Table 3.
Model performance of different convolutional layers for Feature Extractor.
Conv-Layers | Accuracy (%) |
Sensitivity (%) |
Specificity (%) |
NPV (%) |
PPV (%) |
AUC |
---|---|---|---|---|---|---|
3 | 71.79 | 73.16 | 69.79 | 73.75 | 72.60 | 0.7093 |
4 | 73.93 | 78.46 | 69.07 | 74.91 | 73.31 | 0.7339 |
5 | 76.43 | 71.41 | 80.36 | 74.16 | 81.74 | 0.7422 |
6 | 75.00 | 72.92 | 77.22 | 73.80 | 77.73 | 0.7417 |
7 | 74.29 | 77.77 | 70.72 | 76.97 | 74.38 | 0.7413 |
Values in bold black font represent the best performance in each column.