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Review article

The gut covers a large surface area of the body and faces various 
external factors. The brain works in concert with commensal 
microbes in the gut to efficiently process the enormous 
amount of chemical signals that enter the gut every day. This 
review discusses: (1) evidence that gut bacteria can alter brain 
development and behavior, (2) mechanisms by which gut 
bacteria communicate with the brain, (3) preclinical and clinical 
studies demonstrating the impact of gut microbiota on autism 
spectrum disorder, and (4) variables worth consideration by 
future research on gut bacteria.
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Key message

· The gut microbiota can alter a host’s brain development and 
behavior.

· Gut bacteria communicate with the brain via the microbiota-
gut-brain axis.

· Fecal microbial transplantation is a promising treatment stra
tegy for autism spectrum disorder.

Introduction

Except for the brain, which is equipped with a solid barrier, 
microbes cover all surfaces of the human body. Approximately 
95% of human microbes live within the gastrointestinal tract. 
This is unsurprising as the surface area of the intestinal lumen 
corresponds to the size of 2 tennis courts (400 m2).1) Ac
cording to recently revised estimates, there are nearly 38 trillion 
bacterial cells in the human body, mainly within the colon.2) As 
they have lived in the human body for millions of years, there 
is reasonable doubt that they inevitably evolved with humans. 
Considerable research has revealed the impact of gut bacteria on 
their hosts. Gut bacteria detect various compounds that enter 
the body and notify the host in several ways. Furthermore, their 
presence affects the development of various organs, metabolic 
processes, and the immune system.

Meaningful studies recently examined the microbiota-gut-
brain axis hypothesis to explain the effect of the gut microbiota 
on the brain. This review will focus on: (1) interesting evidence 
that gut bacteria can alter host development and behavior even 
in the brain, a mighty fortress; (2) mechanisms by which gut 
bacteria communicate with the brain; (3) preclinical and clinical 
studies that demonstrate the impact of the gut microbiota 
on autism spectrum disorder (ASD); and (4) variables worth 
consideration in future research on gut bacteria.

Evidence that the human brain is influenced 
by gut bacteria

The blood-brain barrier (BBB) is impenetrable to all sub
stances except for the limited nutrients the brain requires. 
Nevertheless, evidence suggests that the brain is influenced by 
the gut microbiota.

1. Effect on neural development

Germ-free (GF) mice exhibit increased adult hippocampal 
neurogenesis compared with control mice, an effect that occurs 
only in the dorsal hippocampus.3) The dorsal hippocampus 
plays a critical role in spatial learning and memory. There is 
also a crucial early life period in which microbiota colonization 
affects adult hippocampal neurogenesis.

Second, genes related to myelination and myelin plasticity are 
upregulated in the prefrontal cortex of GF mice.4) Recoloniza
tion with conventional microbiota could reverse these changes 
in the myelin as well as activity-related gene expression. The 
prefrontal cortex is affected by neuropsychiatric disorders, such 
as attention deficit hyperactivity disorder, ASD, depression, and 
schizophrenia. Therefore, the link between the gut bacteria and 
these diseases is worth investigating.

Third, the expression of synaptic plasticity-related genes is 
altered in GF mice.5) Synaptophysin is a synaptic vesicle gly
coprotein expressed by most neurons and neuroendocrine cells 
and an indirect marker of synaptic plasticity in the brain. The 
gut bacteria regulate synaptophysin expression and postsynaptic 
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density-95, which is involved in excitatory synapse maturation.
Fourth, the gut microbiota is involved in the development 

of microglia, the primary immune cells in the brain. Microglia 
have many other functions in brain development including 
synaptic patterning, cell genesis, myelinogenesis, cell position
ing, cell survival, axon dynamics, and cellular phagocytosis. 
Disturbances in the gut microbial community influence micro
glial development. GF or antibiotic-treated mice exhibit altera
tions in the microglial ratio and an immature phenotype.6) 
However, defective microglia are restored by replenishing the 
gut microbiota and short-chain fatty acids (SCFAs), bacterial 
fermentation products containing acetic propionic acid, and 
butyric acid. Microglial density in cortical specimens was nor
malized after addition of the SCFA mixture to the drinking 
water of GF mice for 4 weeks. Moreover, by analyzing trans
criptional results in GF mouse microglia, Matcovitch-Natan et 
al.7) identified the dysregulation of dozens of genes involved in 
microglial development, despite maturity.

Knowing that disturbances in the gut microbiota can lead to 
abnormal neurogenesis, it may be possible to manipulate the gut 
microbiota in brain diseases accompanied by abnormal myelin 
formation, synapses, or microglia.

