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Abstract: Interstitial lung disease (ILD) is now diagnosed by an ILD-board
consisting of radiologists, pulmonologists, and pathologists. They discuss
the combination of computed tomography (CT) images, pulmonary function
tests, demographic information, and histology and then agree on one of the
200 ILD diagnoses. Recent approaches employ computer-aided diagnostic
tools to improve detection of disease, monitoring, and accurate prognostica-
tion. Methods based on artificial intelligence (AI) may be used in computa-
tional medicine, especially in image-based specialties such as radiology. This
review summarises and highlights the strengths and weaknesses of the latest
and most significant published methods that could lead to a holistic system
for ILD diagnosis. We explore current AI methods and the data use to predict
the prognosis and progression of ILDs. It is then essential to highlight the data
that holds the most information related to risk factors for progression, e.g., CT
scans and pulmonary function tests. This review aims to identify potential
gaps, highlight areas that require further research, and identify the methods
that could be combined to yield more promising results in future studies.
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INTRODUCTION TO ARTIFICIAL INTELLIGENCE
IN RADIOLOGY

In the past two decades, artificial intelligence (AI) has gained tremen-
dous momentum within radiology. Although the underlying technology
dates back to the 1940s1–3 it took more than fifty years for this to be
translated into medicine.

When AI is applied to the analysis of medical images, the pri-
mary approach is based on machine learning.4 Deep learning is a form
of artificial neural networks, which itself is a subset of ML. Artificial
neural networks are computing systems consisting of artificial neurons
which learn parametric functions.1 They are capable of running parallel
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computations and are used to recognise patterns in the data provided.
Deep learning methods are a form of hierarchical representational
learning; they go beyond machine learning by stacking multiple layers
of calculations to learn nonlinear higher dimensional patterns. Regard-
ing images as inputs, convolutional neural networks (CNNs), a type of
architectures for deep learning, are translation-invariant, which means
once a pattern is learned, it can recognise it anywhere in an image, re-
gardless of its location or orientation.5 In 2012 AlexNet,6 a CNN, com-
peted in the ImageNet competition, and since then deep learning has
become dominant in image classification.

Among the different specialties inmedicine, radiologywas among
the “early adopters” in developing, testing, and implementing various
algorithms in routing diagnostic procedures. Particularly in medical im-
ages, machine learning algorithms can simplify solutions to problems by
considering new patterns within pixels and voxels although these are not
immediately apparent to humans.7 An advantage of radiological depart-
ments is that medical images are generated on a large scale from various
modalities. Furthermore, all images are stored digitally in a unified format.
DICOMs are the standard format of biomedical images throughout the
world. In addition to visual data, the DICOM header stores other param-
eters used for the algorithmic analysis of images. In parallel to filing
DICOMs data, radiology reports are simultaneously stored in a digital
archive linked to the images. As digital images and reports are readily
available, diagnostic imaging is ideally suited for AI approaches.

Artificial Intelligence can be used for diagnosing various medical
conditions through binary or multiclass classification. While this does
not represent all possible pipelines, an example of the development pro-
cess of a diagnosis AI model can be seen in Figure 1. The models are
trained with medical images and demographic data to learn the relation-
ship between the features (imaging features such as radiomics, demo-
graphic and clinical features) and the class labels, which represent the
different diagnoses. The choice of feature representationwill greatly impact
the performance of the models, so it is important to carefully consider the
most informative and robust representations that capture the underlying
characteristics of the disease. To ensure the accuracy of the models,
they must be validated against experienced human experts in the field.

