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Abstract
Background: Blood transfusion is a life-saving intervention 
for millions of recipients worldwide. Over the last 15 years, 
the advent of high-throughput, affordable omics technolo-
gies – including genomics, proteomics, lipidomics, and me-
tabolomics – has allowed transfusion medicine to revisit the 
biology of blood donors, stored blood products, and transfu-
sion recipients. Summary: Omics approaches have shed 
light on the genetic and non-genetic factors (environmental 
or other exposures) impacting the quality of stored blood 
products and efficacy of transfusion events, based on the 
current Food and Drug Administration guidelines (e.g., he-
molysis and post-transfusion recovery for stored red blood 
cells). As a treasure trove of data accumulates, the imple-
mentation of machine learning approaches promises to rev-
olutionize the field of transfusion medicine, not only by ad-
vancing basic science. Indeed, computational strategies 
have already been used to perform high-content screenings 
of red blood cell morphology in microfluidic devices, gener-
ate in silico models of erythrocyte membrane to predict de-
formability and bending rigidity, or design systems biology 
maps of the red blood cell metabolome to drive the develop-
ment of novel storage additives. Key Message: In the near 
future, high-throughput testing of donor genomes via preci-
sion transfusion medicine arrays and metabolomics of all do-
nated products will be able to inform the development and 

implementation of machine learning strategies that match, 
from vein to vein, donors, optimal processing strategies (ad-
ditives, shelf life), and recipients, realizing the promise of 
personalized transfusion medicine.

© 2023 The Author(s).
Published by S. Karger AG, Basel

Overview

In this review, we will summarize the most recent ad-
vances in the field of omics technologies and machine 
learning in transfusion. Owing to the author’s own lim-
ited expertise, this short review will not focus on the im-
plementation of artificial intelligence in blood inventory 
management [1], recipient profiling [2], the prediction of 
recipient comorbidities, and outcomes in the emergency 
and acute care setting [3, 4]. Rather, we will focus on mo-
lecular aspects of blood storage, with an emphasis on 
packed red blood cell (RBC) products and the crossroads 
of omics characterization and deep learning strategies for 
the identification of markers of storage quality and trans-
fusion outcomes [5]. The focus on RBCs is justified both 
by the disproportionately higher numbers of omics pa-
pers in the field of RBC storage biology compared to oth-
er products but also and foremost because of the dispro-
portionately higher number of packed RBC units trans-
fused daily in the USA (∼29,000 units, as opposed to the 
nearly 5,000 units of platelets and 6,500 units of plasma). 
While recent comprehensive reviews on omics and RBC 
storage are available in the literature [6, 7], the rapid evo-
lution of the field has generated a novel, solid body of 
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knowledge that complements and expands on the litera-
ture reviewed in those recent reports. As such, the main 
goal of this short review is to bridge that gap.

RBCs: More Than a Circulating Bag of Hemoglobin

RBCs are by far the most abundant cell in the human 
body: 25 out of 30 × 1012 human cells are RBCs [8, 9]. The 
mature erythrocyte contains ∼250–270 million mole-
cules of hemoglobin (Hb)/cell, which facilitate the trans-
port of up to 1 billion molecules of oxygen/cell [10]. RBC 
function, specifically Hb’s capacity to bind and off-load 
oxygen, is tightly regulated by metabolic mechanisms. 
These mechanisms involve direct allosteric modulators 
such as 2,3-diphosphoglycerate (DPG) and adenosine tri-
phosphate (ATP) [11, 12]. Using a combination of omics 
technologies and single cell measurements of oxygen ki-
netics via microfluidic devices and biophysics approach-
es, we recently identified a whole new series of correlates 
to the Hb capacity to bind and off-load oxygen, including 
the indirect modulators adenosine, sphingosine-1-phos-
phate (S1P), recently validated in mechanistic studies on 
high-altitude hypoxia [13–18] and RBC storage [19].

