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ABSTRACT
Group testing study designs have been used since the 1940s to
reduce screening costs for uncommon diseases; for rare diseases, all
cases are identifiable with substantially fewer tests than the pop-
ulation size. Substantial research has identified efficient designs
under this paradigm. However, little work has focused on the impor-
tant problem of disease screening among clustered data, such as
geographic heterogeneity in HIV prevalence. We evaluated designs
where we first estimate disease prevalence and then apply effi-
cient group testing algorithms using these estimates. Specifically,
we evaluate prevalence using individual testing on a fixed-size sub-
set of each cluster and use these prevalence estimates to choose
group sizes that minimize the corresponding estimated average
number of tests per subject. We compare designswherewe estimate
cluster-specific prevalences as well as a common prevalence across
clusters, use different group testing algorithms, construct groups
from individuals within and in different clusters, and consider mis-
classification. For diseases with low prevalence, our results suggest
that accounting for clustering is unnecessary. However, for diseases
with higher prevalence and sizeable between-cluster heterogene-
ity, accounting for clustering in study design and implementation
improves efficiency. We consider the practical aspects of our design
recommendations with two examples with strong clustering effects:
(1) Identification of HIV carriers in the US population and (2) Labora-
tory screening of anti-cancer compounds using cell lines.
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1. Introduction

Group testing has been used since the 1940s to reduce the cost of screening a popula-
tion for disease, among othermedical, industrial, and agricultural applications. One simple
design [1] pools and tests individuals’ samples in groups; individual samples are then only
tested if their pool is positive overall. For rare diseases, this procedure allows all cases in
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the population to be identified, using far fewer tests than the population size. Substan-
tial research has introduced more sophisticated (and efficient) designs and improved the
efficiency of established designs, e.g. through optimization of group sizes, under both fre-
quentist and Bayesian paradigms [2–6]. A large body of research has addressed the impact
of misclassification on group testing [7–10].

Although a number of researchers have examined the impact of data clustering when
using group testing to estimate prevalence [11–14], little research has focused on the
important question of group testing design for screening individuals who are observed
in clusters. The motivating examples for our design methodology come from two diverse
areas of biological science. The first one is the identification of HIV carriers in the United
States, where there is substantial geographic heterogeneity in prevalence across states,
across counties, or within cities. The second is testing of novel anti-cancer compounds
on the NCI-60 cell lines, where there is heterogeneity in the effectiveness of the com-
pound between tumor types. In this setting, the compounds may be difficult to produce
or otherwise expensive and pooling cells from lines of the same tumor type may conserve
resources.

Screening for SARS-CoV-2 infection is another area where clusters may plausibly
arise, and where group testing may be used to increase screening efficiency. Reverse-
transcription polymerase chain reaction (RT–PCR) tests are sensitive and specific for
detection of SARS-CoV-2 infection, and it is established that RT–PCR testing can be used
on pooled samples, potentially with group sizes as large as 100 individuals [15]. Pooled
RT–PCR testing with the Dorfman algorithm has been implemented successfully [16], and
more complex designs have been proposed for low-prevalence settings [15]. COVID-19
infections have a potential for clustering on several levels. In addition to broad geographic
heterogeneity in community infection rates, clustering may occur on amuch smaller scale.
For example, if all students at an elementary school are tested weekly, the classes and grade
levels form potential clusters due to the potential for transmission: a large proportion of
one class may be infected due to close contact within that group, while another class may
be entirely free from infection.

Lendle, Hudgens, and Qaqish [17] showed that for hierarchical and matrix group test-
ing procedures, arranging positively correlated data in the same pool results in increased
efficiency. Their paper assumed that the mean disease prevalence as well as the between-
cluster heterogeneity is known and does not factor their estimation into design considera-
tions. Our focus is on the practical problem of designing a screening procedure when little
is known about the distribution of cluster prevalences. While we estimate cluster preva-
lences, these estimates are used only to choose the group sizes for subsequent group testing;
our focus is on identification of cases, not prevalence estimation overall.

In this paper, we focus on efficient designs, where efficiency is determined by the
expected number of tests per subject, using group testing procedures for screening when
participants are clustered. We consider a set of efficient practical designs where the group
size is determined either overall or for each cluster, requiring either overall or cluster-
specific prevalence estimation. In either case, we assume that a small number of tests in
each cluster are used to estimate prevalence and corresponding group size based on that
prevalence. In Section 2, we formally introduce the data structure and briefly review the
group testing algorithms under consideration. Section 3 addresses optimization of the
number of cluster members individually tested to estimate the cluster-specific prevalences,
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by cluster size and distribution of the true cluster-specific prevalences. In Section 4, we
compare group testing algorithms for clustered data using simulation studies, as a func-
tion of overall disease prevalence, variability of prevalence across clusters, cluster size, and
number of clusters. Section 5 additionally incorporates misclassification affecting test sen-
sitivity (dilution). Section 6 considers the practical aspects of our design recommendations
with two examples with strong clustering effects: (1) Identification of HIV carriers in the
US population and (2) Laboratory screening of anti-cancer compounds using cell lines. In
Section 7, we discuss the implications of our results for practical applications.

2. Methods

2.1. Notation and assumptions

Suppose that our data consist of n clusters, with disease prevalences Pi, i = 1, . . . , n,
where the Pi are i.i.d. Beta random variables with parameters α and β and mean
p = α/α + β . Each cluster contains mi individuals with a single binary trait Xij, i =
1, . . . , n, j = 1, . . . ,mi, where the Xij are Bernoulli random variables, conditionally inde-
pendent given Pi. This is the standard Beta-Binomial model used by Lendle et al.[17].