The segmentation of medical images has been used extensively in
the diagnosis of a disease.8 The current state-of-the-art framework for med-
ical image segmentation is the “nnUNet”9 framework that can achieve
semantic segmentation of any biomedical image dataset, nnUNet con-
firmed its position as the state-of-the-art by recently winning the Abdom-
inal Multi-Organ Segmentation (AMOS) competition in 2022, more than
4 years since its first release.10 In particular, semantic segmentation
enables computers to recognise and localise objects in images and this
is vital in tasks such as diagnosis and prognosis. In 2010, there were
over 500 academic papers published on AI in medicine; in 2020, there
were over 12000, and the exponential increase in research in this field is
only expected to continue in the next ten years.11

RADIOLOGICAL REQUIREMENTS IN CHEST IMAGES
Even early development focused on chest imaging and the detection

of lung nodules. The lungs are an excellent training field for automated
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FIGURE 1. A typical workflow of a AI-based model for medical diagnosis. The first stage is to acquire data from different medical imaging modalities,
patient demographic and clinical/laboratory data. This will require extensive processing to be ready for AI model development. The models developed
needs to be evaluated against ground truths, and validated against human experts.
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image analysis exhibiting high tissue contrast and a binary clinical ques-
tion (lung lesion, yes or no). Hence, an abundance of research started
investigating AI algorithms for the purpose of automated lung lesion de-
tection. The aim is to deploy algorithms that are capable to increase di-
agnostic accuracy while minimizing reading time. Especially in light of
emerging screening programs, such diagnostic support algorithms are
needed. Numerous research groups were able to show a significant im-
provement in lesion detection. Foremost deep learning models proved
effective for lung lesion detection, not only on standard computed to-
mography (CT) scans but also in low dose exams for the purpose of
lung cancer screening.12,13

In contrast to lung nodule detection conundrum, diffuse paren-
chymal disease poses a complex clinical problem. Lung nodule can be
characterised basically in three classes, namely solid lesions, part-solid
lesions and non-solid or ground-glass lesions. On the contrary, diffuse
lung diseases are defined by an abundance of different patterns in vari-
ous combinations and different locations. Also, diffuse lung diseases
may have infectious, neoplastic, autoimmune, or idiopathic aetiologies.
In addition, diffuse lung disease might affect the airways and alveoli
and/or the lung interstitium. Interstitial lung diseases (ILDs are a hetero-
geneous group of diseases distinguished by fibrosis and inflammation of
the lung parenchyma.14 Inmost of these diseases the pulmonary alveolar
walls are infiltrated by a combination of inflammatory cells, fibrosis,
and proliferation of normal cells that make up a healthy alveolar wall.15

The subset of ILDs with a fibrosing phenotype results in a decline in
normal lung function, worsening symptoms and reduced quality of life.

Radiologists use a combination of CT images, clinical data, and
pulmonary function tests to diagnose ILDs. AI-based methods have re-
cently gained significant attention in the field of computational medi-
cine. These advances can be seen in the creation of computer-aided
tools for diagnosis, disease monitoring, and accurate prognostication.

This review paper aims to fill the gap in the literature by provid-
ing a comprehensive overview of the recent research using AI methods
in diagnosis and prediction of the ILDs progression and prognosis,
focusing on the subset of ILDs with a fibrosing phenotype due to
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
the difficulty in their prognosis. Wewill summarise and evaluate the lat-
est and most significant published methods, highlighting the strengths
and weaknesses of these approaches. Specifically, we will examine the
current AI methods and the data used to predict the prognosis and pro-
gression of ILDs, with a focus on data that holds the most information
related to risk factors for progression, such as high-resolution CT scans
and pulmonary function tests.

Through an in-depth analysis of the state of the art, we aim to iden-
tify potential gaps in research and highlight areas that require further in-
vestigation. Our review will also explore how larger datasets could help
to improve procedures. By doing so, we hope to guide future researchers
to create more promising outcomes in the field of AI-based methods for
predicting the progression and prognosis of ILDs.
AIMETHODS INDIAGNOSIS AND PROGNOSIS OF ILDs
The central issues in the analysis of ILDs are 1) pattern detection,

segmentation, and distribution; 2) diagnosis; 3) pattern quantification;
4) longitudinal evaluation and 5) disease prediction (Fig. 2). Disease
phenotyping based on baseline imaging together with clinical parameters
may be ultimately feasible. Yet, current models often rely solely on radio-
logical imaging data. The most promising approach may then be to de-
velop novel multivariate models that incorporate patient demographics,
patient history, medication, lung function test, and laboratory results.

