

significant association with overall survival in the discovery and testing cohorts, although 

stage, bone metastasis, Eastern Cooperative Oncology Group (ECOG) performance status, 

and number of metastatic organs also showed consistent associations (figure 4A). After 

multivariate adjustment, Deep-CT risk remained the most significant predictor of overall 

survival. Similar patterns were also observed in univariate and multivariate analysis for 

progression-free survival (figure 4B). Consistent with these findings, when we analysed 

subgroups stratified by clinical variables including histology, PD-L1 expression, stage, liver 
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or bone metastasis status, and age, we observed that the Deep-CT stratification demonstrated 

significant predictive value even within these subgroups (appendix pp 37–40). Notably, for 

patients with a PD-L1 tumour proportion score of 50% or more and Deep-CT low risk, 

immune checkpoint inhibitor monotherapy tended to be correlated with better prognosis than 

immune checkpoint inhibition plus chemotherapy (figure 2H). On the other hand, for a PD-

L1 tumour proportion score of 1–49% and Deep-CT low-risk patients, immune checkpoint 

inhibitor monotherapy appeared to work equally well as immune checkpoint inhibition plus 

chemotherapy (figure 2I). When stratifying patients by previous local treatment (with or 

without surgery or radiotherapy) as well as by input CT modality (with or without contrast, 

routine CT vs PET–CT), the Deep-CT model performed consistently well (appendix pp 

41–43).

To benchmark our Deep-CT model, we built an optimised model for predicting progression-

free survival and overall survival based on conventional clinicopathological and radiological 

features using a random survival forest, as this model architecture achieved the best 

performance (see benchmark models in appendix p 24). The discriminative ability of 

the benchmark model alone in predicting progression-free survival and overall survival 

was also assessed, with C-index ranging between 0·67 and 0·72 for overall survival and 

0·62 and 0·68 for progression-free survival in training, validation, and testing cohorts. 

Significant differences were also observed in the Kaplan-Meier plots for overall survival and 

progression-free survival (appendix p 44). Notably, the Deep-CT model that automatically 

abstracts radiographic characteristics has achieved an equivalent patient risk stratification 

compared with the benchmark models of multi-faceted clinical variables, including PD-L1 

and metastasis patterns from radiologist reports.

To assess the interaction between the Deep-CT and benchmark models, we directly 

integrated their stratifications into four subgroups as follows: harmonised prediction, where 

both models predicted patients as high risk or low risk, and discrepant prediction, where the 

models disagreed with each other (high risk in Deep-CT and low risk in benchmark, or low 

risk in Deep-CT and high risk in benchmark). As expected, the subgroup that was low risk 

in both models consistently correlated with the best outcomes, and the subgroup that was 

high risk in both models was associated with the worst outcomes. The discrepant groups 

were found to have an intermediate prognosis (figure 5A–F). These observations suggest 

that the benchmark model and the Deep-CT model capture orthogonal prognostic features 

and therefore that there might be potential synergies between our proposed deep learning 

and conventional benchmark models.

When correlating Deep-CT stratification with the serum-based lung immune prognostic 

index biomarker, we observed that the proportion of patients predicted to be high risk by 

Deep-CT gradually increased when the lung immune prognostic index category changed 

from good to intermediate to poor (appendix p 45). Through radiogenomic analsyis 

(appendix p 45), some gene mutation patterns were correlated to Deep-CT stratification. 

For instance, ERBB2 and CDH1 genes were frequently mutated in the high-risk group, and 

by contrast, ATM, BAP1, and NTRK3 were frequently mutated in the Deep-CT low-risk 

group.
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We built a composite model by refitting the Deep-CT and benchmark predictors using 

random survival forest. This composite model achieved the best prediction during discovery, 

validation, and testing, outperforming Deep-CT, the benchmark model, or conventional 

metrics including PD-L1 tumour proportion score, disease burden, and radiomics features 

alone, based on a subset of patients with complete information (figure 6). Moreover, the 

composite model was well calibarated (appendix pp 46–47). Patient stratifications using 

the composite signature were also significant (figure 5G–L). Notably, when compared with 

the benchmark model, the composite model significantly improved prediction accuracy, 

and reclassified 196 (56%) of 348 high-risk patients into low risk for progression-free 

survival. Furthermore, the composite model showed robust performance in subgroup 

analysis (appendix pp 48–51). When testing the composite model in the PD-L1 high group, 

we did not observe its predictive value to stratify response to immune checkpoint inhibitor 

monotherapy immune checkpoint inhibitor plus chemotherapy (appendix p 52).

Discussion

In this study, we developed a deep learning CT signature that successfully predicted survival 

in patients with NSCLC treated with immune checkpoint inhibitors using large real-world 

data from two cancer centres. The proposed imaging signature shows robust stratification 

in clinically meaningful subgroups as defined by PD-L1 level, histology, age, sex, and race. 