While Hb facilitates oxygen delivery, Hb autoxidation 
promotes oxidant stress in the RBC, with Hb iron (66% 
of bodily iron is in RBCs) fueling radical-generating Fen-
ton and Haber-Weiss reactions. Specifically, RBC Hb is 
an oxygen-dependent buffer for glutathione – the main 
small molecule antioxidant in the cell [20] – through beta 
chain cysteine 93, which regulates recycling of key anti-
oxidant enzymes like peroxiredoxin 2 [21]. Since no new 
proteins can be synthesized by mature RBCs, owing to the 
lack of nuclei and organelles, during their ∼120 day life-
span, RBCs have to cope with oxidant stress through 
mechanisms independent of gene regulation or protein 
expression [22]. Therefore, RBCs represent an excellent 
cell model to investigate metabolic responses to oxidant 
damage [10], which is relevant not just for storage biol-
ogy but also for related iatrogenic interventions (e.g., 
RBC responses to hypoxia and oxidant stress upon trans-
fusion in unhealthy, heterologous recipients).

Despite the lack of nuclei and organelles and the over-
whelming abundance of a single class of proteins (Hb rep-
resents 98% of the cytosolic proteome), RBCs are not as 
simple as previously thought. Recent studies [23–25], in-
cluding some from our group [26], have elucidated an 
unanticipated complexity of the RBC protein machinery. 
Despite Hb making up ∼90% of the total RBC proteome, 
more than 3,000 proteins are identified in RBCs [23, 26], 
including 77 transporters for 267 small molecules [27]. By 
combining tracing experiments with 13C- and 2H-labeled 
substrates and functional proteomics assays, we – among 
other groups – are showing one by one (e.g., carboxylic 

acid metabolism [28–31], fatty acid desaturases [32], ni-
tric oxide synthase [33]), that these enzymes are not inert 
remnants of maturation processes but rather they are ac-
tive in mature RBCs and catalyze reactions that were once 
thought to be exclusive to specific organs. Thus, we pro-
vocatively introduced the concept of RBCs as an organ 
with functions beyond O2 transport [10]. All the consid-
erations above are relevant examples of how omics ap-
proaches can be used for basic science that unravels biol-
ogy relevant to transfusion medicine, in that all the path-
ways mentioned above are critical regulators of stored 
RBC metabolism, as we will summarize below.

RBC Omics in Health and Disease Paves the Way for 
Mechanistic Understanding of the Storage Lesion

Altered RBC antioxidant capacity triggers intra- [34] 
or extra-vascular hemolysis [35, 36], resulting in excess 
circulating heme and iron [37], a phenomenon that un-
derlies the etiology of many diseases in which oxidant 
stress plays a central role [37] and co-morbidities in trans-
fusion recipients, such as acute lung injury, kidney dys-
function [38–40], microbiome dysbiosis [41], or septic 
complications in patients infected by siderophilic bacte-
ria [42]. As such, despite intrinsic limitations of animal 
models [43], comparative investigations of RBC metabo-
lism in humans and animals – where alternative strategies 
to cope with such stress may have evolved to regulate he-
molytic propensity – can thus further our understanding 
of the role of (transfused) RBCs in system physiology and 
its pathological alterations – other than having critical di-
rect implications for veterinary transfusion medicine 
purposes [44–47].

The identification of strategies to mitigate oxidant 
stress on RBCs holds immediate and critical biomedical 
implications. Indeed, RBC storage in the blood bank is a 
logistic necessity to make ∼110 million units/year avail-
able for blood transfusion, the most common in hospital 
procedure worldwide after vaccination. However, as stor-
age progresses, RBCs undergo a series of biochemical and 
morphological modifications that are mostly triggered by 
oxidant stress [6, 7]. An overview of how omics technolo-
gies helped elucidate the targets of oxidant damage elic-
ited by oxidant stress is provided below.