2. Effect of gut microbiota on behavior or psychopathology

Gut microbial dysbiosis, which can occur at different stages 
of life, may contribute to the pathogenesis of various neuro
psychiatric disorders and abnormal behaviors. The mechanisms 
by which gut bacteria communicate with the brain are as fol
lows (Graphical abstract):

1) Secretion of neurotransmitters and neuromodulators
Functioning neurotransmitters and neuromodulators can be 

isolated from gut bacteria (Table 1).8-24)

Monoamine neurotransmitters, such as dopamine, norepine
phrine, and serotonin, can be derived from aromatic amino 
acids, such as phenylalanine, tyrosine, and tryptophan, by the 

Graphical abstract. Microbiota-gut-brain axis. The mechanisms by which gut bacteria 
communicate with the brain include the secretion of neurotransmitters, neuromodulators, 
and proinflammatory cytokines; engaging the enteric nervous system and vagus nerve; and 
producing neuroactive metabolites. SCFA, short-chain fatty acid.

Table 1. Neuroactive amines and amino acids released by the gut bacteria

Neurochemicals Genus References

Glutamate Corynebacterium glutamycum, Lactobacillus plantarum, Lactobacillus paracasei, Lactococcus lactis   8-10

GABA Escherichia coli, Pseudomonas, Lactococcus, Lactobacillus, Bifidobacterium 11-15

Dopamine Escherichia, Bacillus, Lactococcus, Lactobacillus, Streptococcus 16, 17

Norepinephrine Escherichia, Bacillus 17

Serotonin Streptococcus, Escherichia, Enterococcus, Lactococcus, Lactobacillus, Corynebacterium 16-18

Histamine Lactobacillus, Lactococcus, Streptococcus, Enterococcus 19-21

Acetylcholine Lactobacillus, Bacillus 22-24
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action of aromatic amino acid decarboxylase within the gut 
bacteria. Gut bacterial species and enzymes involved in the 
metabolism of phenylalanine, tyrosine, and tryptophan were 
previously summarized by Liu et al.25) The altered expression of 
several neurotransmitters was observed in the central amygdala 
and dentate granule layer among the hippocampal subregions 
in GF mice.26) GF mice also exhibit anxiolytic behavior and 
increased motor activity, and turnover rates of noradrenaline, 
dopamine, and 5-hydroxytryptamine are significantly higher 
in the striatum.5) When GF mice are exposed to stress, anxious 
behaviors are more pronounced and the dopamine turnover 
rate in the upper brain involved in regulating stress and anxiety 
was significantly altered.27) Some researchers have suggested 
that gut bacteria affect dopaminergic neurotransmission by mo
dulating the mesocorticolimbic circuit.28)

Furthermore, the gut microbiota plays a critical role in central 
neurotrophin expression. Antibiotic-induced gut bacterial dys
biosis increases exploratory behavior and hippocampal brain-
derived neurotrophic factor expression in mice.29) This was 
reversed by normalizing the gut microbiota.

Gut microbes affect the brain by directly secreting neurotrans
mitters and neuromodulators that act on the body or regulate 
their expression.

2) Proinflammatory cytokines
Alterations in cytokine levels that accompany microbial 

infections may affect the developing brain. Inflammatory cyto
kines can promote the conversion of progenitor cells into dopa
minergic neurons and decrease dendritic development.30-32) 

Intrauterine exposure to specific gastrointestinal microbial pa
thogens can induce multiple psychopathologies, such as mem
ory impairment or schizophrenia later in life.33-35) The impact 
of maternal infection on fetal neurodevelopment is expected 
to vary with gestational age. For example, a maternal infection 
in the first trimester of pregnancy increases the risk of schizo
phrenia in the offspring.34)

3) Enteric nervous system and vagus nerve
Although the vagus nerve can perform both efferent and af

ferent roles, approximately 80% of nerve fibers are sensory 
organs that are mainly responsible for transmitting information 
about the state of the body organs to the brain. Postprandial 
satiety and sedation are produced partially by the active vagal 
afferent nerves in response to food intake. Likewise, the gut 
microbiota can signal the enteric nervous system and send signals 
to the brain via the vagus nerve.36) Treatment with Lactobacillus 
rhamnosus reduced stress-induced corticosterone levels and 
anxiety- and depression-related behaviors in rats.37) Notably, no 
neurochemical or behavioral effects were noted in mice after 
vagal nerve dissection, confirming the vagus nerve as the prin
cipal communication pathway between the gut bacteria and 
brain.