Pattern Detection, Segmentation, and Distribution
It is crucial to identify the correct ILD diagnosis, as the progno-

sis and treatment of individual ILDs differ greatly. In general, IPF has a
worse prognosis than non-IPF ILDs.14 Physicians often monitor the de-
cline in forced vital capacity (FVC) and diffusing capacity of the lung
for carbon monoxide (DLCO) as a measure of lung function. Although
this is current practice, these measurements (FVC and DLCO) are un-
predictable and unreliable.16 In contrast to this unreliable factor, studies
have demonstrated the importance of imaging features within high-
resolution CT (HRCT) scans.17 A new solution for monitoring the
www.investigativeradiology.com 603
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FIGURE 2. The analysis of ILDs can be separated into different stages. Firstly, segmentation of the various anatomical structures followed by detection,
characterisation and quantification of pathological patterns using deep and radiomic features. Themost informative features are identified and analysed
with respect to clinical outcomes including diagnosis and disease progression.
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progression of IPF could be monitoring FVC and HRCT images at
regular and fixed time intervals.

In a metanalysis, Ebner et al18 demonstrated how important is it
to include demographic data in a prognosticmodel for pulmonary fibro-
sis. Patients with an unfavourable UIP/IPF diagnosis were on average 5
years older (UIP: 60 years), 21%more often male (UIP: 74%), and 19%
more often smokers (UIP: 74%) than patients with non-IPF. With this
simple piece of demographic information alone, the prediction of the out-
come improves and this should be incorporated in a prediction model.

Radiomics involve extracting key features from medical images
that radiologists cannot easily see. This is achieved by applying image
segmentation and feature extraction techniques to the images, and allow
the identification of key features that can provide additional insight into
a patient's condition. Even with an approach that was exclusively based
on radiomics approach, a recent study managed to identify two distinct
clusters of systemic sclerosis patients with different outcomes.19 Current
studies are attempting to extend this approach by including other clinical
biomarkers and deploying automatisation by means of deep learning.

Wewill now discuss the data used in combination with the meth-
odology in the selected literature, with the goal of developing frame-
works that can detect patterns through feature representations and which
can replicate the results of radiologists and others.

Diagnosis
The concept of computer-aided diagnosis (CAD) systems was

first introduced in the 1950s. These systems can be defined as software
capable of replicating the diagnostic abilities of human experts.19

Trusculescu et al21 published a comprehensive reviewof the application
of deep learning in ILDs, with a specific focus on CAD systems. The
review focuses on the use of CNNs for classifying ILDs and highlights
the challenges in accurately identifying different patterns of lung tissue
within HRCT images. A similar systematic review by Soffer et al8 was
published more recently, and also explores the use of AI for ILD anal-
ysis and emphasizes the importance of correctly classifying fibrotic
lung diseases. Both reviews stress the difficulties inherent in these tasks
and believe that AI will play a crucial role in the future of ILD diagno-
sis. However, the accuracy of these systems is still not fully reliable.
Refaee et al22 andWenxi Yu et al23 discuss other more recent diagnostic
tools utilising AImethods to classify ILDs. These recent tools also sup-
port the findings of the review papers that utilise images and deep learn-
ing to identify idiopathic pulmonary fibrosis.

