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Abstract

K-means is a fundamental clustering algorithm widely used in both academic and industrial 

applications. Its popularity can be attributed to its simplicity and efficiency. Studies show the 

equivalence of K-means to principal component analysis, non-negative matrix factorization, and 

spectral clustering. However, these studies focus on standard K-means with squared Euclidean 

distance. In this review paper, we unify the available approaches in generalizing K-means to 

solve challenging and complex problems. We show that these generalizations can be seen from 

four aspects: data representation, distance measure, label assignment, and centroid updating. As 

concrete applications of transforming problems into modified K-means formulation, we review 

the following applications: iterative subspace projection and clustering, consensus clustering, 

constrained clustering, domain adaptation, and outlier detection.
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1 Introduction

K-MEANS clustering is one of the most popular clustering algorithms [111]. It aims to 

identify K real or artificial points as the centroids to represent the data, where each sample 

in the space is assigned to its nearest centroid to achieve the clustering task. K-means 

clustering is recognized as one of the most favorable clustering tools with several merits, 

such as simplicity and efficiency. Based on this, some variants are proposed, including 

K-means++ [6], K-means−− [27], NEO-K-means [163], etc. Beyond the practical value, 

tremendous efforts have been made to explore the theoretical property of K-means in terms 

of convergence rate [18], initialization [6], and generalization [102].
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Studies have shown that K-means is equivalent to principal component analysis (PCA) 

[40], non-negative matrix factorization (NMF) [41], and spectral clustering [37], providing 

a more straightforward alternative solution to these problems. However, previous studies 

predominately focus on standard K-means with squared Euclidean distance. In this review 

paper, we unify the available approaches in generalizing K-means in solving complex 

problems, especially non-standard cluster analysis problems. Specifically, we review the 

available literature on how generalized K-means can solve the following six complex 

problems:

1. Iterative Subspace Projection and Clustering. We review DisKmeans [179], an 

algorithm for simultaneous linear discriminant analysis subspace selection and 

clustering, which is equivalent to kernel K-means with a specific kernel Gram 

matrix.

2. Consensus Clustering. We review the K-means-based consensus clustering utility 

function and link it to flexible divergences [168], [169], where K-means can 

efficiently solve a rich family of utility functions of consensus clustering on a 

binary matrix.

3. Spectral Ensemble Clustering. We review spectral ensemble clustering [96], 

[102] that can be solved via weighted K-means clustering. These methods 

dramatically decrease the time and space complexities from O(n3) and O(n2), 
respectively, to O(n) for both.

4. Partition Level Constrained Clustering. Inspired by the utility function that 

measures partition level similarity, a partition level constraint is employed for 

constrained clustering [94], [101], where they modify K-means by concatenating 

the feature matrix with side information and auxiliary zeros that do not 

contribute to centroid updating.

5. Structure-Preserved Unsupervised Domain Adaptation. We review some methods 

that achieve unsupervised domain adaptation using a K-means framework [99], 

[97]. After the source and target domain data are aligned in a shared space, a 

constrained K-means is employed to label the target data.

6. Joint Clustering and Outlier Detection. We review clustering with outlier 

removal, a joint clustering and outlier detection algorithm [95], where, via 

several basic partitions, the original feature space is transformed into partition 

space, and Holoentropy is employed to enhance the compactness of each cluster 

with outliers removed. This method introduces an auxiliary binary matrix to 

ensure the problem is solved by K-means−− [27].

In the literature, several surveys have been conducted on K-means from different aspects, 

including algorithm variants [79], [167], cluster number [80], [129], feature weighting [35], 

initialization [2], parallel computing [72], [49], theoretical analysis [17], and applications 

[3], [112]. In contrast to the above existing surveys, we focus on solving complex, 

especially non-standard cluster analysis problems, with K-means solutions. Specifically, we 

discuss how to generalize K-means regarding data input, distance, label assignment, and 

centroid updating. Subsequently, we present a general framework for converting a range of 
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problem domains into modified K-means formulations. None of these complex problems 

can be considered traditional clustering; however, with re-formulation, several complex 

problems can be elegantly solved by a simple (modified) K-means algorithm with theoretical 

guarantees. Beyond the aforementioned six problems, our framework provides a general 

direction to simplify other complex problems, such as consensus-guided feature selection 

[98], saliency-guided image co-segmentation [150], and knowledge-reused outlier detection 

[181].

Algorithm 1 Lloyd’s K-means

1: Select K points as initial centroids;

2: repeat

3: Assign each point to its nearest centroid;

4: Recompute the centroid of each cluster;

5: until The centroids do not change.

The remaineder of this paper is organized as follows. In Section 2, we present preliminary 

knowledge of K-means clustering in terms of the objective function, algorithms, and 

properties. Section 3 describes how K-means can be generalized. In Section 4, we discuss 

K-means solutions for iterative subspace projection and clustering, consensus clustering, 

constrained clustering, domain adaptation, and outlier detection. In Section 5, we present 

experimental results that demonstrate these solutions are both effective and efficient. Finally, 

we conclude the paper in Section 6.

2 Preliminaries on K-means

K-means algorithm [111] is widely used to solve clustering problems. It separates samples 

into groups (clusters), such that samples in the same group are similar; while samples 

from different groups differ. In this section, we present some preliminaries on K-means 

clustering, including the objective function, optimization algorithms, and the advantages and 

disadvantages of K-means.

We use some conventional mathematical notations as follows. R, R+, R+ + , Rd and Rn × d are 

used to denote the sets of reals, non-negative reals, positive reals, d-dimensional real vectors, 

and n × d real matrices, respectively. For a d-dimensional real row vector x, xj denotes the 

j-th element of the vector x, ‖x‖p denotes the Lp norm of x, and x⊺ denotes the transpose of x. 

For a general matrix X, xi denotes the i-th row vector of X and xij denotes the element at the 

i-th row and j-th column of X. The gradient of a single variable function f is denoted as ∇f, 

and the logarithm to the base 2 is denoted as log.

2.1 K-means Formulation

We first present the standard K-means objective function. Let X denote the n × d data matrix 

with n instances and d features, where xl is a 1 × d row vector to present the l-th data point in 

X. The objective function for K-means is given as folows:
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min
Ck, mk

∑
k = 1

K
∑

xl ∈ Ck

‖xl − mk‖ ∣2
2 , (1)

where ‖ ⋅ ‖2
2 is the squared Euclidean distance, C1, ⋯, CK are K disjoint clusters, with 

Ck ∩ Ck′ = ∅, ∀k ≠ k′, ∪k = 1
K Ck covering all the samples, and mk is a 1 × d centroid row vector 

of Ck. In standard K-means, the centroid vector is calculated by the arithmetic mean of 

the data points in one cluster, i.e., mk = ∑xl ∈ Ck xl ∕ ∣ Ck ∣, and each data point is assigned to 

the nearest centroid with the least squared Euclidean distance. When each data point only 

belongs to one cluster, this is called a crisp or hard partition [155]. The objective function in 

Eq. (1) minimizes the within-cluster sum of squared errors between each data point and its 

nearest centroid, which is equivalent to minimizing the within-cluster variance.

Algorithm 2 Hartigan’s K-means

1: Initialize K centroids and label for each point;

2: repeat

3: For each point, find a new centroid via mostly decreasing Eq. (1) after label switching;

4: Recompute the old and new centroids by this point;

5: until The centroids do not change.

K-means also indirectly evaluates the separation of clusters due to the following 

relationship:

∑
k = 1

K
∑

xl ∈ Ck

‖xl − mk‖2
2 + ∑

k = 1

K
∣ Ck ∣ ⋅ ‖mk − m‖2

2 = ∑
l

n
‖xl − m‖2

2, (2)

where m = ∑l
n xl ∕ n is the 1 × d centroid row vector of the whole data matrix and ∣ Ck ∣

denotes the number of points in cluster Ck. As the right-hand side of Eq. (2) is a constant, we 

have

min
Ck, mk

∑
k = 1

K
∑

xl ∈ Ck

‖xl − mk‖2
2 max

Ck, mk
∑

k = 1

K
∣ Ck ∣ ⋅ ‖mk − m‖2

2, (3)

This indicates that minimizing the within-cluster sum of squared error is equivalent to 

maximizing the separation of clusters.

Some variants and extensions of K-means include fuzzy C-means [16], where each data 

point has a fuzzy degree of belonging to each cluster, K-medians [71] which uses the median 

in each dimension instead of the mean, K-medoids [77] which uses the medoid instead of 

the mean, X-means [125] which automatically determines the cluster number, and G-means 

[58] which repeatedly splits clusters to build a hierarchy.
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2.2 Objective Function in Matrix Form

The objective function in Eq. (1) can be rewritten in a matrix-wise formulation as follows:

min
H, M

‖X − HM‖F
2, s . t . ∑

k

K
Hlk = 1, Hlk ∈ {0, 1}, (4)

where H is an n × K binary indicator matrix. Hlk = 1 represents the l-th instance belongs to 

the k-th cluster, 1 ≤ k ≤ K, M = (m1; ⋯; mK) is a K × d centroid matrix, and ‖ ⋅ ‖F
2 denotes the 

Frobenius norm.

Further, we can rewrite Eq. (4) into matrix form and introduce an n × K scaled indicator 

matrix Q, which scales H by the square root of the cluster size, such that

Q = H ⋅ diag( ∣ C1 ∣ , ∣ C2 ∣ , ⋯, ∣ CK ∣ )( − 1 ∕ 2) . (5)

If X is sorted according to the clusters, then Q = H(H⊺H)−1 ∕ 2 = (q1, ⋯, qK) and qk is an n × 1
column vector as follows:

qk = (0, …, 0, 1, …, 1
∣ Ck ∣

, 0, …, 0)T ∕ ∣ Ck ∣1 ∕ 2 . (6)

Based on Eqs. (5)&(6), we can rewrite the objective function of K-means as follows:

min
H, M

‖X − HM‖F
2

min
Q

tr(XXT) − tr(QTXXTQ)

max
Q

tr(QTXXTQ) .
(7)

Note that in Eq. (7), tr(XX⊺) is a constant with respect to Q and can be ignored in the 

optimization.

2.3 Optimization Algorithms

K-means clustering is an NP-hard problem, even for two clusters [4], [33]. Greedy heuristic 

strategies have been proposed to pursue the local minimum. Among existing solvers, 

Lloyd’s [105] and Hartigan’s K-means [59] are two popular solvers with convergence 

guaranteed [143], as shown in Algorithms 1 and 2, respectively. The commonly used 

centroid initialization randomly chooses K observations from the dataset and uses these as 

the initial means [19], [57]. Lloyd’s K-means has two iterative phases, assigning labels and 

updating the centroids. It is noteworthythat the centroids are fixed during label assignment. 