4) Neuroactive metabolites
The gut microbiota can modulate host behavior via their 

metabolites. The parietal cells of the colon produce most of 
the serotonin in the periphery (60% in rats, 90% in humans). 
Serotonin production and secretion are affected by microbial 
metabolites including indole, SCFAs, secondary bile acids, 
α-tocopherol, p-aminobenzoate, and tyramine.23) Furthermore, 
gut bacterial taxa and their metabolites differ between ASD 
and control mice.38) When ASD mice are fed specific amino 
acid metabolites produced by bacterial fermentation (taurine, 
5-aminovaleric acid), behavioral abnormalities (repetitive beha
vior and impaired social communication) significantly improve.

Moreover, gut microbes ferment polysaccharides to produce 
SCFAs (usually sodium butyrate). Butyrate-producing bacterial 
taxa are less abundant in children with ASD than in typically 
developing children.39) Butyrate also strengthens the BBB by 
creating dense connections between neurons.40) We previously 
questioned the association between the gut microbiota and 
neuropsychiatric disorders accompanying BBB permeability.41) 
Evidence also suggests that gut bacterial metabolites play a role 
in hunger. Hunger can be modulated by glucagon-like peptide-1 
secreted by colonic enteroendocrine L cells in response to the 
bacterial metabolite indole, which stimulates colonic vagal 
afferent activity in rats.42)

3. Impact of gut microbiota on ASD: preclinical and clinical 

studies

Many researchers have attempted to modify the gut micro
biota in patients to treat various brain disorders. ASD is the 
most actively studied developmental disorder in this field. How
ever, no results have clearly indicated a specific bacterial strain 
responsible for ASD, as shown in the meta-analyses below. 
Xu et al.43) analyzed nine studies. They identified a lower 
abundance in the ASD groups in the Akkermansia, Bacteroides, 
Bifidobacterium, Escherichia coli, and Enterococcus genera and 
a greater abundance in the Faecilobacterium, Ruminococcus, 
and Lactobacillus genera. The analysis of Iglesias-Vázquez et 
al.44) of 18 studies assessing 493 children with ASD and 404 
controls reported a lower abundance in children with ASD in 
the Bifidobacterium and Coprococcus genera and a greater 
abundance in the genera Faecalibacterium, Bacteroides, Parabac­
teroides, Clostridium, and Phascolarctobacterium. Andreo-
Martínez et al.45) analyzed 18 studies that assessed 642 patients 
and 356 controls. The Streptococcus and Bifidobacterium 
genera were less abundant in children with ASD. The included 
studies used different assessment methods, which could have 
been confounding factors. A recently published Korean study 
also reported inconsistent results: lower Bacteroides levels and 
higher Bifidobacterium levels in ASD patients versus controls.46)

Nevertheless, several clinical trials have attempted to alter 
the gut microbiota to treat patients with ASD (Table 2).47-62) Of 
them, microbial transfer therapy for children with ASD showed 
promising results with a steady improvement in core autism 
symptoms.47) Moreover, the behavioral effects of the fecal 
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Table 2. Behavioral outcomes of clinical trials that engineered the gut microbiota in patients with autism spectrum disorder

Intervention group Study Population (age, yr) Intervention Study design Behavioral outcome

Probiotics alone 
  or in combination

Sandler et al. 
(2000)47)

11 Regressive-onset 
ASD with antece
dent antimicrobial 
use (3.5–7)

Vancomycin + (Lactobacillus 
acidophilus, Lactobacillus 
bulgaricus, Bifidobacterium 
bifidum)

Open-label trial Improvements in ASD severity (↓ CARS), 
short-term

Parracho et al. 
(2010)48)

62 ASD (4–16) Lactobacillus plantarum RDBPC Decreased disruptive, anti-social beha
vior, anxiety, and communication dis
turbances

Kałużna-
Czaplińska 
(2012)49)

22 ASD with GI symp
toms (4–10)

L. acidophilus Open-label trial Improvement in the ability to concentrate 
and carry out orders

Arnold et al. 
(2019)50)

13 ASD with GI symp
toms and anxiety 
(2–11)

4 Lactobacillus strains + 3 
Bifidobacterium strains + 1 
Streptococcus strain

RDBPC, crossover No significant behavioral change (PRAS-
ASD, ABC, SRS)

Liu et al. 
(2019)51)

80 ASD (7–15) L. plantarum RDBPC Improvement in some autism symptoms, 
primarily those associated with disrup
tive and rule-breaking behaviors and 
hyperactivity/impulsivity (more pro
minent in younger children)

Niu et al. 
(2019)52)

114 ASD (ABA vs. 
ABA + probiotics)

40 HC (3–8)

3 Bifidobacterium strains + 3 
Lactobacillus strains

Open-label, 2-arm, 
randomized trial

Improvements in ASD severity (↓ ATEC)

Santocchi et al. 
(2020)53)