We consider a series of different two-step procedure designs where we first estimate
Pi, i = 1, . . . , n, by individually testing a subset of each cluster, and then choose an effi-
cient group testing design given these estimates. For the estimation step of this procedure,
we assume that li (li < mi∀i = 1, . . . , n) individuals are drawn from each cluster and indi-
vidual testing is done in order to estimate Pi. The randomvariableXi, denoting the number
of cases in this subsample, is assumed to also follow a Binomial distribution given Pi. We
use four methods to estimate Pi:

p̂i =
Xi + 1
li + 2

(1)

p̃i = Xi + α

li + α + β
(2)

̂̃pi = Xi + α̂

li + α̂ + β̂
(3)

p̂i = p̂ =
1 + ∑n

j=1 Xj

2 + ∑n
j=1 lj

∀i = 1, . . . , n (4)

Under the Beta-Binomial distribution, p̂i is the posterior mean under a Uniform(0, 1)
(Beta(1, 1)) prior for Pi, p̃i is the posterior mean under a Beta prior with known parame-
ters α and β , and ̂̃pi is the posterior mean under a Beta prior where α and β are replaced
by their maximum-likelihood estimates α̂ and β̂ , respectively. The estimator p̂ is the
maximum-likelihood estimator of Pi under the assumption of a constant prevalence across
participants (Pi = P). A cluster-specific group size is chosen based onPi estimated in Step 1
and using optimality results presented inMalinovsky and Albert [3] and references within.

In the second step of the two-step procedure, we apply the estimated group sizes from
Step 1 to identify cases in the remainingmi − li individuals from each of the n clusters. We
examine the expected number of tests under several group testing algorithms, presented
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in Section 2.2. Specifically, we focus on three members of the class of nested group testing
algorithms [5], where once a group tests positive, the next subgroup tested is a proper subset
of that group.

2.2. Group testing algorithms

The Dorfman procedure (Procedure D) was introduced by Robert Dorfman [1] for the
administration of syphilis blood testing of Army draftees duringWorldWar II. It is the sim-
plest and most easily implementable group testing algorithm. A single test is first applied
to pooled samples from a group of size k. If this test is negative, all k group members are
classified negative; otherwise, each group member is tested individually to identify cases
within these k. Given disease prevalence p (q = 1 − p) and a perfect test (sensitivity and
specificity of 100%), the expected number of tests per individualED(T)may be calculated:

ED(T|k, p) =
{
1 − qk + 1

k
1

k ≥ 2
k = 1, (5)

with the optimal group size k∗
D ≡ k∗

D(p) [18]; k∗
D = 1 for p ≥ 1 − ( 1

3
) 1
3 .

Procedure D´ improves upon Procedure D with a simple adaptation: If a group of size k
is positive overall and the first k − 1 individual tests are negative, the final groupmember is
not tested and is classified as positive. As with Procedure D, we may calculate the expected
number of tests per individual:

ED′(T|k, p) = 1 − qk + 1
k

− 1
k
pqk−1. (6)

A derived closed-form expression for the optimal group size k∗
D′ is unavailable, but

k∗
D′ ≤ k∗

D for p < 1 − ( 1
3
) 1
3 , and a conjectured closed-form expression has been verified

numerically [3].
An algorithm introduced by Sterrett [19] (Procedure S) improves further uponD´ [3]; if

a group is positive overall, itsmembers are tested sequentially one-by-one until the first case
is found. The remaining group members are then pooled and re-tested; if this subgroup
tests negative, all its members are classified as negative, and if it is positive, the procedure
is repeated. These steps are repeated until all groupmembers are classified. Althoughmore
logistically challenging in practice, Procedure S provides an improvement in efficiency over
D and D´:

ES(T|k, p) = 1
k

[
2k − (k − 2)q − 1 − qk+1

p

]
. (7)

An expression for the optimal group size under this design, k∗
S , is presented byMalinovsky

and Albert [3]. Procedure S has been empirically shown to dominate D´, although this has
not been proven in general [20].



2232 A. F. BEST ET AL.

The generalized group testing problem (GGTP) arises when designing a group testing
procedure forw individuals, with corresponding probabilities p = p1, . . . , pw of being pos-
itive (qi = 1 − pi). Clustered data are a subset of this general scenario, in which the set ofw
individuals is partitioned intom subsets defined by the clusters and all individuals within
a given subset have a common probability of being positive. We may use GGTP results to
calculate the expected number of tests in our setting; Equations S1-S3 in the online sup-
plement give the expected number of tests per individual under D, D´, and S, respectively,
for any subset of size k ≥ 1.

2.3. Group testingwith dilution

Test misclassification is an important practical concern for group testing, particularly
dilution effects in which increasing the group size reduces the assay sensitivity. Hwang
[8] introduced a function to model this dilution effect (Eq. S4). Although the litera-
ture contains research pertaining to other forms of misclassification in a GGTP setting
[21, 22], Hwang’s dilution function does not have a straightforward adaptation for the
GGTP setting; we assume that groups are comprised of individuals with a common pi.
Hwang also introduced an expected-cost function for the Dorfman procedure in a set-
ting in which the total number of individuals is divisible by the group size (no-residual
setting). This cost function may be optimized for k in place of the expected number of
tests, based on the unit test cost c (Equations S5, S6), to serve as an alternative objective
function to minimize when selecting the group size.As, in the presence of dilution, group
sizes obtained by optimizing E(T) without consideration of test accuracy measures are
anti-conservative, we introduce two additional quantities: The ratio of the expected num-
ber of correct classifications to the total expected number of tests (

E(TC)
E(TT)

) and the ratio
of the expected number of missed cases to the total expected number of cases (

E(M)
E(D)

)

(Equations (S7)–(S10)).