Note that Linde, Buzo, and Gray [92] proposed a methodology to improve Lloyd’s 

technique. They extended Lloyd’s results from one to a k-dimensional case. For this reason, 

the algorithm is known as the LBG (the authors initials) or Generalized Lloyd Algorithm 

[117]. In contrast, Hartigan’s K-means updates the centroids after each point has changed 
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its label, where only the change of Eq. (1) is calculated. From the perspective of data 

processing, these two algorithms can be regarded as batch and incremental versions. Both 

methods have time complexities of O(tndK) [137], where t is the number K-means iterations. 

However, Lloyd’s K-means is much faster as it can be implemented in parallel and is 

recognized as the most popular K-means solver. Both Lloyd’s and Hartigan’s K-means are 

guaranteed to find the local rather than the global optimum [60]. Some implementations 

using caching and the triangle inequality to create bounds and accelerate the K-means 

algorithm can be found in [43], [55], [56], [127], [174].

2.4 Advantages and Limitations of K-means

In this subsection, we summarize the advantages and disadvantages of K-means. K-means 

clustering is considered one of the fastest and simplest clustering algorithms. It can be 

distributed in a straightforward manner and scaled up for large-scale data clustering [69], 

[34]. With more than 50 years since its introduction, the efficiency and effectiveness of 

K-means have been verified in various practical scenarios [70]. Moreover, beyond the 

practical value, tremendous efforts have been made to explore the theoretical properties 

of K-means in terms of its convergence rate [5], [18], [148], initialization [6], [25], 

[78], and generalization [102]. Some equivalencies between standard K-means and PCA, 

NMF, spectral clustering, non-parametric Bayesian modeling, and high-order singular value 

decomposition (SVD) have been established in [37], [40], [41], [84].

Admittedly, several limitations of K-means exist [71]. For example, due to the prototypical 

assumption, K-means fails to capture non-spherical cluster structures; the sensitivity of 

K-means initialization heavily affects clustering performance. Some strategies have been 

developed to cope with these challenges, including divide-and-conquer, K-means++ [6], [8], 

Monte Carlo sampling [7], and global K-means [91]. It is also arguable that the pre-defined 

cluster number is another drawback of K-means. In fact, almost every clustering algorithm 

requires its own parameters, including K-means. However, further discussion regarding its 

selection is beyond the scope of this paper.

3 Generalizing K-means

This section focuses on how to generalize K-means for building connections with complex 

problems. We generalize K-means in terms of the objective function and algorithm. 

Specifically, the input data and K-means distance determine its objective function, while 

label assignment and centroid updating are two key components in the iterative algorithm. In 

the following points, we provide the details to generalize K-means in four aspects: K-means 
data input, K-means distance, label assignment, and centroid updating.

3.1 K-means Data Input

In the standard K-means formulation in Eq. (1), the input of K-means is the numerical 

record data X ∈ Rn × d. Several K-means extensions have been proposed to learn clustering 

with different inputs, including categorical data [67], mixed data (both numerical and 

categorical) [68], and graph [38].
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K-modes [26], [67], [185] extends K-means, enabling categorical data clustering. Let X be 

n samples, each of which contains d categorical features. Then the objective function of 

K-modes is given as follows:

min
Ck, mk

∑
k = 1

K
∑

xl ∈ Ck

∑
j = 1

d
δ(xlj, mkj), (8)

where {mk}k = 1
K  represent the centroids. The symbol δ(xlj, mkj) represents the Kronecker delta 

function that returns 1 if the features xlj and mkj are in the same category and 0, otherwise. 

Eq. (8) is equivalent to minimizing the total number of mismatched categories between each 

sample and the centroid associated with the cluster to which this sample belongs.

K-prototype [67] combines K-means and K-modes, such that it can be used to cluster 

mixed data. Let xl be a d-dimensional mixed sample with p numerical features and (d − p)
categorical features. K-prototype objective function is given by the weighted sum of the 

objective of K-means and K-modes, such that

min
Ck, mk

∑
k = 1

K
∑

xl ∈ Ck

∑
j = 1

p
(xlj − mkj)2 + λ ∑

j = p + 1

d
δ(xlj, mkj) , (9)

where λ is a hyper-parameter that controls the trade-off between the numerical and 

categorical features.

K-means can also handle a kernel matrix XX⊺ ∈ Rn × n, which defines similarity over pairs 

of data points, as the input, leading to Kernel K-means [135]. In some applications, we may 

apply a non-linear transform function ψ( ⋅ ) to each sample to generate high-dimensional 

features. Let Ψ = {ψ(x1), ψ(x2), ⋯, ψ(xn)} ∈ Rn × d′ denote the data matrix after this non-linear 

transformation, and κ = ΨΨ⊺ ∈ Rn × n denotes the kernel matrix. Then the objective function 

in Eq. (7) can be rewritten as follows:

max
Q

tr(QTκQ) = tr(QTΨΨTQ) . (10)

This objective function is expressed as a function of the inner product ΨΨ⊺, which can 

be computed with a properly defined kernel function, such as the radial basis function 

(RBF) kernel [156]. Therefore, in the computation, we can directly use the kernel function 

to compute the inner products. It is not necessary to directly compute the coordinates 

of the data after the non-linear transformation function ψ( ⋅ ), which may be difficult to 

compute and possibly in an infinite-dimensional space. Note that ΨΨ⊺ can be regarded 

as a graph input for K-means. In some applications, both graph (or kernel) and record 

data are available. Several methods extend kernel K-means [63], [161], allowing them to 

simultaneously utilize the graph (or kernel) and record data.

Another common strategy for cluster graphs is to utilize graph embedding techniques 

[52], [22], which turn graph data into record data before applying K-means. The most 
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well-known methods in this category include spectral clustering [140], [118], [160]. Note 

that although K-means can take both record data and a graph as the input, the corresponding 

time complexities differ. Lloyd’s K-means is designed particularly to handle record data 

with time complexity O(n). In contrast, spectral clustering involves an eigenvalue problem, 

which can be solved with singular value decomposition (SVD) with a time complexity of 

O(n3) [65]. The higher computational complexity of solving the graph clustering problem of 

K-means motivates researchers to develop scalable methods [29], [162], [62] to improve the 

efficiency.

Researchers also use K-means and its variants to cluster time-series data [1], [130]. One 

straightforward strategy is to treat raw time-series data as record data and directly conduct 

clustering analysis [128], [50], [90], [61]. Alternatively, feature extraction methods, such as 

SVD [81], wavelet transform [159], and independent component analysis (ICA) [53], are 

applied to turn time-series data into record data before clustering.

In this paper, we focus on generalized K-means to solve complex problems, especially 

non-standard cluster analysis problems. Specifically, we present several works that build 

a connection on the objective function between K-means and other problems. Intuitively, 

these problems are difficult to solve using K-means directly. Therefore, data transformation 

is necessary. For example, a kernel matrix is designed to link iterative subspace projection 

and clustering into a kernel clustering problem; one-hot encoding in consensus clustering 

is employed to transform the basic partitions into a binary matrix; a co-association graph 

is decomposed into the record matrix and its transpose; data augmentation concatenates 

the original feature and partial labels in constrained clustering and domain adaptation; an 

auxiliary binary matrix is designed to fit the objective function in the clustering and outlier 

removal. We expand on the details with specific applications regarding these transformations 

in the following section.

3.2 K-means Distance

The standard K-means applies squared Euclidean distance to calculate the distance between 

data points and centroids. Beyond squared Euclidean distance, there are rich distance 

functions suitable for K-means clustering. The K-means objective can now be expressed 

with the following general formulation to accommodate general K-means distance1 

functions f( ⋅ , ⋅ ):

min
Ck, mk

∑
k = 1

K
∑

xl ∈ Ck

f(xl, mk) . (11)

Bregman divergence [10] is a family of distances that fits K-means with arithmetic centroids 

to guarantee the algorithmic convergence. Let ϕ:Rd R be a differentiable strictly-convex 

function, then the Bregman loss function f:Rd × Rd R defined by

1.We use the term K-means distance to represent divergence between the data point and centroids, which is similar to a metric, 
however, may not satisfy symmetry and triangle inequality.
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f(x, y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y) . (12)

can be used as K-means distance. For example, let ϕ(x) = ‖x‖2, we have 

f(x, y) = ‖x‖2 − ‖y‖2 − (x − y) ⋅ 2y = ‖x − y‖2, which is the squared Euclidean distance in 

standard K-means. Bregman divergences include a large number of useful loss functions 

such as squared loss, KL-divergence [39], logistic loss, Mahalanobis distance [114], Itakura-

Saito distance [21], and I-divergence [113]. Later, Point-to-Centroid (P2C) distance [172] 

generalizes Bregman divergence with the relaxation on the non-unique minimizer, which 

has the same mathematical expression as the Bregman divergence in Eq. (12) and also 

guarantees the convergence of K-means algorithms. In particularly, P2C distance include the 

widely-used cosine similarity into the K-means distance. Table 1 provides some examples 

of Bregman divergence and P2C distance. It is worth noting that cosine similarity is a 

widely used metric in high-dimensional clustering. However, this cannot be generalized into 

Bregman divergence.

Based on P2C distance, we can rewrite the generalized K-means objective function in Eq. 

(1) as follows:

∑
k = 1

K
∑

xl ∈ Ck

f(xl, mk)

= ∑
k = 1

K
∑

xl ∈ Ck

ϕ(xl) − ∑
k = 1

K
∑

xl ∈ Ck

ϕ(mk)

− ∑
k = 1

K
∑

xl ∈ Ck

(xl − mk)T∇ϕ(mk)

= ∑
l = 1

n
ϕ(xl) − ∑

k = 1

K
∣ Ck ∣ ϕ(mk),

(13)

where ∑l = 1
n ϕ(xl) is a constant and ∑xl ∈ Ck (xl − mk) is zero due to the definition of the 

arithmetic centroid. Therefore, we have

min
Ck, mk

∑
k = 1

K
∑

xl ∈ Ck

f(xl, mk) max
Ck, mk

∑
k = 1

K
∣ Ck ∣ ⋅ ϕ(mk) . (14)

In Lloyd’s K-means, the partition and centroids are iteratively updated. The data points in 

the same cluster are used to calculate the centroids; while the centroids segment the space 

into K disjoint parts to determine the partition. The left side of Eq. (14) represents K-means 

in the partition level, while the right side interprets K-means in the centroid level. In essence, 

K-means aims to seek K centroids for segmentation according to a certain distance.

If we closely consider the generalized K-means in Eq. (14), the data input discussed in 

Section 3.1 and distance function discussed in Section 3.2 are two identifying components 

of the K-means objective function. In particular, extending the distance function allows 

for solving complex problems with K-means solutions. For example, distance functions 
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are linked to utility functions in consensus clustering and Holoentropy in outlier detection, 

which is further discussed in Section 4.