We will focus on two retrospective studies that successfully de-
veloped CAD tools using AI to classify ILDs. In 2018, Walsh et al24

utilised deep learning for the classification of fibrotic lung diseases
using HRCT scans. The study involved data augmentation on a data-
base of 1,157 anonymised HRCT scans with fibrotic lung disease
604 www.investigativeradiology.com
resulting in a final training set of 420,096 unique montages. Experi-
enced thoracic radiologists labelled the data into three possible classes:
UIP, “possible UIP”, or “inconsistent with UIP”. This supervised learn-
ing setup allowed the development of a neural network to predict one
of the three classes. The algorithmwas validated against 91 thoracic ra-
diologists. The median accuracy of the radiologists was 70.7%, whilst
the accuracy of the algorithm was 73.3%. The strength of this research
is the sparseness of resources required to get results for individual pa-
tients once the algorithm has been trained. The main weakness in the
paper is that information could be lost in the creation of the dataset;
these limitations could be addressed in the future with better machines.

Furthermore, in 2019 Christe et al25 proposed a CAD tool for di-
agnosing pulmonary fibrosis, also using deep learning (Fig. 3). The
study collected data from three providers and resulted in 307 different
HRCT scans. Two experienced thoracic radiologists labelled the dataset
into one of four possible categories: UIP, “possible UIP”, “indeterminate
for UIP”, and “most consistent with non-IPF”. In another supervised setup,
a pipeline was proposed that first segmented lung images, characterised
lung tissue, and outputted a predicted class. The first two steps used CNNs
to generate features for a random forest model. This study alsovalidated re-
sults against two experienced thoracic radiologists. The CAD median F1
score was 0.80 compared to the human readers, who achieved a median
of 0.79. The strength of this paper is that it was able to accurately produce
results similarly to experienced radiologists; such tools could be a great as-
set in training new or less experienced radiologists. The annotation of the
dataset was extremely costly and time consuming.

As the basis for their ground truth labels, the latter two studies
used the diagnostic criteria of the Fleischner Society for idiopathic pul-
monary fibrosis.26 Three out of four studies in Table 1 have been vali-
dated against radiologists, this is vital in the development of reliable
systems. As with radiologists, the studies also relied heavily on the
use of imaging data. As there is no general gold standard in classifying
ILDs, these tools have been created to assist radiologists with the chal-
lenges associated to ILD diagnosis. These algorithms provide signifi-
cant contributions to the task of diagnosis and as technology progresses
we expect results to improve in the near future. Naturally after the suc-
cessful diagnosis, the next step is to explore the applicability of AI tools
for prognosis and progression.

In the past five years, there has been exponential growth in the
number of FDA-approved devices for radiology,27 mainly due to the
promising results AI yields. Siemens has integrated AI into their soft-
ware to identify and quantify areas of interest within the lungs automat-
ically.28 The software's major functions first offer to segment the lung
tissue and then give results on lung lobe segmentation, lesion detection
and measurements, and pneumonia analysis. In patients suffering with
COVID-19 the software can analyse ground-glass opacities and
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 3. Quantification of pathological interstitial lung tissue (middle column) and visualisation using radial histograms (right column).25 Each sector
denotes a region of the lung and is split into 2 parts, one for the central (inner) and one for peripheral (outer). Solid lines denote the division of left and
right lungs. Top case is a typical UIP with reticulation (orange) and honeycombing (red) and bottom a non-IPF with ground glass opacity (purple).
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consolidations highlighting abnormalities; this functionality should be
transferrable to ILDs. This technology greatly assists radiologists in
the task of diagnosis. While this is useful, it does not provide additional
information on risk factors for progression in individual patients; this is
still something left to radiologists; providing these extra details will re-
duce workloads and allow radiologists towork more efficiently. Combi-
nation of clinical data and pulmonary function tests are commonly used
to identify progression in ILDs.14 In spite of the great success of CADs
with ILDs, relatively little progress has been made in the prognosis and
progression of ILDs.