We observed a synergy between this deep learning signature and existing clinicopathological 

and radiological risk factors, and their integration into a joint model achieved the best 

prediction. Taken together, our proof-of-concept study shows that automated profiling of 

routine radiographic scans through deep learning can add orthogonal information to existing 

clinicopathological biomarkers, bringing the goal of precision immunotherapy in NSCLC 

closer.

Previous radiomic analyses to predict benefit of immune checkpoint inhibition consisted 

of smaller pilot studies that focused on establishing imaging surrogates for specific 

molecular biomarkers, including CD8+ T-cell infiltrate,19 EGFR mutation,17,23 or PD-

L1 expression.17,24 However, although these studies established proof-of-principle that 

radiomics can capture relevant biology, these efforts were limited by the fundamental fact 

that these biological features are themselves only limited predictors of immune checkpoint 

inhibitor response that capture only a small portion of the complex and heterogenous 

molecular features underlying responsiveness. Consequently, the imaging surrogates of these 

molecular markers are not likely to exceed the performance of the markers themselves, nor 

is imaging positioned to provide any complementary value to augment the prediction. To 

overcome this limitation, we aimed to harness the full power of imaging by leveraging an 

artificial intelligence framework to directly predict outcomes.

In contrast to conventional radiomics studies that built models based on hand-crafted 

features of tumour regions, we derived the deep learning signature of whole three-

dimensional lung regions on CT scans under the hypothesis that both tumour and 

background lung parenchyma contain phenotypical patterns contributing to patient outcome. 

Existing deep learning studies in the medical imaging field have typically been built on a 

single network structure,25 and as such are prone to uncertainty from stochastic processes 
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and model overfitting, which remains a general challenge for model deployment. To address 

this, we took advantage of fundamentally distinct and potentially complementary neural 

network architectures to comprehensively profile individual patients from their baseline CT 

scans. Combining these networks under an ensemble learning framework can mitigate the 

uncertainty in modelling and achieve enhanced prediction, as evidenced by our ensemble 

model’s robust performance during external validation on the Stanford dataset.

An additional strength of our study is the strict selection of patients with patients with 

stage IV NSCLC without EGFR or ALK alterations, in line with current treatment 

guidelines.26–28 Our cohort is, to the best of our knowledge, the first radiomics study 

on this clinically relevant population for predicting response to immune checkpoint 

inhibitors. Our large sample size provides sufficient statistical power for developing the 

model and accounting for potential confounders, without mixing heterogeneous cancer 

types as was done previously. Additionally, although most patients were from the MD 

Anderson cohort, 41% of CT scans from MD Anderson patients were performed at other 

hospitals with different scanners and imaging protocols, mimicking diverse data in a 

multi-institutional study, and adding confidence as to the generalisability of our machine 

learning models, which was further supported by the consistent performance in the Stanford 

cohort. Additionally, the availability of complete and high quality metadata (clinical, 

radiological, pathological, treatment, and follow-up information) enabled us to evaluate the 

proposed deep learning model in clinically meaningful subgroups. In contrast to the reduced 

performance of artificial intelligence models in historically under-served populations,29 we 

observed consistent performance of the proposed imaging model in subgroups as stratified 

by race or ethnicity, age, or sex.

Moreover, we observed that the newly obtained imaging signature exhibited similar or 

superior prediction power compared with known prognostic factors, including PD-L1 

expression, metastatic patterns, histology, ECOG performance status, age, and stage. To 

quantify the clinical oncologist’s predictive assessment, a clinical benchmark model was 

built based on these clinically important factors. The integration of the deep learning model 

and benchmark clinical model into a composite model resulted in significant improvement 

over individual known risk factors, suggesting that clinicopathological features and deep 

learning capture orthogonal predictive information that together provide the best predictive 

power. Notably, patients with high PD-L1 expression (tumour proportion score ≥50%) 

and low-risk imaging score might benefit the most from immune checkpoint inhibitor 

monotherapy, which is associated with fewer toxicities and a trend towards improved long-

term outcomes. Similarly, patients with a PD-L1 tumour proportion score of 1–49% and 

a low-risk Deep-CT score derived equal benefit from treatment with immune checkpoint 

inhibitor plus chemotherapy and immune checkpoint inhibitor monotherapy, suggesting 

that monotherapy might be also an option for this patient population. If further validated, 

this provides guidance for frontline treatment selection by serving as a predictive marker 

to select between immune checkpoint inhibition as monotherapy and in combination 

with chemotherapy, a choice not currently informed by markers in routine clinical use. 

Conversely, this approach might also more reliably identify those patients at high risk 

of progressing on immune checkpoint inhibitor therapy, which might enable providers 

to escalate therapy or perform earlier response assessment, and might also help support 
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important research efforts by reproducibly identifying an immune checkpoint inhibitor 

resistant population to target in clinical trials aimed at augmenting antitumour immune 

responses.