Here, we emphasize that the centroid updating or calculation should match the K-means 

distance to guarantee algorithmic convergence. Thus far, we have focused on the arithmetic 

centroids, which fit the above P2C distance. In other words, if K-means or related vector 

quantization [54], [82] uses an arbitrary metric to calculate the distance between each data 

point and centroids, the centroid calculation might not be the arithmetic mean of the data 

points in that cluster anymore. K-medians [71] uses the L1 norm as the K-means distance, 

and the centroid is the component-wise median of the points in that cluster [147]; in 

K-modes [67], the centroid is the mode for each categorical feature in each component; 

in multi-view K-means [23], the authors used L2, 1, norm as the K-means distance and the 

corresponding centroid is updated by setting the derivative of the whole objective function 

with respect to the centroid to be zero. Accordingly, Eqs. (13)& (14) do not hold for 

non-arithmetic centroids.

3.3 Non-Exhaustive Overlapping Label Assignment

In K-means, we calculate the distance between each data point and K centroids and assign 

the data point to its nearest centroid. The indicator matrix H in the standard K-means in Eq. 

(4) is binary, where only one non-zero element exists in each row. Recently, Chawla and 

Gionis [27] and Whang et al. [163], [165] extended the traditional label assignment strategy 

for non-exhaustive or overlapping clustering, where the constraint ∑k Hlk = 1 in Eq. (4) is 

relaxed to ∑k Hlk ∈ {0, 1, …, K}, and H remains a binary matrix.

K-means−− [27] simultaneously detects o outliers and partitions the rest (n − o) points into K
clusters. During the assignment phase, the distances between each data point and its nearest 

centroid are calculated. Subsequently, these nearest distances are sorted, where o data points 

with the largest distances are regarded as the outliers and not assigned to any clusters, such 

that

∑
k

Hlk = 1, if xl is an inlier

∑
k

Hlk = 0, if xl is an outlier
. (15)

Similarly, NEO-K-means [163], [165] simultaneously considers non-exhaustive and 

overlapping clustering, where each data point may be an outlier that belongs to none of 

the clusters, or may belong to one or multiple clusters. In NEO-K-means, the first step is 

similar to K-mean−−, where (n − o) data points are assigned to their closest clusters. Then, 

among the remaining n × k − (n − o) distances, (o + r) assignments are made by taking the 

smallest distances. As a result, (n + r) assignments are made, where r is a parameter that 

controls the number of extra assignments. The indicator matrix H remains binary, where 

some rows are all zeros or have several non-zero elements, such that
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∑
k

Hlk > 1, if xl belongs to multiple clusters

∑
k

Hlk = 1, if xl belongs to only one cluster

∑
k

Hlk = 0, if xl is an outliner

. (16)

For both the non-exhaustive and overlapping label assignment cases, it is still possible to 

employ the arithmetic average to update the centroid, and the convergence of K-means−− 

and NEO-K-means are guaranteed.

3.4 Incomplete Centroid Updating

In the standard K-means, we calculate the centroid as the arithmetic value of the whole 

cluster. However, the data matrix may contain missing elements due to device failure, 

transmission loss, or artificial zeros (See Sections 4.4 and 4.5), which heavily affect the 

clustering process. In such cases, the updating centroid rule can be changed without missing 

values included as follows:

mk =
∑xl ∈ Ck⋂Pxl

∣ Ck⋂P ∣ , (17)

where P is the set of samples with non-missing values. The missing values should 

not contribute to the centroid, leading to a smaller denominator than the cluster size. 

It is noteworthy that the set P in K-means−− [27] and NEO-K-means [163], [165] is 

dynamically updated, rather than a fixed one. The convergence of the aforementioned 

incomplete centroid updating is guaranteed as well [94], [101]. Note that the way of centroid 

updating should match the K-means distance to ensure algorithmic convergence. Please refer 

to Section 3.2.

4 Complex Problems: a K-means View

In Section 3, we present the strategies to generalize K-means based on four aspects: 

data transformation, distance function, label assignment strategy, and centroid updating. 

In this section, we discuss how these strategies can be applied to solve the following six 

complex application problems: iterative subspace selection and clustering, K-means-based 
consensus clustering, spectral ensemble clustering, partition level constrained clustering, 
structure-preserved unsupervised domain adaptation and clustering with outlier removal. 
Table 2 provides a summary of the modifications, denoted as √ necessary to generalize 

K-means for solving these problems.

4.1 Iterative Subspace Projection and Clustering

In this subsection, we review discriminative clustering [36] that jointly conducts linear 

discriminant analysis and clustering, which can be solved by two iteratively optimizing 

the projection matrix and clustering partition. Later, Ye et al. demonstrated that iterative 
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subspace selection and clustering are equivalent to kernel K-means with a specific kernel 

Gram matrix [179].

Problem Definition.—Beyond clustering algorithms, input data features have significant 

impact on clustering performance. Many feature engineering practices conducted before 

clustering are applied to project the original feature onto a low-dimensional subspace. For 

example, unsupervised dimensionality reduction techniques include principal component 

analysis (PCA) [74], [45], and various manifold learning algorithms [14], [131]. Subspace 

learning and deep learning techniques [15], [158], [175], [28], [123] can be used to seek a 

better representation. However, the aforementioned two separated steps may not necessarily 

improve the separability of the data for clustering.

One natural solution to tackle this limitation is to iteratively conduct subspace projection 
and clustering in a joint framework [180], [88]. Discriminative clustering [36], a pioneering 

work along this direction, performs clustering and linear discriminant analysis (LDA) [9] 

dimensionality reduction simultaneously, where clustering provides the pseudo labels for 

LDA and LDA seeks the low-dimensional subspace for clustering.

Recall the equivalent relationship between within-cluster variance and inter-cluster 

separation in Eq. (2). For simplicity, we assume the data is centered, that is, ∑l = 1
n xl = 0. 

Then, we have between-cluster scatter and total scatter matrices as follows:

Sb = XTQQTX, and St = XTX, (18)

where Q is defined in Eq. (7). tr(Sb) captures the inter-cluster distance and tr(St) captures the 

total of intra-cluster and inter-cluster distance.

If we consider the scaled cluster indicator Q as the pseudo label, the supervised dimension 

reduction can be used to seek a better feature space. Linear Discriminant Analysis (LDA) 

aims to learn a linear projection matrix U ∈ Rd × d′ that maps X in the d-dimensional space 

to X in the d′-dimensional space (d′ ≤ d), i.e., X = XU. The optimal solution of U can be 

obtained by maximizing the following objective function [9]:

max
U

tr((UTStU)−1UTSbU) . (19)

To avoid a non-invertible matrix, a regularization technique by adding the identity matrix 

with a positive regularization parameter λ is widely used to adjust St, i.e.m St = St + λId.

In discriminant clustering [42], [36], [178], the transformation matrix U and the scaled 

cluster indicator matrix Q are computed by maximizing the following objective function:

max
U, Q

tr((UTStU)−1UTSbU)

= tr((UT(XTX + λId)U)−1UTXTQQTXU) .
(20)
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The above problem can be solved iteratively by alternating between updating U for a given Q
and updating Q for a given U [42], [36], [178]. Later, Ye et al. demonstrated that the iterative 

subspace selection and clustering are equivalent to kernel K-means with a specific kernel 

Gram matrix [179]. In the following points, we demonstrate a kernel K-means solution to 

the iterative subspace projection and clustering problem.

Data Transformation.—The problem in Eq. (20) follows from the representer theorem 

[136] that the optimal linear projection U can be expressed as U = X⊺V, for some matrix 

V ∈ Rn × d′. Let G = XX⊺ denote the Gram matrix, the problem in Eq. (20) can be rewritten 

as follows:

max
V, Q

tr((HT(GG + λG)H)−1VTGQQTGH) . (21)

By the following theorem, the matrix H can be factored from the above equation, and the 

problem in Eq. (20) can be solved using a kernel K-means algorithm.2

Theorem 4.1 ([179]). Let G = XX⊺ be the Gram matrix and λ > 0 be the regularization 

parameter. Let U∗ and Q∗ be the optimal solution to the problem in Eq. (20). Then Q∗ can be 

obtained by the following maximization problem:

max
Q

tr(QT(In − (In + 1
λG)−1)Q) . (22)

By this means, the scaled indicator matrix Q solving the maximization problem in Eq. (22) 

can be computed by solving a kernel K-means problem with the kernel Gram matrix given 

as follows:

κ = In − (In + 1
λXXT)−1 . (23)

Distance Function.—The distance function is the squared Euclidean distance, according 

to the objective functions in the iterative subspace projection and clustering [42], [36], [178], 

[179].

Label Assignment.—Due to the kernel matrix, the centroids cannot be explicitly 

presented as the vector formulation. However, it is still possible to calculate the distance 

between each instance after a non-linear transform function and the centroids with the kernel 

inputs, and then assign the clustering labels according to its nearest centroid. Let ψ( ⋅ ) be the 

non-linear transform function that corresponds to the kernel matrix κ. Then, the distance can 

be computed as follows:

2.All the proofs can be found in the original papers.
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‖ψ(xl) − mk‖2
2 = ‖ψ(xl) − ∑

xj ∈ Ck

1
∣ Ck ∣ψ(xj)‖2

2

= ψ(xl)ψ(xl) − 2
∣ Ck ∣ ∑

xj ∈ Ck

ψ(xl)ψ(xj)

+ 1
∣ Ck ∣2

∑
xj ∈ Ck

∑
xj′ ∈ Ck

ψ(xj)ψ(xj′)

= κll − 2
∣ Ck ∣ ∑

xj ∈ Ck

κlj + 1
∣ Ck ∣2

∑
xj ∈ Ck

∑
xj′ ∈ Ck

κjj′ .

(24)

Centroid Updating.—Due to no explicit vector formulation for centroid, there is no 

explicit centroid updating.

4.2 K-means-based Consensus Clustering

In this subsection, we review K-means-based consensus clustering (KCC) algorithms that 

transform consensus clustering with a utility function into a K-means clustering problem. 

The key to such a transformation is to build the connection between the K-means centroids 

on basic partitions and the utility function. As a pioneering work, Topchy et al. [151] 

proposed a K-means-based method to tackle consensus clustering with a category utility 

function. Later, Wu et al. [168], [169] generalized Topchy’s work, identifying the sufficient 

and necessary condition for a KCC utility function. Subsequently, Wu et al. [170] extended 

the KCC framework to address fuzzy consensus clustering.