Pattern Quantification and Follow-up
One essential element in the follow-up and prediction of

fibrosing ILDs is the quantification of pathological pattern in radiolog-
ical imaging. In general, a greater extent of fibrosis in chest CT corre-
lates with overall mortality. Specific patterns, such as honeycombing,
and bronchiectasis are linked to a worse prognosis.29,30 However, it
has been shown that the interrater variability for the detected patterns
is only moderate.31 Recent research by Humphries et al,17 showed that
data-driven texture analysis can provide robust measures of disease se-
verity. Comparison with lung function tests may indicate where the
threshold lies for clinically relevant disease progression.
TABLE 1. Summary of Diagnostic Approaches

Study Diagnosis

Refaee et al21 Binary classification, IPF or non-IPF
Yu et al22 Binary classification, IPF or non-IPF
Walsh et al23 Multiclass classification, UIP, possible UIP, or inconsistent w
Christe et al24 Multiclass classification, UIP, possible UIP, indeterminate for

and most consistent with non-IPF

AUC indicates area under the receiver operating characteristic curve; IPF, Idopathi

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
Longitudinal Evaluation and Disease Prognosis
Progression of clinical disease may be assessed by using AI tools

that combine imaging data, clinical data, lung function tests, as well as
laboratory values and those tools may perform as well as human ex-
perts. Existing AI methods for the prognosis and progression of the dis-
ease can mainly be categorised according to their output variables. With
the target variable as categorising feature, AI tools can be grouped ac-
cording to their desired outcome and discern the level of specificity
with which previous studies have tackled the prognosis of ILDs.

Regression Tasks
One such target variable is the FVC, an extremely common var-

iable that researchers attempt to predict. As the FVC is a continuous
number, it falls into the category of regression. Two related studies,32,33

employed an end-to-end multi-modal based CNN to predict FVC de-
cline. Experiments were run on the OSIC Pulmonary Fibrosis Progres-
sion Challenge Benchmark Dataset,34 the most popular dataset to train
models for predicting patients’ severity of decline in lung function.
Fibro-CoSANet extracts visual features from CT scans also by means
of an attention layer, and combines such features with other clinical
data.32 Then, the prediction of the FVC slope is performed by using re-
gression. Similarly, Fibrosis-Net33 extracts image features and predicts
Metric Results Validated Against Human Expert

Accuracy 85.3 Yes
AUC 0.98 No

ith UIP Accuracy 73.3 Yes
UIP, F1 0.8 Yes

c Pulmonary Fibrosis; UIP, Usual Interstitial Pneumonia.

www.investigativeradiology.com 605
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FVC by fusing the CNN output features and demographic data. The au-
thors also used the GSInquire method35 to make the model more ex-
plainable concerning its predictions.

Yadav et al36 designed FVC-Net, a deep learning-based architec-
ture, to predict the progression of the disease from the patient’s CT
scans and the patient’s metadata. The proposed method performs lung
segmentation and returns a score for the degree of honeycombing.
The model then combines the latter value with the clinical data to pre-
dict the FVC slope. The study also provides evidence that the proposed
FVC-Net model can be applied and is valid in a different scenario
(COVID-19 case study).

All three studies predicting FVC were performed on the same
dataset, consisting of HRCT images and demographic features (including
smoking status). They also utilised deep learning andmeasured the perfor-
mance by calculating the Laplace log likelihood (LLL). FVC-Net claimed
the lowest score of -6.641. A major strength of these studies is the contri-
butions of different methods, all performed on the same dataset. However,
this opens the possibility of generalising to a single dataset. FVC-net does
not discuss the limitations of the research, but a weakness of the study is
that FVC does not always consistently decline in patients.14
Proportional Hazards Models
There is another heterogeneous group of target variables that