3. Choice of l

In the absence of test misclassification and for a given number of resolved individuals used
to estimate cluster prevalence li, cluster size mi, and Beta distribution parameters α and
β , we can obtain the expected number of tests per individual, E(T), through successive
use of the Law of Total Expectation. In general, selecting such an li is a balancing act; a
larger li allows for more precise estimation of Pi within a cluster, at the cost of increasing
the number of individuals resolved prior to group testing. Additionally, our estimates p̂i, p̃i,
and̂̃pi are bounded; their minimum values are 1

li+2 ,
α

li+α+β
, and α̂

li+α̂+β̂
, respectively, all of

which may be much larger than pi.
We denote the observed number of cases among the li resolved individuals by xi and

the true case prevalence in the cluster by pi, realizations of the random variables Xi and
Pi respectively. For simplicity, in this section, we assume that the mi − li is divisible by
the estimated optimal group size k̂∗

i ≡ k̂∗
i (xi). Without loss of generality, we may calculate

the expected number of tests per individual for a single cluster of size mi. Additionally,
the below expressions are in terms of p̂i although p̃i or ̂̃pi may be substituted. Using the
properties of conditional expectation, we calculate the expected number of tests under
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Procedure D, D´, or S:

E(T) =
1∫

0

li∑
xi=0

E(T|k̂∗
i (xi), pi) B︸ ︷︷ ︸A

fX|P(xi|pi)︸ ︷︷ ︸ fP(pi) dpi. (8)

In evaluating expression B from Equation (8), we must take care: This term is the expec-
tation under the true Pi = pi; Procedure D, D´, or S; and respectively using groups of size
k̂∗
D(xi), k̂∗

D′(xi), or k̂∗
S(xi) estimated using xi, p̂i, and qi = 1 − pi as described in Section 2.2.

For example, under Procedure D,

BD =

⎧⎪⎨⎪⎩
1
mi

[
li + (mi − li)

(
1 − qk̂

∗
D(xi)
i + 1

k̂∗
D(xi)

)]
, p̂i < 1 − ( 1

3
) 1
3

1, p̂i ≥ 1 − ( 1
3
) 1
3

. (9)

Notably, the design elements of Equation (9) are defined by p̂i as estimated from xi, while
the expectation is taken relative to the true prevalence pi.

GivenPi = pi,Xi is a Binomial(li, pi) randomvariable, and sowe can evaluate expression
A from Equation (8), the expected number of tests under procedure D, given Pi = pi.

A = B ×
(
li
xi

)
pxii q

li−xi
i . (10)

Finally, Pi is a Beta(α,β) random variable and we may find the overall expected number
of tests given α,β , the cluster sizemi, and the number of resolved individuals li:

E[T] =
1∫

0

A × pα−1
i qβ−1

i
B(α,β)

dpi. (11)

For our results, we used numerical techniques to obtain values of E(T); namely, we took
0 = p0 < p1 < . . . < p200 = 1 to be a sequence of evenly spaced points and calculated:

E(T) ≈
200∑
j=1

A × P(pj−1 < Pi < pj). (12)

For a given α,β , and mi, a local optimum of li can be obtained by calculating E(T) for a
series of candidate values of li, say {2, 3, . . . , 30}, and taking l∗i to be the value of li which
minimizes E(T). Empirically, l∗i was a unique minimum of E(T) in all simulations.

These calculations may also be performed under Procedures D´ and S; in Equation

(8) above, k̂∗
i may be replaced by the estimated group size and

(
1 − qk̂

∗
i
i + 1

k̂∗
i

)
by the

appropriate expected number of tests, under D´ or S, where qi = 1 − pi.
We calculated l∗i for Procedures D, D´, and S and estimators p̂i, p̃i, and ̂̃pi, as described

above for α ∈ {0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2} and 200 evenly spaced values of
each of p ∈ (0, 0.3) and mi ∈ (10, 1000). Figure 1 provides contour plots of l∗i for α ∈
{0.5, 1, 2} (columns) and for Procedures D, D´, and S (rows) using p̂i, with highlighted
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Figure 1. Filled contour plot of optimum number of individuals to test per cluster, l∗, by mean preva-
lence p = α

α+β
∈ [0.001, 0.3] and cluster size m ∈ [2, 32], for α ∈ {0.5, 1, 2} (columns) and Procedures

D, D´, and S (rows), using p̂i . Contour lines are drawn at l∗ = {5, 10, 15, 20, 25}.

contours l∗i = {5, 10, 15, 20, 25}. Across all values of α and for all three procedures (and
for each of p̂i, p̃i, and̂̃pi), we found that for small-to-moderate cluster sizes (approximately
mi ≤ 200), the optimum l∗i in our setting was nearly invariant to the truemean prevalence.
This is reassuring from a design standpoint; in practice, it’s unlikely that α and β will be
known precisely by researchers, while cluster sizes are likely to be known, indicating that
an acceptable number of individuals to resolve may be chosen based on the cluster size and
group testing procedure alone. Results were comparable for p̃i and ̂̃pi. Averaging across a
range of Beta distributions, we found that for different estimates of pi and group testing
procedures, li = 8 performs well (Figure S1 in the online supplement).