Problem Definition.—Consensus clustering, also known as ensemble clustering, aims to 

fuse multiple existing basic partitions into an integrated one [145], [116], [152], which 

is a fusion problem, rather than a clustering problem. The existing consensus clustering 

methods can be categorized into two categories, i.e., the methods with and without utility 

functions, which can also be categorized by measuring similarity between partitions or 

samples, respectively. The methods that employ the utility function measure similarity 

between basic partitions and the consensus one [151], [87], [152], [110], [176]. Conversely, 

the methods that do not employ the utility function use some heuristics or meta-heuristics 

to transform basic partitions into sample-wise similarities, followed by a graph partition 

algorithm [46], [109], [145], [44], [30]. More consensus clustering methods can be found in 

this recent survey [100].

In this subsection, we focus on utility function-based consensus clustering. To understand 

this problem, we begin by introducing some basic mathematical notations for consensus 

clustering. Given r basic partitions of X in Π = {π1, π2, ⋯, πr}, where the basic partitions 

can be obtained by different clustering algorithms, the same algorithms with different 

parameters, or the same algorithms on sampled data, the consensus clustering goal aims 

to fuse these basic partitions into an integrated one. Note that as a fusing problem, consensus 

clustering inputs are a set of basic partitions Π, rather than the data matrix X. Consensus 

clustering with a utility function has the following objective function:
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max
π

Γ(π, Π) = ∑
i = 1

r
wiU(π, πi), (25)

where Γ(π, Π):Z+ +
n × Z+ +

n × r R is a consensus function and U :Z+ +
n × Z+ +

n R is a utility 

function to measure similarity between two partitions, i.e., one basic partition and the 

consensus one, and wi ∈ 0, 1  is the weight for πi, with ∑i = 1
r wi = 1.

The challenges for solving the problem in Eq. (25) can be divided into two aspects, how to 

design an effective utility function and how to solve it efficiently. To better understand utility 

functions, we present the contingency matrix in Table 3. Given two partitions: π and πi, 

containing K and Ki clusters, respectively. In the table, nkj
(i) denotes the number of data objects 

belonging to both clusters Cj
(i) in πi and cluster Ck in π, nk + = ∑j = 1

Ki nkj
(i), and n+j

(i) = ∑k = 1
K nkj

(i), 

1 ≤ j ≤ Ki, 1 ≤ k ≤ K. By dividing the numbers in the table by the total number of data 

points, we have pkj
(i) = nkj

(i) ∕ n, pk + = nk + ∕ n, and p+j
(i) = n+j

(i) ∕ n, based on which utility functions 

can be defined. For example, categorical utility function [115] is one of the most widely 

used utility functions, and can be computed as follows:

Uc(π, πi) = ∑
k = 1

K
pk + ∑

j = 1

Ki

( pkj
(i)

pk +
)2 − ∑

j = 1

Ki

(p+j
(i))2 . (26)

From the definition in Eq. (26), the categorical utility function measures the difference 

between how to predict the consensus partition π with and without πi. It is noteworthy that 

the second term is a constant given πi.

In the literature, Topchy et al. [151] proposed a K-means-based method to tackle the 

consensus clustering with the category utility function, which attracted significant interest 

due to its simplicity and efficiency. Along this direction, Wu et al. [168], [169] provided 

a theoretic framework of K-means-based consensus clustering for the utility function-based 

consensus clustering. Initially, no connection exists between consensus clustering and K-

means clustering, which are different research problems, in essence. Data transformation 

and distance function reformulation are necessary to rewrite consensus clustering into an 

objective function with the K-means formulation.

Data Transformation.—The consensus clustering input is a set of basic partitions. Wu et 
al. introduced the binary matrix for K-means clustering [168], [169]. Let B = {bl ∣ 1 ≤ l ≤ n}
be an n × ∑i = 1

r Ki binary data set derived from the set of r basic partitions Π as follows:

bl = (bl, 1, ⋯, bl, i, ⋯, bl, r), with
bl, i = (bl, i, 1, ⋯, bl, i, j, ⋯, bl, i, Ki), and
bl, i, j =

1, if Lπi(xl) = j
0, otherwise

.
(27)
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From the aforementioned Eq. (27), the binary matrix is the concatenation of each basic 

partition with one-hot encoding.

Distance Function.—Recall that in the K-means objective function in Eq. (14), the 

centroid and ϕ in the distance function are two components. Wu et al. linked the distance 

function with the utility function and provided the KCC utility function [168], [169], which 

is the utility function for the K-means solution.

When running K-means clustering on the binary matrix B , the following lemma shows the 

centroid formulation.

Lemma 4.2 ([169]). For K-means clustering on the binary data set B, the k-th centroid mk

satisfies

mk = (mk, 1, ⋯, mk, i, ⋯, mk, r), with
mk, i = pk1

(i)

pk +
, ⋯, pkj

(i)

pk +
, ⋯, pkKi

(i)

pk +
, , ∀ k, i . (28)

While Lemma 4.2 is extremely simple, it unveils critical information about the construction 

of KCC. Upon close consideration of the first term in the categorical utility function in Eq. 

(26), it is interesting to observe that the categorical utility function employs the elements 

in the centroid vector in Eq. (28). By this means, consensus clustering in Eq. (25) with 

the categorical utility function can be solved by K-means clustering on B with the squared 

Euclidean distance [151]. Beyond the categorical utility function, Wu et al. [168], [169] 

also provided other types of utility functions that benefit from the K-means solution. 

Therefore, they formally introduced a definition of the KCC utility function, which acts 

as a utility function for the consensus function, and relies on the K-means heuristic to find 

the consensus partition.

Definition 4.3 (KCC Utility Function [169]). A utility function U is a KCC utility function, 

if ∀Π = {π1, ⋯, πr} and K ≥ 2, there exists a distance function f such that

max
π ∈ F

∑
i = 1

r
wiU(π, πi) max

π ∈ F
∑

k = 1

K
∑

xl ∈ Ck

f(bl, mk), (29)

where F  is the space of all possible clustering solutions with n data points.

Based on the aforementioned definition, the following theorem uncovers the sufficient and 

necessary condition for utility functions to become a KCC utility function.

Theorem 4.4 ([169]). U is a KCC utility function, if and only if ∀Π = {π1, ⋯, πr} and K ≥ 2, 

there exists a set of continuously differentiable convex functions {μ1, ⋯, μr} such that:

U(π, πi) = ∑
k = 1

K
pk + μi

pk1
(i)

pk +
, ⋯, pkj

(i)

pk +
, ⋯, pkKi

(i)

pk +
, , ∀ i . (30)
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The convex function ϕ for the corresponding K-means distance in Eq. (12) is given by:

ϕ(mk) = ∑
i = 1

r
wiνi(mk, i), ∀ k, with

νi(x) = aμi(x) + ci, ∀ i, a ∈ R+ + , ci ∈ R .
(31)

Theorem 4.4 provides the necessary and sufficient condition for a KCC utility function, 

which is also serves as the criterion to verify whether a given utility function is a KCC 

utility function. That is, a KCC utility function must be a weighted average of a set of 

convex functions defined on (pk1
(i) ∕ pk + , ⋯, pkj

(i) ∕ pk + , ⋯, pkKi
(i) ∕ pk + ), 1 ≤ i ≤ r, respectively, which 

is actually the centroid of K-means on the binary matrix B. Table 4 provides sample KCC 

utility functions.

With data transformation and modification of the distance function, Wu et al. [168], [169] 

mapped consensus clustering with the KCC utility function into a K-means objective 

function. Therefore, Lloyd’s algorithm can be used to find a solution efficiently, which 

is described as follows:

Label Assignment.—Each data point is assigned to its nearest centroid based on some 

distance function according to Eq. (12) and (31).

Centroid Updating.—The centroid is updated by the arithmetic mean of each cluster 

(standard approach).

4.3 Spectral Ensemble Clustering

In this subsection, we present spectral ensemble clustering (SEC) [96], [102], a method 

in second category of consensus clustering using the co-association matrix to measure 

similarity between data points. By transforming the co-association matrix into a binary 

matrix and its transpose, SEC is solved with a weighted K-means clustering, and 

dramatically reduces the time and space complexities of standard spectral clustering on 

the co-association matrix from O(n3) and O(n2), respectively, to both O(n).

Problem Definition.—Beyond the utility-based consensus clustering methods in Section 

4.2, co-association matrix-based methods provide an alternative strategy for learning a 

consensus clustering solution, where a co-association matrix is constructed to measure the 

number of a pair of instances occurring simultaneously in the same cluster among different 

basic partitions. Based on that, consensus clustering, a fusion problem, can be cast into 

the conventional graph partition problem, where agglomerative hierarchical clustering and 

spectral clustering can be followed to solve the problem [46], [109]. However, these methods 

also suffer from some non-ignored drawbacks, i.e., the high time and space complexities of 

O(n3) and O(n2) prevent them from handling large-scale data.

To reduce the huge time and space complexities, Liu et al. proposed spectral ensemble 

clustering (SEC) [96], [102], which initially aims to apply spectral clustering on the co-

association matrix for the final consensus partition, and finally solves it by a weighted 
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K-means clustering. Here, we continue to use the variables in Section 4.2. Given r basic 

partitions Π = {π1, π2, ⋯, πr}, a co-association matrix S = {slq ∣ 1 ≤ l, q ≤ n} ∈ Rn × n is defined 

as follows [46]:

slq = ∑
i = 1

r
δ(πi(xl), πi(xq)), (32)

where δ(πi(xl), πi(xq)) represents the Kronecker delta function that returns 1 if the features xl

and xq are with the same category in the basic partition πi and 0, otherwise.

The objective function of normalized-cut spectral clustering on S can be expressed as the 

following trace maximization problem [37]:

max
Z

1
K tr(ZTD−1 ∕ 2SD−1 ∕ 2Z), s . t . ZTZ = I, (33)

where D is a diagonal matrix of S with D = diag(d1, ⋯, dl, ⋯, dn) with dl = ∑q = 1
n slq,

Z = D1 ∕ 2H(H⊺DH)−1 ∕ 2
, and H is the partition indicator matrix.

However, performing the standard spectral clustering on the co-association matrix suffers 

from a significant time complexity. To address this challenge, SEC builds the connection 

between spectral clustering on the co-association matrix and weighted K-means, as 

described in the following points.

Data Transformation.—The input co-association matrix can be regarded as a graph that 

measures the pairwise similarity between instances. Liu et al. [96], [102] decomposed 

the co-association matrix into the record data to accelerate computation. According to the 

co-association matrix definition, S = BB⊺, where B is the n × ∑i = 1
r Ki binary matrix defined in 

Eq. (27). A weighted K-means is employed on the matrix with bl ∕ wl, rather than B itself due 

to the objective function in Eq. (33), where wl = dl = ∑i = 1
r ∑q = 1

n δ(πi(xl), πi(xq)). The weight of 

each data point is the summation of the cluster size to which the data point belongs in each 

basic partition.