Omics in Transfusion Medicine

In the last 6 years, we and others have developed high-
throughput proteomics and metabolomics methods – as 
rapid as 1 min per sample – to ensure feasibility of clinical 
omics studies [48–51], which allowed rapid responses to 
rapid threats, such as the case of the COVID-19 pandem-
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ics and the impact of SARS-CoV-2 infection on RBC biol-
ogy [52–59]. In parallel, a burgeoning literature has 
emerged focusing on omics applications to transfusion 
medicine [6, 7]. Early omics studies in transfusion medi-
cine have investigated the impact of RBC storage dura-
tion in all currently licensed storage additive solutions 
(AS), including SAGM, AS-1, 3, 5, PAGGSM, and novel 
alkaline additives, such as AS7, ESOL5, and PAGGGSM 
[29, 60–65]. These studies revealed a significant impact of 
storage additives on the kinetics of the storage lesion, with 
alkaline additives better preserving energy metabolism by 
means of enhancement of the activity of pH-sensitive 
rate-limiting enzymes of glycolysis (phosphofructoki-
nase) and the Rapoport-Luebering shunt (bisphospho-
glycerate mutase) [66]. Based on these studies, we and 
others identified metabolic markers of the storage lesion 
[67, 68], and correlated storage-induced metabolic chang-
es to the gold standard markers of storage quality as per 
the Food and Drug Administration guidelines, i.e., stor-
age hemolysis and post-transfusion recovery (PTR) [34, 
69–74].

Through murine models of blood storage developed 
by Dr. Zimring [75], we identified the ferrireductase 
STEAP3 as a genetic and mechanistic factor contributing 
to the poor post-transfusion recovery of stored RBCs 
from mouse strains like FVB but not C57BL/6 [76]. Spe-
cifically, lipidomics studies have shown that iron metabo-
lism in stored RBCs is tied to an elevation in oxidant 
stress, ultimately triggering lipid peroxidation and initi-
ating a process that closely resembles that of iron-induced 
non-apoptotic cell death, or ferroptosis [77]. Of note, 
STEAP3, also known as tumor suppressor p53-activated 
pathway-6 (TSAP6), is a target of p53 transcriptional ac-
tivity [78]. Both p53 and STEAP3 regulate erythropoiesis 
and limit maturing erythroid cell iron content [79–81], 
thus constraining substrate availability for one key reac-
tant in Fenton chemistry. Even more interestingly, the 
rate of detoxification of oxidized lipids (and ferroptosis) 
is regulated by glutathione peroxidase 4 (GPX4) – a glu-
tathione-dependent enzyme that is expressed in mature 
RBCs and correlates with hemolytic propensity [82, 83].

One of the main targets of oxidant stress in stored 
RBCs is the most abundant membrane protein – anion 
exchanger 1 (AE1) – with 1 million copies/cell [24]. AE1, 
also known as band 3, regulates the chloride/bicarbonate 
exchange (chloride shift), critical to CO2 and pH homeo-
stasis [84] and thus pH-dependent activity of metabolic 
enzymes. AE1 has pleiotropic functions mediated by 
structural interactions [85–87]. The N-terminal AE1 res-
idues 1–23 serve as a docking site for deoxygenated Hb 
under hypoxia and glycolytic enzymes at high oxygen sat-
uration [85–87]. Under pro-oxidant (high SO2) condi-
tions, AE1 binding inhibits glycolytic enzymes and pro-
motes fluxes via the pentose phosphate pathway (PPP), 