While the above calculations are performed for a single cluster, the results hold for mul-
tiple clusters of the same size or differing sizes; under the former, each cluster has the same
value of l∗, while under the latter, each cluster has an optimum l∗i computed based on its
sizemi.

The calculations above assume that the size of the remaining cluster is divisible by the
estimated group size k̂∗

i . However, in practice this assumption is unlikely to hold, and the
overall partition of groupswithin each clustermust be adjusted to distribute residual cluster
members among groups (finite-sample algorithm adjustment). Using the algorithm adjust-
ment established for the standard setting, the groups in the adjusted partition differ in size
from k̂∗

i by at most one individual. We assessed the impact of this assumption through
simulations and find that the optimality results for l∗i are only minimally affected by cluster
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residuals (Figure S2). Section A3 of the supplementary material and Figure S3 examine the
choice of li when using p̂.

4. Comparison of group testing algorithms

4.1. Methods

4.1.1. Group construction and cluster integrity
In addition to comparing group testing algorithms and prevalence estimators, we also
investigate the handling of individuals during construction of the group testing partition;
Lendle, Hudgens, and Qaqish [17] showed that arranging positively correlated data in
the same pool results in increased efficiency, but in applications this may add logistical
challenges as described below. To investigate the amount of efficiency gain, we use simu-
lations to consider four possibilities, illustrated by the following example (as well as Table
S1). Suppose that biological samples are being assessed to identify cases of HIV infection,
with clustering formed by geographic region (e.g. state or county). The lab analyzing these
samples could then:

(1) Estimate HIV prevalence within each region (p̂i, p̃i, or ̂̃pi) and test groups each of
which consists exclusively of samples from a single region.

(2) Estimate HIV prevalence within each region and test groups that consist of samples
from regions with the same prevalence estimate (p̂i, p̃i, or̂̃pi).

(3) Estimate a common HIV prevalence across all regions (p̂) and test groups each of
which consists exclusively of samples from a single region.

(4) Estimate a common HIV prevalence across all regions and test groups without regard
to region.

Wemay consider these scenarios as using the cluster structure in both design and imple-
mentation, in design only, in implementation only, and in neither. Scenarios 1 and 3 pose
more logistical challenges than 2 and 4: As samples arrive at the lab for testing, the lab
must wait for sufficient samples from each region to accrue before conducting a test for
that region, while in Scenario 2 samples may accrue into a group from multiple regions
simultaneously and in Scenario 4 they may accrue from all regions simultaneously.

For our simulations, we refer to this implementation-level sample handling as ‘indi-
vidual handling’ and refer to scenarios 1 and 3 as maintaining clustering and 2 and 4 as
ignoring clustering. In practice, Scenarios 1 and 3 may combine some samples across clus-
ters, within a supercluster (1) or overall (3), to reduce the number of residuals within each
cluster.

4.1.2. Simulation design
Using simulations, we assessed the differences between a number of group testing algo-
rithms for clustered data. Broadly, we may categorize the algorithms used based on (1)
individual handling (cluster structure ‘maintained’ vs ‘ignored’), (2) group testing proce-
dure, and (3) estimation of Pi, as summarized in Table S1. We estimate Pi as p̂i (Equation
(1)), p̃i (Equation (2)),̂̃pi (Equation (3)), or p̂ (Equation (4)).

Using cluster-specific prevalence estimates p̂i (or p̃i or̂̃pi), we may apply a group testing
algorithm with finite-sample adjustment to group sizes when the cluster size is not evenly
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divisible by the group size (Procedures D, D´, S) to superclusters comprised of all clusters
with the same p̂i (individals Xwj from clusters w such that p̂w = p̂i), for each unique p̂i,
using p̂i to estimate the group sizes k̂∗

i . Under p̂, we apply Procedure D, D´, or S to all indi-
viduals, with finite-sample adjustment, with an estimated group size k̂∗ calculated using p̂.

For the 24 group testing designs summarized above and in Table S1, we calculatedE(T)

and Var(T) for n clusters of size m, with prevalences following a Beta(α,β) distribution
through simulations. Using Procedures D, D´, and S on superclusters (18 designs), we
followed the following procedure:

(1) Calculate l∗ form, α, β , the procedure (D, D´, or S), and the prevalence estimator (P̂i,
P̃i, or ̂̃Pi). As all clusters were the same size, we calculated a common l∗i = l∗.

(2) For each of w simulated cohorts with parameters n,m, α, β :
(a) Construct a vector of disease prevalence estimates (p̂i, p̃i, ̂̃pi, or p̂) from the first

l∗ individuals from each cluster (and corresponding vector x of cluster-specific
observed counts of defectives), simulating individual testing of these individuals.

(b) For individual handling ignoring cluster structure only (Section 4.1.1): ran-
domize the vector of true simulated prevalences pj within each supercluster of
individuals with a common p̂i (or p̃i, ̂̃pi, or p̂). In other words, for a commonly
estimated prevalence, we randomized across all clusters, and for cluster-specific
prevalence estimates, we randomized across all clusters that share a common
estimated prevalence.