Distance Function.—Due to the transformation between the trace formulation and 

Frobenius norm, the squared Euclidean calculates the distance between each instance and 

centroids. With the data transformation and distance function, the objective function can be 

written in Eq. (33) in the K-means version using the following theorem.

Theorem 4.5 ([102]). Given a set of basic partitions Π, the spectral clustering on S is 

equivalent to a weighted K-means clustering of a variant of B; that is,

max
Z

1
K tr(ZTD−1 ∕ 2SD−1 ∕ 2Z)

max
Ck, mk

∑
k = 1

K
∑

xl ∈ Ck

wl‖ bl

wl
− mk‖2,

(34)
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where mk = ∑xl ∈ Ck bl ∕ ∑xl ∈ Ck wl, and wl = dl = ∑i = 1
r ∑q = 1

n δ(πi(xl), πi(xq)).

By the above transformation, the time complexity of SEC is O(tnrK). Thus, the 

transformation dramatically reduces the time and space complexities from O(n3) and O(n2)
of the standard spectral clustering on the co-association matrix, respectively, to O(n). Note 

that there is only one non-zero element in bl, i. Accordingly, while the weighted K-means is 

conducted on a highly sparse matrix, the real dimensionality in computation is merely r, the 

number of basic partitions. Note that wl in Eq. (34) is the weight for l-th instance, while wi in 

Eq. (25) is the weight for i-th basic partition.

Dhillon et al. [37] uncovered the connection between the general spectral clustering and 

weighted kernel K-means. Here, Liu et al. [96], [102] considered the spectral ensemble 

clustering, a special case of spectral clustering, and discovered the kernel mapping function, 

which is the binary data dividing its corresponding weight, i.e., ψ(xl) = bl ∕ wl according 

to the property of the kernel matrix κ = S = BB⊺. By this means, SEC is transformed 

into a weighted K-means clustering, where the data transformation is crucial for gaining 

high efficiency for SEC and ensures its practical feasibility. Finally, the standard Lloyd’s 

algorithm can be used for an efficient solution using the following label assignment and 

centroid updating.

Label Assignment.—Each data point is assigned to its nearest centroid according to the 

squared Euclidean distance.

Centroid Updating.—As weighted K-means is employed, the centroid is updated by the 

weighted arithmetic average of each cluster by Eq. (34).

4.4 Partition Level Constrained Clustering

In this subsection, we present partition level constrained clustering [94], [101] by exploring 

the intrinsic structure from the data with the guidance from the side information. Based 

on the strategies described in Section 3, the authors introduced a concatenated matrix to 

the original data matrix and partition-level side information and solved it via a modified 

K-means distance function and centroid updating rule.

Problem definition.—Constrained clustering applies the side information to guide the 

clustering process [164], [166], [124], [12]. Pairwise constraints are one type of the side 

information, where must-link and cannot-link constraints indicate whether two instances 

should lie in the same cluster or not, respectively [11], [144], [89]. However, it is typically 

challenging to make pairwise decisions in real-world applications because prior knowledge 

or references are generally insufficient. In contrast to pairwise constraints, Liu et al. [94], 

[101] proposed another type of the side information, named partition level side information 

or partial labels, which is defined as follows.

Definition 4.6 (p-Partition Level Side Information [101]). A portion p ∈ (0, 1) of n data 

instances is annotated as the cluster labels from 1 to K, where K is the user-predefined 

cluster number. Such the label annotation is called p–partition level side information.
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Unlike pairwise constraints, partition level side information treats the side information as a 

whole, which is of high consistency and avoids self-contradictory derived from the pairwise 

constraints. The clustering problem with partition level side information is different from 

the conventional classification problem. The former takes all labeled and unlabeled data for 

training and discovers the whole structure, while the latter only uses labeled data for training 

and seeks a decision boundary. It is noteworthy that the cluster number in the partition level 

side information may be different from the one in the later clustering process. In such a 

scenario, the classification problem cannot assist in discovering novel classes.

Partition level constrained clustering aims to find a partition that captures the intrinsic 

structure from the data and is of high consistency with the partition level side information. 

Recall that the utility function in the above two subsections plays a role in measuring the 

similarity of two partitions. It inspires us to employ the categorical utility function in Eq. 

(26) as a regularizer for partition level constrained clustering.

Let X be the n × d data matrix and P be an np × K side information matrix containing np
instances in K clusters, where P is in the format of one-of-K coding. The objective function 

of the partition level constrained clustering is as follows:

min
H, M

‖X − HM‖F
2 − λUc(H ⊗ P, P), (35)

where H is the n × K indicator matrix, M is the K × d centroid matrix, ⊗ is an operator to 

trim H according to the common instance in both H and P, and λ is a positive parameter 

to present the side information confidence degree. In the original papers [94], [101], the 

authors set λ = 100 as the default setting. Later, one following work [144] found that the 

method performs more stably for λ = 100 ⋅ tr(XX⊺), i.e., for λ being proportional to the trace 

of the sample covariance matrix of data set X.

The objective function in Eq. (35) consists of two parts. The first term is the standard 

K-means, and the second is the categorical utility function measuring the disagreement 

between the side information P and the counterpart in H. The first term in Eq. (35) is the 

K-means formulation. It is necessary to transform the second term in Eq. (35), such that the 

problem can be solved with a unified K-means framework.

Data Transformation.—To begin with, we first present the following lemma that 

transforms the second term in Eq. (35).

Lemma 4.7 ([101]). Given one fixed partition P, we have

max
H

Uc(H, P) min
H, G

‖P − HG‖F
2, (36)

where G is a K × K matrix, where the k-th row of G is (pk1 ∕ pk + , ⋯, pkK ∕ pk + ).

The above equivalent relationship between ‖P − HG‖F
2 and Uc(H, P) holds for any H, because 

‖P − HG‖F
2 + np ⋅ Uc(H, P) is a constant with given P. Lemma 4.7 introduces one extra variable 

Liu et al. Page 20

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



G to capture the mapping relationship between P and H. After aligning P to H with G, the 

objective function in Eq. (35) can be rewritten as follows:

min
H1, H2, M, G

‖X1 − H1M‖F
2 + ‖X2 − H2M‖F

2 + λ‖P − H1G‖F
2, (37)

where the data matrix X and the indicator matrix H are separated into X1, H1 with np
instances and X2, and H2 with the rest n(1 − p) instances, respectively, according to the side 

information P. Based on the new objective function in Eq. (37), Liu et al. [94], [101] 

provided a K-means-like optimization with a modified distance function and a new centroid 

updating rule.

The partition-level constrained clustering input involves two parts, the original data matrix, 

and the side information. However, a record data formulation is required to convert to 

a generalized K-means. It is natural to concatenate the original data matrix and side 

information. However, some data points do not consist of side information, which makes 

the concatenated matrix incomplete. To address this, Liu et al. [94], [101] used zeros to fill 

up the matrix. Therefore, the n × (d + K) concatenated matrix D = {dl ∣ 1 ≤ l ≤ n} is described 

as follows:

D = X1 P
X2 0 . (38)

Further D can be decomposed into two parts D = D1 D2 , where D1 = X and D2 = P 0 ⊺. Zeros 

in this matrix are the auxiliary fill-ups, rather than observed data. Therefore, the distance 

function and centroid updating are modified accordingly to handle these zeros.

Distance Function.—Since the concatenated matrix has two parts, the distance function 

also consists of two components, where the auxiliary zeros are not involved in the 

calculation.

f(dl, mk) = ‖dl
(1) − mk

(1)‖2
2 + λ1(dl ∈ P)‖dl

(2) − mk
(2)‖2

2 . (39)

In the above equation, 1(dl ≤ P) = 1 indicates the side information contains xl, and 0 

otherwise. mk
(1) and mk

(2) denote the centroid in the original and side information space.

Label Assignment.—Each data point is assigned to its nearest centroid according to the 

distance function defined in Eq. (39).

Centroid Updating.—As the partition level side information guides the clustering process 

in a utility way, those auxiliary zero values should not contribute to similarity of two 

partitions, which will affect the centroid updating. Let mk = (mk
(1), mk

(2)) be the k-th centroid 

of K-means, where mk
(1) = (mk, 1, ⋯, mk, d) and mk

(2) = (mk, d + 1, ⋯, mk, d + K). Liu et al. [94], [101] 

modified the computation of centroids as follows:
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mk
(1) =

∑dl ∈ Ck dl
(1)

∣ Ck ∣ , mk
(2) =

∑dl ∈ Ck⋂Pdl
(2)

∣ Ck⋂P ∣ . (40)

Here, in Eq. (40), our centroids have two parts mk
(1) and mk

(2). For mk
(1), the denominator is still 

∣ Ck ∣; albeit for mk
(2), it is ∣ Ck ∩ P ∣.

Considering these four aforementioned points, Liu et al. [94], [101] provided the following 

Theorem 4.8 for the K-means solution.

Theorem 4.8 ([101]). Given the data matrix X, side information P and auxiliary matrix 

D = {dl}1 ≤ l ≤ n, we have

min
H, M, G

‖X − HM‖F
2 + λ‖P − (H ⊗ P)G‖F

2

min
Ck, mk

∑
k = 1

K
∑

dl ∈ Ck

f(dl, mk),
(41)

where mk is the k-th centroid calculated by Eq. (40) and the distance function f is calculated 

in Eq. (39).

Theorem 4.8 maps the problem in Eq. (35) into a K-means-like optimization with modified 

a distance function and centroid updating rules, providing an elegant formulation that can be 

solved with high efficiency. By this means, the problem in Eq. (35) is solved by iteratively 

assigning the points to the centroid by Eq. (39) and updating the centroids by Eq. (40). Upon 

close consideration of the concatenated matrix D, the side information can be regarded as 

new features, which provides an approach to cluster mixed data.

As constrained clustering, as addressed here, is solved by a modified K-means clustering 

with incomplete centroid updating and the partial distance function, the objective function is 

still guaranteed to converge to a local minimum by Theorem 4.9.

Theorem 4.9. The objective function value of the problem in Eq. (35) would continuously 

decrease and converge to a local minimum via K-means clustering with the centroid 

updating rule in Eq. (40) and the distance function in Eq. (39).

4.5 Structure-Preserved Unsupervised Domain Adaptation

In this subsection, we present structure-preserved unsupervised domain adaptation for 

single- and multi-source scenarios [99], [97]. Specifically, the authors employed the 

aforementioned partition level constrained clustering to address the domain adaptation 

problem via a K-means solution.