which generates NADPH, a reducing cofactor necessary 
for recycling of oxidized glutathione and NADPH-de-
pendent antioxidant enzymes [22]. Under hypoxia, de-
oxyHb binding displaces glycolytic enzymes from AE1, 
favoring glycolysis and the generation of allosteric modu-
lators ATP and DPG, and thus oxygen off-loading [19, 
88]. This O2-dependent metabolic “switch” (hereon, 
“AE1-Hb switch”) favors anti-oxidant metabolism when 
oxidant stress is high (e.g., during storage in the blood 
bank), energy metabolism, and O2 release when oxidant 
stress is low (e.g., in peripheral tissues or in response to 
high altitude). Through omics technologies, it has been 
shown that oxidant stress [60, 89] and protease activity 
[90] promote the fragmentation of the AE-1 N-terminus, 
impairing the capacity to cope with storage-induced oxi-
dant stress – to the extent that RBCs from mice lacking 
the AE1 N-terminus store poorly, while treatment with a 
membrane-permeable AE11-57 peptide partially rescues 
the phenotype [74]. Indeed, we proved that oxidation and 
fragmentation of the cytosolic N-terminus of AE1 impair 
the capacity to bind glyceraldehyde 3-phosphate dehy-
drogenase and inhibit glycolysis [74], thereby limiting the 
capacity to activate the PPP [74, 91], a critical pathway for 
the generation of the cofactor NADPH, which is essential 
in many reducing reactions (for example, recycling of ox-
idized glutathione) [22]. This process is in part counter-
acted by the activation of protein L-isoaspartyl o-methyl-
transferase [92, 93] and by the compensatory activity of 
the rate-limiting enzyme of the PPP, glucose 6-phosphate 
dehydrogenase (G6PD). We then showed that G6PD 
polymorphisms are common in the donor population – 
as they are across all humans (∼6% of mankind, 500 mil-
lion people around the world [94]) – and impact storage 
quality and transfusion efficacy [73, 95–97].

Blood Donors as a Window on Population Health: 
Toward Personalized (Transfusion) Medicine

While most of the studies described above focused on 
relatively small-scale studies in humans and animal mod-
els, the advent of high-throughput technologies affords 
much broader investigations to characterize the blood 
donor population with sample sets in the tens to hun-
dreds of thousands [98]. For example, the US National 
Heart, Lung, and Blood Institute-sponsored Recipient 
Epidemiology and Donor Evaluation Study (REDS) has 
recently leveraged genomics approaches to characterize 
879,000 polymorphisms from >13,000 donor volun-
teers[99]. Of note, through genomics studies, almost all 
of the enzymes mentioned in the previous paragraph 
were found to be polymorphic in the REDS RBC Omics 
blood donor population, and functional single nucleotide 
polymorphisms were associated with the hemolytic pro-
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pensity of stored blood [82] and Hb increments in trans-
fusion recipients [100].

A subset of the donors from the screening phase of the 
REDS study (n = 643) were identified as extreme hemolyz-
ers (either spontaneous hemolysis, or upon oxidative and 
osmotic insults) and asked to donate a second unit of blood 
for multi-omics testing at storage day 10, 23, and 42 – a da-
taset that was in part disseminated through pilot metabolo-
mics studies on a subset of these samples (∼600 out of a 
total of ∼2,000 – with the whole cohort of index and re-
called donor just recently tested by our group). As proof of 
principle for cross-omics analyses from large transfusion 
medicine cohorts, we performed a pilot metabolite quanti-
tative trait loci – mQTL analysis on just 250 of the 13K do-
nors. We identified 2,831 high-confidence SNP-metabolite 
linkages (p < 5.0 × 10−8) [101]. We thus generated novel 
murine models for one of the most significant polymor-
phisms – G6PD African (V68M/N126D) and Mediterra-
nean (S188F) variants – for future functional studies rele-
vant to transfusion medicine and hematology [101].