have been employed to characterise the evolution of ILDs and which
are related to the prediction of survival/mortality. For instance, a self-su-
pervised learning approach was developed to generate patch representa-
tions37 which are in turn employed to identify prognostic biomarkers.
The training pipeline comprises three stages: 1) lung images are seg-
mented and split into patches; 2) contrastive learning generates mean-
ingful representations; 3) a clustering algorithm groups similar data to
finally perform the survival analysis. The algorithm was tested on
datasets from the Netherlands, Turkey, and the UK. One of the benefits
of self-supervised learning approaches is the reduced need for anno-
tated datasets, which can save valuable resources. Despite the limita-
tions of the early stages of research in this area, the outcomes are still
favourable and contribute to the overall advancement of the field.
FIGURE 4. Quantifying pulmonary fibrosis I: comparing the original CT image
(A-2, A-3, B-2, B-3) to calculate the fibrosis percentage. A, Area of honeycombin
is <5% of the entire lung (CT stage I).39
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Shahin et al38 propose a deep learning method that uses clinical
and imaging data to predict the survival of IPF patients by means of the
probability of survival. Results also show that the model trained on only
imaging data outperformed the model trained using clinical and imag-
ing data. The highlight of the survival model is the use of clinical and
imaging data with an overall aim of predicant the time of death of a pa-
tient. Using 446 patients with IPF they state that clinical data, in partic-
ular FVC and DLCO, contains noisy data.

Earlier in 2022Wu et al39 did a retrospective analysis of 232 pa-
tients diagnosed with IPF from 2011 to 2020. Based on IPF diagnosis
guidelines the honeycomb lung extent was presented on CT images. A
frameworkwas established a to automatically segment area of honeycombing
and calculate a fibrosis percentage based on this (Fig. 4). The results of
this were validated by thoracic radiologists. Combining this with pul-
monary function tests, as well as demographic, and clinical data, they
created a proportional hazard model. The models developed were able
to predict mortality based on this data.

Walsh et al.40 published the most recent study in predicting
prognosis. This paper also combines deep learning methods and
Cox proportional hazards to give a result. Disease progression was
defined as a decline in more than 10% of FVC, death, or transplant.
The data used includes: demographic, pulmonary functions, and
HRCTs. Building upon the diagnosis models previously devel-
oped23 and using the same data preparation, the deep learning algo-
rithm successfully predicted the probabilities of UIP for four indi-
vidual montages of an HRCT scan. Statistical analysis was then per-
formed by extracting these probabilities and combining them with
clinical and pulmonary function data. The study aimed to predict
transplant-free survival, and each patient's survival period was cal-
culated. This paper's significant strength is building upon previous
diagnostic methods. Accurate segmentation of fibrotic tissue is still
a challenging task, and Walsh presented a new approach, with prob-
abilistic outputs; In Figures 4 and 5, we note the different approaches
of pattern quantification.39,40 In theory, AI research could identify
patients at high risk of developing IPF, reducing the chance of devel-
oping fibrotic disease or lead to earlier specific treatments, thus im-
proving the patient’s quality of life.
(A-1 and B-1) with the automatically segmented honeycombing regions
g is 5% to 25%of the entire lung (CT stage II). B, Area of honeycombing

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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Generative Models
A generative model is a type of ML model that learns the under-

lying probability distribution of a set of input data to generate new data
points similar to the training data.41 Unlike supervised learning
methods, which focus on predicting a specific output based on the input
data, generative models can be used for tasks such as image synthesis,
data augmentation, and anomaly detection.

Researchers developed an Airway Transfer Network (ATN) to
synthesize realistic airways and use CTairwaymetrics to predict mortal-
ity.42 Although the eventual outcome was to predict mortality, the main
emphasis in this paper is the use of generative models to synthesize air-
ways. ATN performs airway synthesis by a transformation network that
refines synthetic data using perceptual losses. Experiments in their re-
search show that the proposed approach performs comparably well to
other popular generative approaches, as based on CT images from
113 patients of the University Hospital Leuven, Belgium.

Quan et al43 also focus on the prediction of airway dilation, but
in this case, also over time. They presented a probabilistic model to
identify the regions of progressive airway dilation, given two profiles
acquired at different time points. They then computed a relative change
in airway volume that may be useful for quantifying IPF disease pro-
gression. They tested their approach on simulated dilation images of
healthy airways and pairs of actual images of IPF-affected lungs ac-
quired one year apart.