Unsupervised domain adaptation aims to recognize the target data with the assistance of 

auxiliary labeled source data. Due to the divergence between the source and data domains, 

domain alignment and knowledge transfer are two crucial processes in domain adaptation. 

Most unsupervised domain adaptation methods focus on the first problem, which can be 

approximately separated into four branches, discrepancy-, adversarial-learning, self-training, 
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and optimal-transport-based. Discrepancy-based domain adaptation estimates and minimizes 

the marginal and conditional distribution difference between the source and target domain 

[154], [106], [108], [146]. Adversarial-learning-based domain adaptation learns the domain-

invariant representation to align the source and target domain [48], [153], [133], [183], 

[182], [86], [31]. Recently, self-training with networks has become a promising alternative 

towards domain adaptation [186], [104], [103], which involves an iterative process training 

a network on the target domain, and generated pseudo labels are used to re-train the 

network. Optimal transport has been applied in domain adaptation to mitigate the domain 

gap by minimizing the cost of complex distributions and aligning the representations 

across domains [139], [32], [119]. In contrast to the above categories, Liu et al. [99], [97] 

addressed the second problem that with well-aligned representation, how knowledge should 

be effectively transferred from source to target domain. Assuming that the projection matrix 

is given and the source data have labels, they formulated the domain adaptation problem as 

a partition level constrained clustering, which can be regarded as an extension of Section 

4.4 in a different application scenario. In the following points, we present their methods for 

handling unsupervised domain adaptation in terms of single- and multi-source scenarios in 

Sections 4.5.1 and 4.5.2, respectively.

4.5.1 Single-source unsupervised domain adaptation

Problem Definition.: To capture the structure of different domains for effective transfer, Liu 

et al. [99], [97] formulated this as a constrained clustering problem. After domain alignment, 

they put the source and target data together for clustering with a partition level constraint 

on the source data. Let ZS ∈ Rns × d and ZT ∈ Rnt × d denote the representations in the shared 

space of source and target data and YS ∈ Rns × K denote the source data label. Their objective 

function can be written as follows:

min
HS, HT, M

ZS

ZT
− HS

HT
M

F

2

− λUc(HS, YS), (42)

where ZS, ZT, YS are input variables, HS ∈ Rns × K and HT ∈ Rnt × K are the unknown 

assignment matrices for the source and target data, respectively. M is the corresponding 

centroid matrix for K-means clustering and λ is a positive trade-off parameter.

The aforementioned problem in Eq. (42) is similar to the one in Eq. (35), where a K-means-

like solution can be achieved using our four key points.

Data Transformation.: The source and target data are put together with the source label 

information. For target data without labels, zeros are used to fill up the matrix. Then, we 

have the (ns + nt) × (d + K) concatenated matrix D as follows:

D = ZS YS

ZT 0 . (43)

The corresponding distance function and centroid updating rule are similar to the ones in Eq. 

(40) and (39).
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Distance Function.: As the concatenated matrix has two parts, the distance function also 

consists of two components, where the auxiliary zeros are not involved in the calculation. 

The corresponding distance function is similar to the one in Eq. (39).

Label Assignment.: Each data point is assigned to its nearest centroid according to the 

distance function in Eq. (39).

Centroid Updating.: The centroid updating rule is similar to the one in Eq. (40), where the 

auxiliary zeros do not contribute to the centroids.

4.5.2 Multi-source unsupervised domain adaptation

Problem Definition.: For the multi-source scenarios, we are given two source domains and 

one target domain, without loss of generality. Here a pre-learned shared space with different 

projections for these two source domains leads to ZS1 ∈ Rns1 × d1, ZT1 ∈ Rnt × d1, ZS2 ∈ Rns2 × d2

and ZT2 ∈ Rnt × d2. Then the optimization problem for a multi-source setting can be written as 

follows:

min
HS1 ∕ 2, HT, M1 ∕ 2

ZS1

ZT1

−
HS1

HT
M1

F

2

− λUc(HS1, YS1)

+
ZS2

ZT2

−
HS2

HT
M2

F

2

− λUc(HS2, YS2) .
(44)

The target data have different representations as ZT1 and ZT2 with different d1 and d2

dimensions of common spaces, but share the same class structure HT ∈ Rnt × K. λ is a positive 

trade-off parameter. For more than two source domains, Liu et al. [99], [97] aligned each of 

them to the target domain with the source label consistency constraint. To solve the problem 

in Eq. (44), we introduce an auxiliary matrix for data transformation.

Data Transformation.: The two source and target data are put together with 

the source label information according to different domains. Then, we have the 

(ns1 + ns2 + nt) × (d1 + K + d2 + K) concatenated matrix D as follows:

D =
ZS1 YS1 0 0
0 0 ZS2 YS2

ZT1 0 ZT2 0
. (45)

Unlike the auxiliary matrix in Eq. (43), zeros here are also employed to fill up the elements 

between two source domains, because the projection between source domains is not pre-

learned.

Distance Function.: As the concatenated matrix has four parts, the distance function also 

consists of four components, where the auxiliary zeros are not involved in the calculation. 

Let D1 = {dl
(1)} = ZS1 ∪ ZT1 and D2 = {dl

(2)} = ZS2 ∩ ZT2, the distance function is as follows:
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f(dl, mk) =
= 1(dl ∈ D1)‖dl

(1) − mk
(1)‖2

2 + λ1(dl ∈ YS1)‖dl
(2) − mk

(2)‖2
2

+ 1(dl ∈ D2)‖dl
(3) − mk

(3)‖2
2 + λ1(dl ∈ YS2)‖dl

(4) − mk
(4)‖2

2,
(46)

where dl
(1), dl

(2), dl
(3) and dl

(4) are with d1, K, d2, K dimensions, respectively. ml
(1), ml

(2), ml
(3) and ml

(4)

will be calculated by the following Eq. (47).

Label Assignment.: Each data point is assigned to its nearest centroid according to the 

distance function in Eq. (46).

Centroid Updating.: The centroid updating rule is similar to the one in Eq. (40), where the 

auxiliary zeros do not contribute to the centroids.

mk
(1) =

∑xl ∈ Ck⋂D1 dl
(1)

∣ Ck⋂D1 ∣ , mk
(2) =

∑xl ∈ Ck⋂YS1
dl

(2)

∣ Ck⋂YS1 ∣ ,

mk
(3) =

∑xl ∈ Ck⋂D2 dl
(3)

∣ Ck⋂D2 ∣ , mk
(4) =

∑xl ∈ Ck⋂YS2
dl

(4)

∣ Ck⋂YS2 ∣ .
(47)

After transforming the utility function into the Frobenius norm by Lemma 4.7, a total 

of seven unknown variables require updating. Thanks to the K-means-like solution, 

the complex problem can be elegantly solved by two-phase iterative optimization. The 

convergence of the K-means-like solution for the problems in Eq. (42) and (44) is also 

guaranteed.

The problems demonstrated in Sections 4.4 and 4.5 are solved by making the learned 

partition consistent with the given partial partition. Here, we call them structure-preserved 

learning, which consists of the K-means for the core clustering and the utility function 

as a regularizer. Beyond the squared Euclidean distance for the K-means clustering and 

categorical utility function, the aforementioned findings also hold for P2C distance in Eq. 

(12) and the KCC utility function in Eq. (31) for various applications. To obtain a K-means 

formulation, we fill zeros into the concatenated matrix D, which are not involved in the 

distance calculation nor do they contribute to the centroid computing.

4.6 Clustering with Outlier Removal

In this subsection, we review clustering with outlier removal [95], a joint clustering and 

outlier detection algorithm, where the original feature space is transformed into partition 

space via several basic partitions, and Holoentropy is employed to enhance the compactness 

of each cluster with outliers removed. This method introduces an auxiliary binary matrix to 

ensure the problem is solved by K-means−− [27].

Problem Definition.—Based on diverse assumptions, a number of unsupervised outlier 

detection methods have been proposed, including linear [141], [134], proximity [20], [149], 

[64], [51], and probability-based models [126]. Moreover, some studies pursue outlier 

detection by subspace learning [83], low-rank [184], matrix-completion [76], random walk 
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[121], and ensemble models [93], [93], [85]. More details on recent deep outlier detection 

can be found in this review [122].

As cluster analysis and outlier detection are closely coupled tasks [47], some work studies 

these two problems together [27], [163], [165]. Here, we review clustering with outlier 

removal (COR) [95], which jointly achieves cluster analysis and outlier detection, where 

o data points are detected as outliers, and the remainder is partitioned into K clusters. 

Generally speaking, the original space is transformed into a binary space by generating basic 

partitions to define clusters. Subsequently, a Holoentropy-based objective function [173] 

is employed to maximize the compactness of each cluster with a few outliers removed, 

which is efficiently solved by a unified K-means−−. In the following points, we present the 

objective function in [95] in terms of outlier detection, after which we demonstrate that only 

the partial problem can be easily formulated as the K-means optimization. Finally, by taking 

the original binary matrix and its counterpart matrix as the input, K-means−− is employed 

for the final solution.

First, the data matrix X is transformed in the original feature space into the binary matrix 

B in the partition level space with r basic partitions, where each partition has Ki clusters, 

1 ≤ i ≤ r. This process is similar to generating basic partitions in consensus clustering, which 

can be obtained by Eq. (27). Let O denote the set of o outliers. The goal of clustering with 

outlier removal is to maximize the compactness of each cluster in the partition level space 

with o outliers removed. We present the following objective function on the binary matrix 

B = {bl ∣ 1 ≤ l ≤ n} as follows.

min
Ck, O

∑
k = 1

K
pk + HL(Ck), (48)

where Ck ∩ Ck′ = ∅ if k ≠ k′ and C1 ∪ ⋯ ∪ CK = X\O, pk + = ∣ Ck ∣ ∕ (n − o) and HL( ⋅ )
denotes the Holoentropy on the categorical data [173], which is defined as the sum of 

the entropy and the total correlation of the random input. By the definition of Holoentropy, a 

detailed objective function is written as follows:

∑
k = 1

K
pk + HL(Ck) ∝ ∑

k = 1

K
∑

bl ∈ Ck

∑
i = 1

r
∑
j = 1

Ki

H(Ck)

= ∑
k = 1

K
∑

bl ∈ Ck

∑
i = 1

r
∑
j = 1

Ki

( − p(Ck, i, j = 0) log p(Ck, i, j = 0)

− p(Ck, i, j = 1) log p(Ck, i, j = 1)) .

(49)

Data Transformation.—The input is a set of basic partitions. Similar to consensus 

clustering, the binary matrix is derived from basic partitions in Eq. (27). When running 

K-means clustering on the binary matrix B, the following lemma presents the centroids.