Through genomics and metabolomics data in the 
REDS RBC Omics cohort, it has been noted that biologi-
cal factors such as donor sex, sex hormones, age, body 
mass index contribute to storage quality [32, 73, 95–97, 
102], as gleaned by hemolytic propensity [103], omics 
phenotypes [34], and Hb increments in recipients of units 
donated by the same donor volunteers [100, 104]. We 
then showed that female donors have younger circulating 
RBCs at the time of donation, which are more resistant to 
oxidant challenge in storage and have more resilient en-
ergy and antioxidant metabolism during storage [105]. 
Later, we introduced the concept of the blood donor ex-
posome [51], showing that dietary (e.g., alcohol, caffeine 
consumption [106, 107]) or other exposures (e.g., smok-
ing [108], exercise [109, 110], diet [111], prior infection 
by flaviviruses [112] or coronaviruses [54, 113], drugs 
that are not grounds for donor deferral [51]) all contrib-
ute to modulating stored RBC energy and redox metabo-
lism, ultimately impacting Hb increments upon transfu-
sion [100, 104]. We concluded that the chronological age 
of blood – in terms of days elapsed since the time of do-
nation – is qualitatively distinct from the metabolic age of 
the unit – the “molecular storage lesion” [114]. We then 
tested alternative storage strategies (cryopreservation 
[115], rejuvenation [116], hypoxic storage [16, 30, 117, 
118]), as well as leveraged a novel combination of high-
throughput omics and 96-well plate-based scaled storage 
systems to develop novel additives [19, 119].

While currently transfusion of RBC relies on the altru-
istic gift of an estimated 6.8 million volunteers in the USA 
alone every year, omics studies have been preliminary 
used to inform or validate the development of novel bio-
inspired synthetic blood products [120] or the ex vivo ex-
pansion and differentiation of hematopoietic stem cells 

[23, 121], as well as the testing of RBCs after hypotonic 
dialysis-based drug encapsulation process of enzymes for 
therapeutics intervention in the oncological setting [122].

From Blood Donors to Recipients

On top of the focus on the blood donors and products, 
omics technologies in transfusion medicine have been 
used to investigate transfusion recipients, either healthy 
autologous volunteers [123] or non-healthy heterologous 
recipients – with a special focus on trauma patients (mas-
sively transfused [124]) and sickle cell patients, either re-
ceiving standard red cell exchanges [125] or rejuvenated 
red cell exchanges [126]. With a combination of biotinyl-
ation studies and single cell oxygenation strategies, we 
determined that the storage lesion impacts RBC oxygen 
kinetics (transport and off-loading [116, 127]), which is 
only partially reversible upon transfusion of RBCs in 
healthy autologous recipients [128]. Indeed, at the net of 
the survival bias impacting the readout, omics data gener-
ated on stored biotinylated RBCs – in time course studies 
where the transfused RBCs were flow-sorted out of the 
bloodstream of the recipient – showed that while some of 
the metabolic storage lesion (e.g., low ATP and DPG lev-
els) can be partially restored over time in circulation (at 
kinetics that may be too slow for example in the hypoxic 
critically ill patient), while other pathways – such as the 
PPP – are not restored at all [128].

Through (in vivo) metabolic tracing [129, 130] in trac-
table animal models (e.g., rodents, including mice and 
rats; porcine or non-human primates) [130–142], we are 
now using omics technologies to investigate the role of 
genetic background across multiple species as a driver of 
the storage lesion (the Zoomics project) [44–47], as well 
as the impact of transfusion in pre-clinical models [134, 
138, 140, 142, 143]. In parallel, we are exploring recipient 
outcomes in massively (e.g., trauma patients) [131, 140, 
144] or chronically transfused patients (e.g., sickle cell pa-
tients) [17, 125, 145–150].

In parallel, we are exploring the role of genetic abnor-
malities that can result in the need for transfusion, such 
as those linked to hemoglobinopathies (e.g., sickle cell 
trait, sickle cell disease; beta-thalassemia) [147, 149, 151–
153] or inborn errors of metabolism beyond G6PD defi-
ciency (e.g., pyruvate kinase deficiency, propionic acide-
mia) [154, 155], especially in under-represented popula-
tions in science (e.g., the Amish Mennonites and other 
populations in rural America [154, 155]; individuals with 
Down syndrome [156, 157], transgender individuals dur-
ing gender reassignment therapy with sex hormones 
[158], or hypogonadic individuals who develop erythro-
cytosis and donate blood as a strategy to counteract such 
effects of hormonal therapies [159]).
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Machine Learning: From Biomarkers to Systems 
Biology to In Silico Models of RBC Membranes