(c) Construct a partition of groups for each supercluster using its prevalence estimate
and corresponding optimal group size k̂∗(xj).

(d) Evaluate E(T|k̂∗(x), pj) on the combined partition of the n(m − l∗) individuals,
under the true simulated prevalences pj and estimated optimal group sizes k̂∗(x),
applying Equation (5) (D), 6 (D´), or 7 (S) to each group in the partition and
summing across groups.

(3) Take the overall E(T) as the empirical average of, and σ(T) as the empirical stan-
dard deviation of, the values of 1

m [l
∗ + (m − l∗)E(T|k̂∗(x), pj)] calculated from the w

simulated cohorts.

For Procedures D, D´, and S using p̂ (6 designs), we follow the steps above, using l∗
calculated for each procedure under P̂; Step 2 proceeds with all n clusters combined in a
single supercluster with estimated prevalence p̂.

In addition to the 24 group testing designs summarized above and in Table S1(b-
c), we varied the overall size of the data set (n × m ≈ {500, 1000, 2000}), number and
size of the clusters (10 clusters; clusters of size 10; n ≈ m), mean prevalence p = α

α+β
∈

{0.01, 0.05, 0.1, 0.2, 0.3}, and α ∈ {0.5, 0.75, 1, 1.5, 2}. In all cases, we simulated 100,000
cohorts.

4.2. Results

Table 1 provides an overview of the simulation results most relevant to practical study
design: use of cluster structure in the design and in implementation of the group testing
procedure (Section 4.1.1). This table presents the expected number of tests per subject for



JOURNAL OF APPLIED STATISTICS 2237

Table 1. Expectation E(T)of the number of tests per subject, overall by use of cluster structure in the
design (use of p̂i vs. p̂) and use of cluster structure in implementation (‘Maintained’ vs. ‘Ignored’), mean
prevalence p, and Beta shape parameter α, for Procedures D, D´ and S, n = 31,m = 32.

p 0.01 0.1 0.3 0.5

Alg. Design
Implementation
Cluster Handling α 0.5 1 2 0.5 1 2 0.5 1 2 0.1 0.3 0.5

D p̂i Maintained 0.46 0.46 0.46 0.64 0.65 0.67 0.81 0.92 0.87 0.77 0.85 0.89
Ignored 0.46 0.46 0.46 0.65 0.66 0.68 0.82 0.93 0.88 0.78 0.85 0.90

p̂ Maintained 0.30 0.30 0.30 0.61 0.60 0.61 0.91 0.96 0.94 1.00 1.00 1.00
Ignored 0.30 0.30 0.30 0.66 0.62 0.62 0.97 0.98 0.98 1.00 1.00 1.00

D´ p̂i Maintained 0.55 0.55 0.55 0.69 0.71 0.72 0.83 0.90 0.85 0.81 0.87 0.90
Ignored 0.55 0.55 0.55 0.69 0.71 0.72 0.84 0.90 0.86 0.81 0.87 0.91

p̂ Maintained 0.26 0.26 0.26 0.56 0.58 0.59 0.88 0.91 0.90 0.99 1.00 1.00
Ignored 0.26 0.26 0.26 0.60 0.60 0.60 0.91 0.92 0.92 1.00 1.00 1.00

S p̂i Maintained 0.38 0.38 0.38 0.60 0.63 0.64 0.78 0.89 0.84 0.74 0.82 0.87
Ignored 0.38 0.38 0.38 0.59 0.62 0.63 0.78 0.88 0.84 0.74 0.82 0.87

p̂ Maintained 0.26 0.26 0.26 0.57 0.54 0.55 0.88 0.91 0.90 0.99 1.00 1.00
Ignored 0.25 0.25 0.26 0.58 0.54 0.54 0.86 0.89 0.88 0.99 0.99 1.00

Notes: The number of initial individual tests l∗i is optimized for each p,m, and procedure (D, D´, or S); For common param-
eters, results for p̂ and p̂i share a common l∗ . Cells with the minimum E[T] for each p, α, and algorithm combination are
highlighted.

Figure 2. Illustration of Beta distributions included in Table 1.

small (p = 0.01), moderate (p = 0.1), large (p = 0.3), and very large (p = 0.5, bimodal
Beta distributions) mean prevalences, three Beta shape parameters (α = 0.5, 1, 2), and a
variety of study designs (procedures D, D´, and S; p̂ and p̂i; cluster structure maintained
or ignored during group construction). Simulated prevalence distributions are illustrated
in Figure 2. Across all three algorithms, estimating cluster-specific prevalences improved
efficiency (E[T]) for high overall prevalence or a bimodal prevalence distribution; other-
wise, the boundedness and imprecision of p̂i outweigh the ability to calculate group size
based on clusters’ individual estimated prevalences. Maintaining cluster structure when
constructing groups increases efficiency in every scenario for Procedures D and D´, while
Procedure S occasionally is more efficient when cluster structure is ignored setting due
to the asymmetry in its expected number of tests. Overall, however, efficiency was nearly
equivalent between the two implementation paradigms.