Lemma 4.10. For K-means clustering on the binary data set B, the m-th centroid mk satisfies
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mk = (mk, 1, ⋯, mk, i, ⋯, mk, r), with
mk, i = (mk, i, 1, ⋯, mk, i, j, ⋯, mk, i, Ki),
mk, i, Ki = ∑

bl ∈ Ck

bl, i, j ∕ ∣ Ck ∣ = p(Ck, i, j = 1)), ∀ k, i, j . (50)

The k-th centroid of K-means on the binary matrix B is extactly the same with the 

p(Ck, i, j = 1). When replacing p(Ck, i, j = 1) in Eq. (49) with mk, i, Ki, the second part is 

transformed into the objective function of a K-means clustering with entropy regarding 

on the centroids in Eq. (14). In the following points, we also demonstrate how the 

first part is transformed into the K-means framework. Note that for the binary matrix, 

p(Ck, i, j = 1) + p(Ck, i, j = 0) = 1. Therefore, we present another binary matrix B = {b ∣ 1 ≤ l ≤ n}
as follows:

bl = (bl, 1, ⋯, bl, i, ⋯, bl, r), with
bl, i = (b l, i, 1, ⋯, b l, i, j, ⋯, b l, i, Ki), and

b l, i, j =
0, if Lπi(xl) = j
1, otherwise

.
(51)

B and B are the 1-of-K and K − 1-of-K codings of the original data, respectively. mk is 

the centroid of B. Finally, we have the input for our generalized K-means as follows: 

D = B B ∈ Rn × 2∑i = 1
r Ki. With the data matrix D, the following theorem is illustrated to 

solve this problem in Eq. (48) with K-means−−.

Theorem 4.11 ([95]). Given the data matrix X, we generate several basic partitions 

π from X and transform them into binary matrices B, B by Eq. (27) and (51). Let 

D = B B = {dl ∣ 1 ≤ l ≤ n}, we have

min
Ck, O

∑
k = 1

K
pk + HL(Ck)

min
Ck, O, mk, mk

∑
k = 1

K
∑

dl ∈ Ck

f(dl, (mk, mk)),
(52)

where f is the distance function of the summation of KL-divergence on each dimension, and 

mk and mk are the corresponding centroid by Eq. (50), which does not involve the outliers.

Distance Function.—According to Holoentropy, the summation of KL-divergence on 

each dimension calculates as the K-means distance.

Label Assignment.—Each data point is assigned to its nearest centroid according to the 

specified distance function. For this problem, however, some data points with large distances 

are regarded as outliers that are not assigned cluster labels. The non-exhaustive strategy in 

Eq. (15) applies to the assignment.

Liu et al. Page 27

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Centroid Updating.—The centroid is updated by the arithmetic average of each cluster 

(standard way). It is noteworthy that the outliers do not belong to any cluster and nor do they 

contribute to the centroid.

5 Experimental Results

5.1 Experimental Settings

Experimental problems.—In this section, we present experimental results to verify 

the effectiveness of the K-means solution in terms of consensus clustering, constrained 

clustering, image co-segmentation, domain adaptation, and outlier detection by different 

measurements. Iterative subspace projection and clustering is the cluster analysis problem, in 

essence, which is not included here due to that we focus on the non-clustering problems. We 

illustrate these experimental problems as follows:

• Consensus clustering. Given several basic partitions of the same data points 

as inputs, consensus clustering aims to fuse these partitions into one that is 

integrated.

• Constrained clustering. Constrained clustering seeks the intrinsic partition with 

the assistance of the partition level side information or pairwise must-link/

cannot-link constraints.

• Image co-segmentation. Given a collection of images containing similar objects, 

co-segmentation separates foreground objects from the background of each 

image.

• Unsupervised domain adaptation. Domain adaptation refers to the ability to 

apply an algorithm trained in one or more source domains to a different but 

related target domain. Here the “unsupervised” means that the source domain is 

associated with labels, while the target domain does not have annotated labels.

• Unsupervised outlier detection. An unsupervised outlier detection algorithm aims 

to detect a small portion of data points as outliers, which are different from other 

majority data points.

Data sets.—Several benchmark data sets are used to address the aforementioned 

experimental problems. They include iris, wine, breast, ecoli, pendigits, satimage, yeast 
from a UCI machine learning repository,3 text data sets cranmed, hitech, k1b, mm, 
cacmcisi, classic, la12, reviews, sports, fbis, re1, wap from CLUTO package,4 image 

classification data sets caltech,5 image co-segmentation data sets elephant, ferrari, 
gymnastics, kite, skating [13], and domain adaptation data sets Amazon(A), Caltech(C), 

Dslr(D), Webcam(W).6 For the outlier detection data sets, we treat the class with the 

smallest size as outliers.

3. https://archive.ics.uci.edu/ml/datasets.html 
4. http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download 
5. http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 
6. https://people.eecs.berkeley.edu/~jhoffman/domainadapt/ 
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Competitive methods and implementation.—Next, we present the competitive 

methods according to different tasks.

• Consensus clustering. The Cluster-based Similarity Partitioning Algorithm 

(CSPA) [145] is pioneering work with graph partition along with consensus 

clustering. Hierarchical Consensus Clustering (HCC) [46] is the most 

representative of the link-based methods, which applies the agglomerative 

hierarchical clustering on the co-association matrix to find the consensus 

partition. Probability Trajectory Based Graph Partitioning (PTGP) [66] is based 

on the micro-cluster concept to summarize the basic partitions into a small 

core co-association matrix. To generate basic partitions, we apply K-means 

clustering with the cluster number sampled from K, n  to generate 100 

basic partitions, where K is the true clustering number. Here K-means-based 

Consensus Clustering (KCC) [169] is the K-means solution with entropy-based 

utility UH, while Spectral Ensemble Clustering (SEC) [96] is the K-means 

solution with the co-association matrix.

• Constrained clustering. Constrained Non-negative Matrix Factorization (CNMF) 

[166] is a partition-level constrained clustering method based on NMF, while 

Linear-time Constrained Vector Quantization Error (LCVQE) [124] is a pair-

wise constrained clustering method based on K-means. KCC with Uc combines 

the partition from the data and partition level side information for the final 

solution. PLCC [101] is the K-means solution for constrained clustering. Here 

we apply 50% partition level side information and transfer it to must-link and 

cannot-link for LCVQE.

• Image co-segmentation. Joulin [75], Vicente [157], and Rubio [132] are used for 

comparison, which directly take the images as input. For the K-means solution, 

Saliency Guided PLCC (SG-PLCC) [101] employs the cosine utility Ucos, where 

the unsupervised saliency prior [24] is obtained first as the partition level side 

information.

• Domain adaptation. For single-source domain adaptation, Transfer Component 

Analysis (TCA) [120], Transfer Subspace Learning (TSL) [142], and 

Joint Domain Adaptation (JDA) [107] are used for comparison. For multi-

source domain adaptation, Robust visual Domain Adaptation with Low-rank 

Reconstruction (RDALR) [73] employs the low-rank construction and linear 

projection for the adaptation process; Fisher Discrimination Dictionary Learning 

(FDDL) [177] applies the fisher discrimination dictionary learning for sparse 

representation, and Shared Domain-adapted Dictionary Learning (SDDL) [138] 

employs the domain-adaptive dictionaries to learn the spare representation. 

Structured-Preserved Unsupervised Domain Adaptation (SP-UDA) [97], [99] is 

the K-means solution for this task, where the common space of source and target 

data is obtained by JDA [107].

• Outlier detection. Local Outlier Factor (LOF) [20], Fast Angle-Based Outlier 

Detector (FABOD) [126], and iForest [93] are three representative outlier 
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detection methods based on local density, angle, and random forest, respectively. 

Clustering with Outlier Removal (COR) [95] is the K-means solution for this 

task, which runs in the partition space. Similar to consensus clustering, we apply 

K-means clustering with the cluster number sampled from K, n  to generate 

100 basic partitions.

These tasks are all unsupervised, where the default parameters suggested by the authors are 

employed for fair comparison.

Metrics.—As labels are available for these data sets, external measurements are applied to 

evaluate the performance in terms of cluster validity and outlier detection.

Normalized Rand Index (Rn), Normalized Mutual Information (NMI), and Accuracy are 

three widely used external measurements for cluster validity [171]. Rn measures the 

similarity between two partitions in a statistical manner; NMI measures mutual information 

between the resulting cluster and ground truth labels, followed by a normalization operation; 

Accuracy comes from classification with the best mapping. These metrics can be computed 

as follows:

NMI =
∑i, jnij log n ⋅ nij

ni + ⋅ n+j

(∑ini + log ni +
n )(∑jnj + log n+j

n )
,

Rn =
∑i, j

nij

2
− ∑i

ni +

2
⋅ ∑j

n+j

2
∕ n

2

∑i
ni +

2
∕ 2 + ∑j

n+j

2
∕ 2 − ∑i

ni +

2
⋅ ∑j

n+j

2
∕ n

2

,

Accuracy = ∑
i = 1

n
δ(si, map(ri)) ∕ n,

where δ(x, y) denotes the Kronecker delta function that equals to one if x = y; and equals to 

a zero, otherwise. map(ri) is the permutation mapping function that maps each cluster label 

ri to the ground truth si. The best mapping is applied by the Kuhn-Munkres algorithms. nij

is the number of co-occurrence instances in the cluster Ci and Cj of the obtained partition 

and ground truth, respectively. ni + = ∑j = 1
K nij and n+j = ∑i = 1

K nij. Please refer to Table 3 for 

an in-depth understanding the meaning of nij, ni + , and n+j. Note that these four metrics are 

positive measurements, i.e., a larger value means better performance, whereas a negative Rn

indicates a result poorer than random labeling.

Jaccard index is employed to evaluate the outlier detection, and can be computed as follows:

Jaccard = ∣ O⋂O∗ ∣
∣ O⋃O∗ ∣

,

where O and O∗ are the outlier sets by the algorithm and ground truth, respectively.
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5.2 Discussions

The K-means solutions have simple mathematical formulation, efficient time complexity and 

deliver competitive performance in different tasks. Here we demonstrate the advantages of 

these K-means solutions in terms of effectiveness and efficiency.

Table 6 shows the experimental results of the K-means solution and other competitive 

methods in terms of consensus clustering, constrained clustering, image co-segmentation, 

domain adaptation, and outlier detection. For consensus clustering, the challenges 

predominantly lie in choosing the utility function and solving the combinational 

optimization efficiently. KCC and SEC are K-means or weighted K-means methods with 

a roughly linear time complexity to the number of instances and basic partitions. For cluster 

quality, CSPA and HCC obtain the best performance on iris and k1b, respectively; for 

other cases, KCC and SEC achieve the best results. It is noteworthy that HCC and PTGP 

deliver extremely worse partitions on mm. On the contrary, KCC and SEC have a robust 

performance on most data sets. For constrained clustering, PLCC, CNMF, and KCC are 

based on partition level side information, while LCVQE is based on pairwise constraints.