To augment the interpretability of our deep-learning model, we developed an approach 

of mapping the model features back to interpretable radiographic patterns, including 

disease burden, primary tumour texture, and background lung parenchymal heterogeneity. 

We found the deep learning risk scores had high statistical correlations with several 

of these conventional radiomics features, including ones that measure tumour and lung 

parenchymal heterogeneity. This is in line with previous radiomics studies, which reported 

that intratumoural heterogeneity is associated with response to immune checkpoint 

inhibitors.16,30 However, the deep learning approach improves on classical radiomics by 

automatically learning radiographic patterns without requiring manual tumour segmentation 

or preprocessing, thereby minimising errors in reproducibility. It also demonstrated 

substantially improved performance compared with the classical radiomics models, 

suggesting that deep learning uses informative patterns beyond these known entities to 

predict immunotherapy outcomes.

Our study has several important limitations. First, as a retrospective, real-world study of 

metastatic disease, it might be biased by data heterogeneity in image protocol, therapy 

regimen, previous local treatment, line-of-treatment, outcome, and response metrics. The 

robust validation of our putative model on pilot Stanford data was intriguing, yet 

it warrants further validation on large prospective cohorts with homogeneous patient 

populations, treatments, and image modalities. Second, although the deep learning model 

shows prognostic value for patients treated with immune checkpoint inhibitors but not 

with radiotherapy, the specificity of the predictive value of this model to immune 

checkpoint inhibitors should be further validated by comparing with cohorts of patients 

with chemotherapy-treated metastatic NSCLC. Third, tailoring the treatment decision 

between immune checkpoint inhibitor monotherapy and immune checkpoint inhibitor plus 

chemotherapy is the most important unmet need in clinical thoracic oncology. Unfortunately, 

our cohort was not powered to address this important question. Herein, we are reporting 

the current model as a proof-of-concept that a deep learning model can extract important, 

potentially predictive information from thoracic CT scans to guide immune checkpoint 

inhibitor selection. Deep-CT models built and validated on patients with metastatic lung 

cancer treated with immune checkpoint inhibitor monotherapy versus immune checkpoint 

inhibitor plus chemotherapy are needed to facilitate decision making in the first-line setting. 

Fourth, we chose to focus on lung and chest regions to mitigate the heterogeneity among 

patients with stage IV NSCLC with different metastatic patterns in other organs. However, 

it is known that sites of metastasis play key roles in determining patient outcomes, and 

we did observe that the number of involved metastatic organs correlates to patient survival. 

Future efforts are needed to profile all measurable lesions to provide a holistic view of each 

patient’s disease, as well as assess its relationship with intrathoracic disease. Finally, more 

work is needed to improve the interpretability of our deep learning model. As hypothesis 

generation, we did observe correlations between the deep learning model and hand-crafted 

radiomics features as well as gene mutations. Future studies to understand the mechanisms 

underlying the differences between these models and their performances will help establish 
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causal radio-immunogenomic relationships to uncover the biology driving deep learning 

prediction.

In conclusion, we have developed and validated an ensemble deep-learning-based CT 

signature to predict benefit of immune checkpoint inhibition for patients with metastatic, 

EGFR/ALK wild-type NSCLC. The Deep-CT signature has been validated comprehensively 

on multicentre data and demonstrated additional prognostic value beyond known risk 

factors. Moreover, the Deep-CT signature showed the potential to help identify patients 

who might benefit from immune checkpoint inhibition alone rather than combined with 

chemotherapy. These results warrant further verification in future large prospective trials to 

refine such findings and test clinical utility of our proposed imaging-based biomarker to 

guide individualised therapeutic selection.
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Research in context

Evidence before this study

We searched PubMed for peer-reviewed, English-language journal and conference 

articles, published up to Nov 1, 2022, using the terms “lung cancer” AND (“EGFR wild” 

OR “driver negative”) AND (“immunotherapy” OR “immune checkpoint inhibitor”) 

AND (“prognosis” OR “survival”) AND (“deep learning” OR “convolutional neural 

network”). We also examined the reference lists of relevant publications. Our search did 

not identify any previous studies on the use of deep learning analysis of radiological 

images for predicting immnunotherapy related prognosis in patients with EGFR/ALK 
wild-type non-small-cell lung cancer (NSCLC).

Added value of this study

To our knowledge, this retrospective study is the first to develop an imaging-based model 

to predict benefit from immune checkpoint inhibitor therapy in EGFR/ALK wild-type 

NSCLC, in large multi-institution cohorts (n=976). An ensemble deep learning signature 

was developed and externally validated for the accurate prediction of progression-

free survival and overall survival from baseline CT images, independent of known 

clinicopathological variables including PD-L1. When integrating the deep learning model 

with a clinical benchmark model that included PD-L1 and metastasis distribution, the 

composite model achieved the highest predictive performance. Additionally, the deep 

learning model complemented PD-L1 in identifying patients who were most likely to 

benefit from immune checkpoint inhibitor monotherapy versus combination immune 

checkpoint inhibitor plus chemotherapy.