Tables S2–S9 expand the results of Table 1 to a wider range of values and provide the
results of additional simulations, varying the overall size or composition of the simulated
data, varying the cluster prevalence estimator, and examining specific extreme distribu-
tions. Applying the group testing algorithmsusing the true por pi (Table S2), we observe the
established efficiency rankings between procedures. Substituting p̂ for p reduces efficiency
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overall (Table S3), and estimating cluster-specific prevalences with p̂i further reduces effi-
ciency due to imprecision and boundedness of this estimate (Table S4). For equal values
of p, differences in E(T) across varying Beta distribution parameters were small, indicat-
ing that the choice of study design can be made using knowledge of p but without precise
values of α and β (Table S5). Performance is roughly equivalent regardless of individual
handling during group construction, across a wide range of parameter values (Table S6).
Increasing n for fixed m does not measurably improve E(T) but does reduce σ(T), while
increasingm for fixed n improvesE(T) but not σ(T) (Table S7). Comparing cluster preva-
lence estimators, p̃i is more efficient than p̂i and ̂̃pi,which perform equivalently (Table S8).
For α = β ≤ 1, group testing using p̂i is more efficient than single-unit testing, as we can
categorize such clusters as either very high or low prevalence (Table S9a). These results
hold for mixture distributions with higher heterogeneity than standard Beta distributions
and for bimodal mixture distributions with modes at values other than 0 and 1 (Table S9c),
and when varying β rather than α (data not shown).

5. Dilution simulations

We used simulations similar to those described in Section 4.1 to evaluate the impact of
dilution onDorfman group testing designs with clustering; full details on these simulations
are given in SectionA4 of the supplementarymaterial. Table 2 and Tables S10–S14 provide
the results of these simulations.

Briefly, introducing dilution without accounting for it in the choice of group size nom-
inally increases efficiency by reducing the total number of expected tests. However, this
reduction is due to missing cases during screening. Using p̂i rather than p̂ reduces effi-
ciency, for small p, but may provide a more tolerable rate of missed cases (Table S10).

Table 2. Total expected number of tests per subject E(TT) and percentage of cases expected to be
missed (100 × E(M)/E(D)), by amount of dilution penalization (None: dilution not accounted for in
group size calculation; Low, Moderate High: c = 50, 100, 200 respectively) and use of cluster structure
in the design (use of p̂i vs. p̂), mean prevalence p, and dilution parameter d, for n = 31,m = 32. For
common parameters, results for p̂ and p̂i share a common l∗, which is optimized for each p andm.

p 0.01 0.05 0.1
Dilution
Penalization Performance Metric

Cluster
Structure in GT

Design d 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

None Expected # Tests No 0.26 0.26 0.25 0.44 0.42 0.40 0.58 0.56 0.54
Yes 0.41 0.41 0.41 0.54 0.53 0.52 0.64 0.64 0.62

% Expected Missed Cases No 8.4 16.0 29.2 6.8 13.0 24.2 5.4 10.5 19.7
Yes 4.8 9.3 17.6 4.0 7.7 14.6 3.2 6.2 11.7

Low Expected # Tests No 0.29 0.30 0.35 0.54 0.63 0.81 0.81 0.91 0.98
Yes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

% Expected Missed Cases No 7.6 13.5 22.4 4.4 6.7 6.2 1.9 1.7 0.7
Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Moderate Expected # Tests No 0.35 0.47 0.68 0.73 0.92 0.98 0.96 0.99 1.00
Yes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

% Expected Missed Cases No 6.3 9.5 9.8 2.3 1.4 0.8 0.4 0.1 0.0
Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

High Expected # Tests No 0.48 0.68 1.00 0.92 0.98 1.00 0.99 1.00 1.00
Yes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

% Expected Missed Cases No 4.6 5.2 0.0 7.0 0.4 0.0 0.0 0.0 0.0
Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Accounting for dilution reduces group size, with smaller groups for a higher unit test cost
parameter c (Equation S5, S6) (Table S11), correspondingly increasing the number of tests
but decreasing the proportion of missed cases. When using p̂i, the relative proportion of
missed cases decreases with cluster size, but no clear relationship holds for p̂ (Table S12).
The proportion ofmissed cases was consistent across different choices of α (Table S13). For
α = β ≤ 1, not only is group testing using p̂i more efficient than single-unit testing, but
few cases are missed as they are concentrated within high-prevalence clusters that receive
individual testing (Table S14).

6. Applications

6.1. HIV prevalence

Weused data tabulatingHIV prevalence rates by state (includingWashingtonDC), county,
and ZIP code in a simulation study using observed clusters to examine the performance
of our algorithms in a large-scale public health setting. Identification of HIV-positive
people, particularly while they are asymptomatic, has immense public health value, as
HIV-positive individuals can receive anti-retroviral therapy to manage the infection, and
individuals’ knowledge of their HIV status helps to reduce the spread of the disease. Cur-
rently, the US Preventive Services Task Force recommends that clinicians screen for HIV
infection in adolescents and adults aged 15–65 years and in all pregnant women. Pooled
blood samples have previously been used to reduce the cost of screening for acute HIV
infection in low-prevalence populations and of screening for failure of anti-retroviral ther-
apy [23, 24]. Additionally, standard rapid serum antibody assays have been shown to retain
their high sensitivity when diluted to 1:20; false negatives from pooled samples would have
been false negatives in individual testing by the same assay [25].

HIV prevalence rates from 2016 were obtained from the AIDSVu interactive online
mapping tool, which compiles state and county HIV prevalence rates from the CDC Divi-
sion of HIV/AIDS Prevention and ZIP code prevalence rates directly from state and local
health departments [26]. The CDC estimated rates include people with unknown HIV
infections, while the local rates include known diagnoses only. Statewide HIV prevalence
rates are highly variable, ranging from 74.4 per 100,000 individuals in Wyoming to 2831.6
per 100,000 in Washington DC. Similarly, available data from counties range from 14 to
2306 per 100,000 (in Butler County, PA, andUnion County, FL, respectively). For our anal-
ysis by ZIP code, we used data from Atlanta, GA, which range from 105 per to 7464 per
100,000 (ZIP codes 30,041 and 30,303, respectively) (Figure 3).