We mentioned above the use of machine learning ap-
proaches (including random forest and lasso regression) to 
identify markers of RBC storage quality and transfusion 
performance in healthy autologous volunteers and trauma 
patients [67, 68, 117, 124]. More recently, machine learning 
approaches have been coupled to high-content screening 
that leverages microfluidic devices and microscopy in the 
presence or absence of flow to determine the impact of a 
given treatment (storage or even SARS-CoV-2 infection) 
on RBC morphology in unperturbed or perturbed systems 
[5, 113]. Indeed, RBC morphology is altered as a function 
of damage to energy and redox metabolism, which ulti-
mately results in vesiculation of oxidized components [64], 
loss of the discocytic phenotype and acquisition of progres-
sively irreversibly altered morphologies (spheroechinocyte, 
spherocyte [160]), increased surface-to-volume ratios, in-
creased mechanical fragility, and ultimately, sequestration 
in the spleen that triggers extravascular hemolysis [36, 161], 
and erythrophagocytosis [162]. Of note, a combination of 
RBC membrane protein and lipid composition as a func-
tion of storage can be fed into novel in silico models of the 
erythrocyte membrane, which can be used to predict mem-
brane rigidity and deformability in fresh and stored RBCs, 
and predict actual direct biophysical measurements of RBC 
mechanics [163, 164]. Feeding of quantitative and func-
tional metabolomics (e.g., tracing experiments) and pro-
teomics data to computational models of RBC metabolic 
pathways has fueled recent progress in the field of systems 
biology of the RBC [27, 28, 165, 166], which can be used to 
drive the development of novel storage solutions [167] or 
simply investigate RBC aging in the bloodstream in vivo 
[168].

Application of machine learning and artificial intelli-
gence approaches in healthcare will face key challenges, 
as reviewed extensively elsewhere [169]. One limitation 
of most existing studies in this space to date has been that 
benchmarking of machine learning algorithms has most-
ly been performed on retrospective data from large, al-
ready available databases. Performance of these models is 
likely to suffer when tested against real-world data from 
prospective studies as opposed to historically labeled data 
used for algorithm training. Another challenge that this 
field will encounter is based on the appreciation that ma-
chine learning algorithms will use input signals to achieve 
the best possible (prediction) performance in the dataset 
used; algorithms may thus end up exploiting signals from 
unknown confounders that may not be reliable, impair-
ing the algorithm’s ability to generalize to new datasets 
[169]. Depending on training sets, algorithms may de-
velop implicit bias, which would limit their fitness for 
generalization and the accuracy of clinical predictions. 

The development of robust regulation and a rigorous 
quality control strategy will be a challenge facing this new, 
yet promising field.

Despite early success in the above-mentioned applica-
tions, the machine learning area that holds the strongest 
promise is that of personalized transfusion medicine ap-
proaches. The opportunity is there to match donors and 
recipients based on a treasure trove of data that can now 
be generated, in a cost-effective fashion, with ultra-high-
throughput omics approaches. It is possible to imagine a 
not-so-distant future when artificial intelligence-based 
approaches could quickly identify optimal storage addi-
tives for blood based on donor biology and omics signa-
tures at donation, shorten or extend the shelf-life of the 
product accordingly, or make indications for a specific 
recipient (matching the right product for acutely bleed-
ing, massively transfused trauma patient vs. chronically 
transfused patient with hemoglobinopathies). These fea-
tures could be made possible by the implementation in 
central lab testing practices of blood donor genomics 
characterization with precision transfusion medicine ar-
rays [99] (including blood group antigen, rare polymor-
phisms associated with stored blood quality), along with 
metabolic characterization of non-genetic factors, e.g., 
metabolites of dietary or other exposures, from habits like 
smoking all the way to prescription drugs that are not 
grounds for blood donor deferral – in combination with 
donor and recipient demographics and clinical records.
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