Implications of all the available evidence

A deep learning-based radiomic model might complement molecular and clinical 

biomarkers to improve prediction of benefit from immune checkpoint inhibitors. Our 

proof-of-concept study warrants further optimisation and validation in larger cohorts 

prospectively. If validated, such efforts might contribute to more personalised use of 

immune checkpoint inhibitors in patients with NSCLC and identify patients with resistant 

disease who might benefit from novel or enhanced treatment approaches.
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Figure 1: Overall study design
(A) Schematic plot for developing the CT deep learning model and evaluating it in a 

clinical context. (B) The details of different model development and integration. Parts of 

figure created with BioRender (biorender.com). Conv + BN + ReLu=Convolution plus 

batch normalisation plus rectified linear unit. ECOG=Eastern Cooperative Oncology group. 

NSCLC=non-small-cell lung cancer.
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Figure 2: Prognostic performance of the ensemble deep learning CT model (Deep-CT)
Kaplan-Meier survival curves for the MD Anderson cohort for (A) overall survival for 

training, (B) overall survival for validation, (C) overall survival for testing, (D) progression-

free survival for training, (E) progression-free survival for validation, and (F) progression-

free survival for testing. (G) Kaplan-Meier survival curve for external validation on the 

Stanford set. Joint stratification by Deep-CT and PD-L1 expression levels in patients treated 

with (H) immune checkpoint inhibitor monotherapy and (I) combination immune checkpoint 

inhibitor plus chemotherapy. HR=hazard ratio.
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Figure 3: Radiological interpretation of the CT deep learning models
(A) Venn diagrams representing the number of features that showed significant correlation 

with the four individual subnetwork models and their ensemble model, with positive 

correlation and negative correlation. The red colour denotes the features agreed to be 

significant by more than one model. (B) Visualisation of different prognostic information 

captured by ensemble Deep-CT on selected four patients. The charts show radiomic feature 

score distribution. The first and second columns of scans show the first pair of patients 

(high-risk vs low-risk predicted by Deep-CT), and the last two columns of scans show 

another set of patients (high-risk vs low-risk). Each row shows how a feature score 

corresponds to radiological characteristic as seen in CT images. Each pair of patients were 

reported with roughly similar size of primary tumour volume and overall tumour burden, but 

with significant difference in overall survival and progression-free survival. The Deep-CT 

model captured non-conventional prognostic information including textural complexity and 
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heterogeneity in primary tumour and background lung parenchyma beyond disease burden. 

ICI=immune checkpoint inhibitor.
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Figure 4: Evaluation of Deep-CT in clinical context
Forest plots summarise the univariate and multivariate analyses for the CT-deep learning 

model. (A) Overall survival. (B) Progression-free survival. Blue data points are from 

univariate analysis. Red datapoints are from multivariate analysis. Multivariate analysis of 

progression-free survival used smaller cohort sizes in the discovery cohort (n=383) and 

the testing cohort (n=161) due to missing values. The exact p values are shown in the 

appendix (pp 25–26). ECOG PS=Eastern Cooperative Oncology Group Performance Status. 

ICI=immune checkpoint inhibitor. *p<0·001. †For overall survival, PD-L1 expression used 

smaller cohort sizes in the discovery cohort (n=463) and testing cohort (n=186) due to 

missing values. ‡p<0·05. §p<0·01. ¶For overall survival, ECOG PS used smaller cohort sizes 

in the discovery cohort (n=512) and testing cohort (n=221) due to missing values.
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Figure 5: Added prognostic value of the Deep-CT model on the clinical benchmark model
The Kaplan-Meier survival curves jointly stratified by the Deep-CT model and the 

benchmark model for (A) overall survival training, (B) overall survival validation, (C) 

overall survival testing, (D) progression-free survival training, (E) progression-free survival 

validation, and (F) progression-free survival testing. The composite model integrating the 

Deep-CT model and the benchmark model for (G) overall survival training, (H) overall 

survival validation, (I) overall survival testing, (J) progression-free survival training, (K) 

progression-free survival validation, and (L) progression-free survival testing.
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Figure 6: C-index comparison of six different prediction models for overall survival and 
progression-free survival
C-index comparison of six different prediction models (PD-L1, overall disease volume, 

radiomics model, Deep-CT, benchmark model, and the composite model that integrates 

Deep-CT and benchmark models) for (A) overall survival and (B) progression-free survival. 

The comparison was made on a smaller cohort size that contains the overlapped population 

with PD-L1 expression.
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