Since theAIDSVudatabase containsHIVprevalences by region, but not individual-level
data, we used the 2016 prevalences to simulate cohorts and then applied the simulation
methods described in Section 4.1.2 to obtain E(T). We obtained l∗ by estimating α and β

from the respective data sets; in a real-world HIV screening situation, researchers would
likely be able to estimate the overall distribution of HIV prevalence rates from recent
geographic prevalence data despite not knowing the exact present location-specific preva-
lences, as drastic and sudden shifts in the overall prevalence distribution are unlikely. For
each geographic grouping, we simulated 50,000 cohorts, with clusters of sizem = 5000 for
the states,m = 500 for the counties, andm = 50 for the ZIP code regions. For Procedures
D, D´, and S, using p̂ was more efficient than using p̂i; despite the heterogeneity in
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Figure 3. Density plot of HIV prevalence by type of geographic division (state, county, ZIP code within
Atlanta).

Table 3. ExpectationE(T) of the number of tests per subject using reported
HIV prevalence data for simulation of 5000 cohorts.

p̂ p̂i

State D 0.125 0.165
D´ 0.126 0.166
S 0.097 0.127

County D 0.146 0.216
D´ 0.148 0.217
S 0.105 0.177

ZIP D 0.324 0.404
D´ 0.339 0.414
S 0.234 0.354

HIV prevalences by region, prevalence is still low enough overall to favor group testing
algorithms that do not account for clustering (Table 3).

6.2. Cell lines

The NCI-60 cell lines encompass 60 different human tumor cell lines that are used to iden-
tify and characterize novel compounds for anti-cancer activity, as measured by growth
inhibition or killing of tumor cells [27]. These data are publicly available using the online
COMPARE database provided by the National Cancer Institute (NCI) Division of Can-
cer Treatment and Diagnosis (DCTD) Developmental Therapeutics Program (DTP) [28].
Group testing could plausibly be used in this setting as the compounds tested can be rare
and difficult to harvest and/ormanufacture; it may be feasible to test compounds on groups
comprised of pooled cells from lines of the same tumor tissue type (e.g. breast), measure
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the anti-cancer activity within that pool, and retest individual lines if any activity is seen
overall. As heterogeneity is expected across tumor types, we can consider this to be a clus-
tered data setting, where the clusters are defined by the nine types of tumor present in
the NCI-60 lines (Breast, Central Nervous System (CNS), Colon, Leukemia, Melanoma,
Non-Small-Cell Lung Cancer (NSCLC), Ovarian, Prostate, and Renal).

As a binary measure of anti-cancer activity, we used GI50 data recorded on the
NCI-60 lines, which measure the concentration that causes 50% growth inhibition [29],
dichotomized such that log10 of concentration values ≤−6 indicated the presence of
activity, while >−6 indicated the absence. We investigated three compounds: bulbo-
phyllanthrone (NSC-708791), ethoxycurcumin trithiadiazolaminomethylcarbonte (NSC-
742020), and carboxyphthalato platinum (NSC-271674). In each case, due to the small size
of the clusters (range 2-9, median 7 cell lines), we used l = 2 and estimated p̂i for each clus-
ter and p̂ across all clusters.We then applied Procedures D, D´, and S to the remaining data,
using estimated optimal group sizes based on p̂i and p̂, and recorded the observed num-
ber of tests (and corresponding observed average number of tests per subject). Due to the
potential for interaction between cell lines, we did not group cell lines from different tumor
types. In this example, exact cluster sizes and individual testing results were available for
each cluster, compound, and cell line, and there is no inherent ordering to the individu-
als within the clusters. In order to assess overall algorithm performance for these data, we
repeated our calculations across 5000 randomized orderings of the individuals within the
clusters and present the average across these permutations of the data.

Table 4 shows the observed rates of anti-cancer activity for these compounds across the
nine tumor types and the average number of tests per subject across these 5000 permuta-
tions of the data. For NSC-708791, p̂ was more efficient than p̂i for all three algorithms;
despite the heterogeneity between cell lines, the overall proportion of cell lines for which
the compound is active is low. p̂i provided higher efficiency for Procedure D and both

Table 4. Results of NCI-60 Cell Lines data analysis: Observed rate of anti-cancer activity (% of cell lines
observed to have GI50 < −6) and average number of tests per cell line across 5000 permutations of the
individual cell lines within the clusters.

Compound Name

Tissue Type (# Cell Lines) NSC-708791 NSC-271674 NSC-742020

Anti-Cancer Activity
(% of cell lines with
GI50 < −6)

Breast (6) 0% 0% 20%
CNS (6) 0% 0% 17%
Colon (7) 0% 14% 28%
Leukemia (6) 33% 83% 100%
Melanoma (9) 11% 0% 11%
NSCLC (9) 11% 11% 0%
Ovarian (7) 0% 0% 0%
Prostate (2) 0% 0% 0%
Renal (8) 0% 0% 0%

Algorithm Prev. Est. Average Number of Tests per Cell Line

D p̂ 0.601 0.707 0.719
p̂i 0.682 0.696 0.710

D´ p̂ 0.601 0.679 0.730
p̂i 0.713 0.717 0.756

S p̂ 0.531 0.681 0.724
p̂i 0.669 0.700 0.729
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NSC-742020 and NSC-271674, due to the high heterogeneity for both compounds, but p̂
was more efficient for D´ and S.