The generative models presented are developed without requiring
large datasets or precise airway annotations. Using synthetic data, the pa-
perswere able tomimic real IPF scenarios. Quan et al43 alsovalidated their
results with labels provided by radiologists on several examples. In Pakzad
A et al,42 the synthesized airways were later used for Cox regression anal-
ysis. This data alone was insufficient, so they combined this pulmonary
function data (FVC and DLCO). Other models we have seen analyse the
entire lung tissue; an option for future results would be to combine airway
dilation with lung tissue analysis of the entire HRCT scan.

Unsupervised Learning
Unsupervised learning is a type of machine learning where the

algorithm learns patterns and relationships from unlabeled data without
any provided human expert task or goal.41 Pan et al44 developed an-
other unsupervised learningmodel to identify predictive image markers
in CT images collected in Italy and Austria. They studied 190 CT im-
ages taken from 76 patients with confirmed IPF; the dataset also in-
cluded demographic and lung function tests. Principal component anal-
ysis was performed on segmentation maps to reduce image dimension,
followed by clustering to group pattern signatures. To predict temporal
sequences, a random forest classifier was trained on pairs of scans
FIGURE 5. Quantifying pulmonary fibrosis II: Conversion of segmentation ma
montage.40

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
(longitudinal data) to predict temporal sequences. With patient follow-up
scans, they formed radiological disease progression signatures; patients
were clustered into 2 groups based on these, and patient survival was
assessed by Kaplan-Meier analysis. The contribution of this research
is beneficial in observing specific progression signatures that help pre-
dict progression. The limitations of supervised learning are that often
groups of data form patterns that cannot be explained easily. In this
study, the survival results should be discussed in more detail. If patients
in a particular group are more likely to progress worse, it would be ben-
eficial to prioritize them for the correct treatment plans.

DISCUSSION
The current literature suggests using AI to classify suspected

ILD cases according to the latest standards instead of identifying indi-
vidual diseases, primarily distinguishing between UIP, “possible UIP”,
or “inconsistent with UIP”. Other approaches include classifying be-
tween fibrosing and non-fibrosing ILDs. As stated in previous reviews,
AI is currently not at a high enough accuracy to rely entirely on but
show great potential in assisting and training capabilities in the future
of radiology.8,21 Current methods presented in diagnosis have produced
comparable results to radiologists.24,25 These methods should be feasi-
ble to integrate into radiologist workstreams to help for a quicker diag-
nosis. More importantly, the models trained in the papers were validated
against experienced specialized radiologists to ensure the safety of the
software. This should be an essential step for any study to be deployed
to real-life scenarios. Such steps will need to be taken to enable progno-
sis software to be developed.

Most of the studies that infer prognosis utilise some form of lon-
gitudinal data, i.e., data taken at different time points. This is essential in
order to monitor disease progression. As a consequence, we note the
heavy use of proportional hazard models to predict mortality. These at-
tempts often had two-time points, a baseline, and a follow-up dataset.
Whilst two-time points show promising results for prognosis, as in
Pan et al,44 the study could benefit from looking at more time points.
A visual representation of these types of studies can be seen in Figure 6.
Walsh et al40 were particularly effective at applying their algorithm to
HRCT scans from different institutions; this shows that themodel can gen-
eralise to different populations. The last point on proportional hazard
modelling is that it is prone to overfitting and does not performwell if there
is missing data. In future work, it would be useful to see different AI ap-
proaches to predict progression visually over time. Ideally, in the prognos-
tic research presented it should be feasible to combine with diagnostic
models results. This was successfully shown in Walsh et al.40 If we are
to develop holistic systems for diagnosis and optimal treatment, the first
step must be to provide accurate diagnosis and then to provide prognosis.
ps into 4 montages, then calculation of probability of UIP for each
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FIGURE 6. A summary of using proportional hazard modeling in prognosis of ILDs.