85 ASD (mean, 4.2) 4 Lactobacillus strains + 3 
Bifidobacterium strains + 1 
Streptococcus strain

RDBPC Improvements in ASD severity (↓ ADOS-
CS) in the ASD without GI symptoms, 
although not significant in the ASD vs. 
the placebo

Mensi et al. 
(2021)54)

131 ASD (mean, 86.1
±41.1 mo)

L. Plantarum (105 ASD), others 
(26 ASD)

Open-label trial Improvements in ASD severity (↓ CGI); 
Greater improvements in the Lact Plan
tarum group, no difference depending 
on the presence of GI symptom

Shaaban et al. 
(2018)55)

30 ASD (5-9)
30 HC children (5–9)

L. acidophilus + L. rhamnosus 
+ B. longum and dried carrot

Open-label trial Improvements in ASD severity (↓ ATEC)

Sanctuary et al. 
(2019)56)

8 ASD with GI symp
toms (2–11)

B. infantis + bovine colostrum 
product

Randomized double-
blind trial, cross
over

Improved some atypical behaviors (irrit
ability, stereotypies, hyperactivity, le
thargy)

Wang et al. 
(2020)57)

26 ASD (3–9) B. infantis and lactis, L. rham
nosus and paracasei + fruc
tooligosaccharide

RDBPC Improvements in ASD severity (↓ ATEC)

Prebiotics only Grimaldi et al. 
(2018)58)

41 ASD (4–11) Bimuno galactooligosaccha
rides

RDBPC Improved only in anti-social behavior

Inoue et al. 
(2019)59)

13 ASD (4–9) Partially hydrolyzed guar gum 
with β-endogalactomannase 
produced by a strain of 
Aspergillus niger

Open-label trial Decreased behavioral irritability

Fecal microbial 
transplant

Kang et al. 
(2017)60)

18 ASD with GI symp
toms (7–16)

Bowel prep. with vancomycin + 
SHGM orally or rectally

Open-label trial Improvements in ASD severity (↓ CARS, 
PGI-III, ABC, SRS)

Kang et al. 
(2019)61)

18 ASD with GI symp
toms (7–17)

2-Year follow-up after SHGM 
orally or rectally

Open-label trial Only 17% were rated as severe ASD, 39% 
were in the mild to moderate, and 44% 
were below the ASD diagnostic cutoff 
scores. (83% of participants were se
vere ASD at the beginning of the trial.60))

Li et al. 
(2021)62)

40 ASD with GI symp
toms (mean, 8.03±
3.73)

16 HC (mean, 7.13±
3.20)

Bowel prep. with polyethylene 
glycol + cFM orally or rectally

Open-label trial Improved mood, behavior, emotion, lan
guage, and core ASD symptoms (↓ 
CARS, ABC, SRS)

Parent’s decreased anxiety levels

ABA, applied behavioral analysis; ABC, Aberrant Behavior Checklist; ADOS-CS, Autism Diagnostic Observation Schedule-Calibrated Severity; ASD, 
autism spectrum disorder; ATEC, Autism Treatment Evaluation Checklist; CARS, Childhood Autism Rating Scale; cFM, fecal microbiota-filled capsules; 
CGI, clinical global impression; GI, gastrointestinal; HC, healthy controls; PGI-III, Parent Global Impressions-III; PRAS-ASD, Parent-Rated Anxiety 
Scale for ASD; Prep, preparation; RDBP, randomized double-blind placebo-controlled; SHGM, standardized human gut microbiota; SRS, Social 
Responsiveness Scale.
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microbiotal transplant persisted even at the 2-year follow-up.48) 
However, behavioral outcomes have been inconsistent among 
studies using probiotics or prebiotics.

Points to consider when designing a gut 
microbiota study

More clinical evidence is warranted to standardize treatments 
for manipulating the gut microbiota in the future. When plann
ing a clinical study, i factors that can influence the gut microbiota 
must be recognized.

Clinical research on the gut microbiota is especially diffi
cult because of the many possible variables that can change the 
outcome. However, it is difficult to control them simultaneously. 
As we analyzed earlier, the inconsistent results of many clinical 
studies on gut microbiota may be due to poor control of these 
confounding factors.63) Many clinical studies have failed to 
incorporate these variables into their study design; moreover, 
whether they were unaware or deliberately ignored is unclear. 
Fig. 1 shows several known factors that can alter the gut micro
biota, including diet, medicine, age, delivery mode, stress, and 
host factors.64-71) For a successful clinical study, it is necessary to 
fully recognize and control these variables as much as possible.

Conclusions

The brain works in concert with commensal gut microbes 
to efficiently process the enormous amount of chemical signals 
that enter the gut daily. Elucidating the relationship between the 
gut microbiota and the brain has become essential to further our 
understanding of the brain’s development and behavior.
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