7. Discussion

In this paper, we have proposed different design strategies for disease screening using group
testing when the population of interest has clustering. Using two motivating examples
that cover a broad range of applications in the biosciences, we show the importance
of our design results in practical situations. We considered different group testing algo-
rithms, different approaches to estimating cluster prevalences, different ways to combine
the individual samples into groups, and dilution effects.

Counter to our intuition, we found that in most situations, under our framework, esti-
mating individual prevalences for determining group sizes did not result in increased
efficiency relative to obtaining and using an overall estimate of prevalence. This is par-
ticularly true when the disease prevalence is small (<0.20) and the cluster variation is not
extreme. However, when the prevalence and variability between clusters are high, there
can be sizeable efficiency gains, relative to single-unit testing, from accounting for clus-
ter structure in both design and implementation. Group testing is currently rarely used in
practice when disease prevalence is high, but an approach incorporating cluster structure
may still improve efficiency when both the overall disease prevalence and inter-cluster het-
erogeneity are high, allowing for single-unit testing on clusters with high prevalence and
group testing on clusters with low prevalence.

In order to address the scenario where test sensitivity varies with group size, we incor-
porated dilution in simulations for the Dorfman design; we considered only this design
due to its practical and simple approach, which is easily implemented in real-world sce-
narios. Dilution introduces an additional consideration in comparing designs; in addition
to minimizing the number of tests, one can consider reducing the number of missed cases.
This may be done by changing the objective function for the choice of the group size. How-
ever, if one does notwant to specify additional parameters, using cluster-specific prevalence
estimates for the choice of group sizes can provide this reduction as, on average, the bound-
edness of the prevalence estimates reduces the group sizes. This may provide a ‘balancing
act’ in design selection; by the results discussed above, estimating cluster-specific preva-
lences often reduces efficiency in terms of number of tests, but it may also reduce the
number ofmissed cases in a settingwith dilution. For example, if a small amount of dilution
(d = 0.05) is present but unknown or unaccounted for, using cluster-specific prevalence
estimates can nearly halve the number of missed cases (Table S12b).

There exist complex dynamic programming algorithms to find optimal and efficient
groupings in the GGTP setting if the individual prevalences are known (Procedure D:
Hwang [30]; Procedure S:Malinovsky [31]). Thesemethods performequivalently to simply
applying Procedures D and S on superclusters, due to the discreteness of the distribution of
p̂i. There also exists an optimal nested group testing procedure for unclustered data (Sobel
and Groll [5]), but it is not optimal for clustered data. Our work assumes that nothing is
known a priori regarding the exact cluster prevalences, although the distribution of clus-
ter prevalences may be known. This is not necessarily the case in all settings; for example,
historical data may provide limited information about prevalence for some or all clusters.
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In such a situation, it may be possible to use this information to estimate l∗i as well as the
current cluster prevalence, or to use group testing when estimating cluster prevalence.

We considered different ways to formulate groups, including composing groups from
members of the same cluster, composing groups from individuals with the same estimated
cluster-specific prevalence (i.e. within a supercluster), and disregarding clustering entirely.
Similar to the issue of cluster prevalence estimation (i.e. cluster specific versus population),
disregarding clustering when formulating groups does not result in substantial efficiency
loss when the disease prevalence is small and the heterogeneity is not enormous.

We considered a design where we estimate the prevalence (either cluster specific or
common) based on a small number of individual tests taken on each cluster, followed
by applying group testing procedures to the remaining individual tests for each cluster.
This test was chosen for its practical simplicity. However, Bayesian adaptive group test-
ing designs could be developed where design choices (e.g. group size) are updated with
increasing amounts of information as more testing is done in each cluster [6]. In order to
calculate the optimal number of individual tests to perform on each cluster, we assume
that the cluster prevalences follow a Beta distribution. However, the group testing may be
conducted using nonparametric prevalence estimates. For a non-Beta prevalence distribu-
tion, the number of individual tests l used for estimation may no longer be optimal, but
Figure S1 indicates that this value is primarily dependent on cluster size and group testing
procedure, and thus even a non-optimal l for the appropriate procedure and cluster size is
likely reasonable despite distribution misspecification.

Overall, our recommendation is that in most scenarios it is not necessary to account
for clustering when performing group testing on clustered data; it is sufficient to esti-
mate a single overall prevalence across all clusters and use this estimate for the choice
of group size. The boundedness of the prevalence estimator distribution result in inac-
curate estimation of low cluster prevalences (and corresponding optimum group sizes)
when using a reasonable number of observations for estimation. Further, its discreteness
results in even non-negligible amounts of between-cluster heterogeneity being represented
by a limited number of possible (and more limited number of probable) group sizes. How-
ever, there may be efficiency gain in incorporating cluster-specific prevalence estimation
into the design under extreme heterogeneity between clusters with not too small overall
prevalence (i.e. a non-negligible fraction of clusters with prevalences on either side of the
threshold for favoring single-unit vs. group testing), and if one suspects the presence of
dilution, estimating prevalence cluster-by-clustermay provide a reduced number ofmissed
cases.
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