Dack et al Investigative Radiology • Volume 58, Number 8, August 2023
It is worth mentioning the self-supervised, generative models
and unsupervised methods explored in the paper negate the need for ra-
diologists to annotate large datasets, these approaches are invaluable. In
general, papers which involved HRCT images, performed well. In a dif-
ferent study not previously mentioned, Ali S et al45 explored ensemble
methods based solely on structured data; their limitations involved data
processing and missing values. If the methods in the paper considered
extracting corresponding image features it will have more data to learn
from and replicate more closely the features a human expert looks at,
this could drastically improve the results.46

Given the promising results and the even more exciting outlook,
it is clear that AI will play a vital role in the future of chest radiology. To
date, the landscape is dominated by the systems for detecting lung le-
sion detection systems, which are widely available.47–50 With the
COVID-19 pandemic and given the central role of chest imaging in di-
agnosis and prognosis, the development of algorithms tackling diffuse
parenchymal disease has exploded. Innumerable research groups have
delivered remarkable results for the detection, characterisation, and
prognosis of COVID-19 pneumonia.51,52 The pandemic has also spurred
data availability and exchange, thus facilitating research in the field. In
contrast, the investigation of ILDs by means of AI is still a minor area.

At the moment, the main directions of research in imaging of in-
terstitial lung disease comprise pattern detection, quantification, diag-
nosis and prognosis. However, several limitations currently restrict the
development of algorithms for these purposes. Firstly, ILDs in general
are rare diseases that are most commonly referred to tertiary care cen-
tres. Secondly, there is a plethora of more than 200 different entities that
might lead to pulmonary involvement characterised by an interstitial
lung disease pattern. In contrast to the multitude of various ILDs in gen-
eral, the CT patterns are relatively few. Hence, disease distribution and
clinical history play an ever more important role. Overall, AI and ILD
research suffers from a shortage of structured data. Data governance is-
sues and restricted access to clinical information along with the scarcity
of imaging exams hamper development. This was previously highlighted
in 2020 by Trusculescu et al,21 but since then there have been group ef-
forts to solve this problem.

Avital aspect in all research explored was the collaboration be-
tween engineers and healthcare providers. For successful application,
data driven AI methods require large amounts of data, particularly in su-
pervised learning, which requires the data to be annotated. Providing
annotated datasets is costly and time consuming. FVC has been a par-
ticularly popular parameter for predictions, due to the availability of
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the well-prepared open-source dataset.34 As previously mentioned,
there are suggestions that a stable FVC does not infer that the patient’s
health is not declining. Prognosis inference is still challenging for phy-
sicians and AI systems alike. Utilising longitudinal data in the form of
HRCT scans and pulmonary function tests is promising but requires
further research. Radiomic features have been very successful in diag-
nostic tools22 as well as proving successful in the prognosis of systemic
sclerosis ILD.19 Yet, there has been very little research in the prognosis of
IPF using radiomics. Several papers performed segmentation of the
HRCT scans but did not extract radiomic features based on these results.

To overcome these issues, several open access databases have
been created to enable researchers to access data.34,53–57 With increasing
access to CT images and clinical data, research in ILD and deployment of
AI algorithms might gain momentum as in the successful introduction of
AI-assisted detection systems in lung lesion detection and lung cancer
screening.We hope in the future that the accessibility of the required data
will no longer slow research on investigating AI in chest radiology.

In conclusion, the aim of this review was to provide an overview
of current developments in the field of interstitial lung diseases and AI.
Potential gaps in knowledge, areas that require further research and
promising newly developed methods have been reviewed. In essence,
as with all AI-driven research, the key to improving ILD classification
and prognostication will be data availability and the pursuit of a multi-
variate approach by combining imaging and clinical information.
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