Although PLCC and LCVQE are K-means variants, the performance of PLCC outperforms 

LCVQE by a significant margin on pendigits and satimages. Compared with CNMF and 

KCC, PLCC remains competitive and delivers satisfactory results, indicating the utility 

function’s effectiveness for structure-preserved learning. Based on PLCC, the authors 

extend constrained clustering for image co-segmentation. To obtain the partition level 

side information, they employ saliency prior to guide the image co-segmentation (SG-

PLCC). From the experimental results, SG-PLCC gains improvements over other image 

co-segmentation methods. For domain adaptation, structure-preserved learning also assists in 

transfer learning. In some cases, SP-UDA employs the source structure to guide the target 

structure learning. Compared with the shared space learning methods, SP-UDA outperforms 

others in both single and multi-source domain adaptation. For outlier detection, in contrast to 

the methods, which are conducted in the original feature space, COR focuses on the partition 

space to better define the outliers. Compared with K-means−−, the benefits of COR result 

from the feature space transformation. Additional experimental results and impact factor 

analyses can be found in [169], [102], [101], [97], [95].

Beyond simplicity, another merit of K-means solutions based on Lloyd’s algorithm is its 

high efficiency. Here we demonstrate the execution time of these K-means solutions in 

terms of consensus clustering, constrained clustering, and outlier detection in Table 7. For 

image co-segmentation and domain adaptation, there are different experimental settings or 

inputs compared with other competitive methods such that the execution time is not reported 

here. For consensus clustering, KCC and SEC are significantly faster than other methods, 

especially on large data sets. SEC is 18,000 times faster than HCC on classic, while KCC 

is 160 times faster than PTGP on k1b. For constrained clustering, PLCC is the fastest one 

among the competitive methods. It is noteworthy that LCVQE struggles when the number 

of pairwise constraints increases, where we employ 10% partition level side information in 

Table 7. For outlier detection, COR first transforms the original space into partition space by 

generating 100 basic partitions with binary codings and conducts joint clustering and outlier 
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detection. Although some time is required to generate 100 basic partitions, COR execution 

time is extremely fast, with no nearest neighbors or trees constructed.

In summary, K-means solutions have a simple, flexible, and elegant formulation and deliver 

promising results in terms of effectiveness and efficiency on several different tasks.

6 Conclusion

In this paper, we demonstrated how complex, challenging problems can be converted such 

that they can be solved by simple K-means optimization. Generally speaking, the objective 

functions and optimization algorithms for these problems were rewritten into a modified 

K-means version. In addition, we described how complex problems can be transformed 

into K-means by considering generalizing four aspects of a K-means formulation: data 

representation, distance function, non-exhaustive label assignment, and incomplete centroid 

updating. Finally, we illustrated how to convert and solve six applications, including iterative 

subspace projection and clustering, consensus clustering, constrained clustering, domain 

adaptation, and outlier detection.
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TABLE 1

Instances of Bregman Divergence and Point-to-Centroid Distance

Distance Domain ϕ(x) f(x, y)
Logistic loss {0, 1} x log x x log(x

y ) − (x − y)

Itakura-Saito distance R+ + −log x x
y − log(x

y ) − 1

Squared Euclidean distance Rd ‖x‖2
2 ‖x − y‖2

2

Mahalanobis distance Rd xAx (x − y)A(x − y)⊺

KL-divergence d-Simplex ∑j = 1
d xj log xj ∑j = 1

d xj log(xj
yj

)

Generalized I-divergence R+
d ∑j = 1

d xj log xj ∑j = 1
d xj log(xj

yj
) − ∑j = 1

d (xj − yj)

Cosine similarity Rd ‖x‖2 ‖x‖2 − ∑j = 1
d xjyj ∕ ‖y‖2

Note: A is a d × d inverse of the covariance matrix.
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TABLE 2

Six Applications with K-means solutions

Application Data transformation Distance 
function

Label 
assignment

Centroid 
updating

Iterative subspace projection and clustering [179] ✓

K-means-based consensus clustering [151], [168], [169] ✓ ✓

Spectral ensemble clustering [96], [102] ✓ ✓

Partition level constrained clustering [94], [101] ✓ ✓ ✓

Structure-preserved domain adaptation [99], [97] ✓ ✓ ✓

Clustering with outlier removal [95] ✓ ✓ ✓
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TABLE 3

The Contingency Matrix

πi

C1
(i) C2

(i) ⋯ CKi
(i) ∑

π

C1 n11
(i) n12

(i) ⋯ n1Ki
(i) n1 +

C2 n21
(i) n22

(i) ⋯ n2Ki
(i) n2 +

· · · ⋯ · ·

CK nK1
(i) nK2

(i) ⋯ nKKi
(i) nK +

∑ n+1
(i) n+2

(i) ⋯ n+Ki
(i) n
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TABLE 4

Sample KCC Utility Functions

μ(mk, i) Uμ(π, πi) f(bl, mk)
Uc ‖mk, i‖2

2 − ‖P(i)‖2
2

∑k = 1
K pk + ‖Pk

(i)‖2
2 − ‖P(i)‖2

2 ∑i = 1
r wi‖bl, i − mk, i‖2

2

UH ( − H(mk, i)) − ( − H(P(i))) ∑k = 1
K pk + ( − H(Pk

(i))) − ( − H(P(i))) ∑i = 1
r wiD(bl, i‖mk, i)

Ucos ‖mk, i‖2 − ‖P(i)‖2 ∑k = 1
K pk + ‖Pk

(i)‖2 − ‖P(i)‖2 ∑i = 1
r wi(1 − cos(bl, i, mk, i))

ULp ‖mk, i‖p − ‖P(i)‖p ∑k = 1
K pk + ‖Pk

(i)‖p − ‖P(i)‖p ∑i = 1
r wi(1 − ∑j = 1

Ki bl, ijmk, i, j
p − 1

‖mk, i‖p
p − 1

Note: Pk
(i) = mk, i = (pk1

(i) ∕ pk + , ⋯, pkj
(i) ∕ pk + , ⋯, pkKi

(i) ∕ pk + ), P(i) = (n+1
(i) ∕ n, ⋯, n+j

(i) ∕ n, ⋯, p+Ki
(i) ∕ n).
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TABLE 5

Statistics of data sets.

Data set Type #instance #feature #cluster #outlier

Amazon(A) Image 958 800 10 0

breast Tabular 699 9 2 0

Caltech(C) Image 1123 800 10 0

caltech Image 1415 4096 4 67

cacmcisi Text 4463 14409 2 0

classic Text 7094 41681 4 0

cranmed Text 2431 41681 2 0

Dslr(D) Image 157 800 1 0

ecoli* Tabular 331 7 6 0

elephant Image #superpixel 3 2 0

fbis Text 2463 2000 10 332

ferrari Image #superpixel 3 2 0

gymnastics Image #superpixel 3 2 0

hitech Text 2301 126321 6 0

iris Tabular 150 4 3 0

k1b Text 2340 21839 6 0

kite Image #superpixel 3 2 0

la12 Text 6279 31472 6 0

mm Text 2521 126373 2 0

pendigits Tabular 10992 16 10 0

satimage Tabular 4435 36 6 0

skating Image #superpixel 3 2 0

re1 Text 1657 3758 6 527

reviews Text 4069 126373 5 0

Webcam(W) Image 295 800 10 0

wap Text 1560 8460 10 251

wine + Tabular 178 13 3 0

yeast Tabular 1484 8 4 185

Note:

(1) *:
two clusters containing only two objects are deleted.

(2) +:
the last attribute is normalized by a scaling factor 1000.
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TABLE 6

Experimental results of the K-means solutions and other competitive methods in different tasks.

Problem Data set Metric Competitive methods K-means solution

CSPA HCC PTGP KCC

Consensus clustering

iris 0.94/0.91/0.98 0.73/0.79/0.89 0.75/0.80/0.90 0.75/0.80/0.90

cranmed Rn ∕ 0.71/0.66/0.92 0.99/0.98/0.99 0.99/0.98/0.99 0.99/0.98/0.99

hitech NMI/ 0.18/0.23/0.43 0.27/0.33/0.50 0.27/0.33/0.50 0.30/0.34/0.51

k1b Accuracy 0.20/0.43/0.45 0.37/0.60/0.62 0.37/0.60/0.62 0.41/0.61/0.64

mm 0.44/0.35/0.83 −0.01/0.00/0.53 −0.01/0.00/0.53 0.62/0.52/0.89

CSPA HCC PTGP SEC

Consensus clustering

cacmcisi 0.35/0.37/0.79 −0.01/0.00/0.68 −0.01/0.00/0.68 0.61/0.54/0.89

classic Rn ∕ 0.42/0.52/0.66 0.55/0.69/0.76 0.00/0.00/0.45 0.68/0.72/0.88

la12 NMI/ 0.37/0.43/0.57 0.51/0.58/0.69 0.51/0.58/0.69 0.59/0.59/0.75

reviews Accuracy 0.33/0.38/0.58 0.46/0.52/0.70 0.46/0.52/0.70 0.58/0.59/0.75

wine 0.15/0.16/0.51 0.15/0.17/0.52 0.19/0.25/0.60 0.33/0.39/0.65

CNMF LCVQE KCC PLCC

Constrained clustering

breast 0.90/0.82/0.97 0.92/0.85/0.98 0.92/0.85/0.98 0.92/0.85/0.98

ecoli Rn ∕ 0.71/0.65.0.80 0.80/0.75/0.85 0.64/0.68/0.79 0.82/0.80/0.91

iris NMI/ 0.83/0.82/0.94 0.83/0.81/0.94 0.82/0.81/0.93 0.85/0.86/0.94

pendigits Accuracy 0.41/0.61/0.56 0.29/0.47/0.46 0.61/0.71/0.76 0.75/0.79/0.87

satimage 0.33/0.38/0.51 0.29/0.40/0.53 0.46/0.57/0.71 0.53/0.61/0.68

Joulin Vicente Rubio SG-PLCC

Image co-segmentation

elephant

Accuracy

0.70 0.43 0775 0.90

ferrari 0.85 0.90 0.84 0.90

gymnastics 0.91 0.92 0.87 0.97

kite 0.87 0.90 0.90 0.98

skating 0.82 0.78 0.77 0.82

Single-source TCA TSL JDA SP-UDA

Domain adaptation

C → W

Accuracy

0.39 0.34 0.37 0.54

A → D 0.33 0.26 0.29 0.40

W → A 0.30 0.30 0.36 0.44

D → A 0.32 0.28 0.30 0.45

Multi-source RDALR FDDL SDDL SP-UDA

A, D → W

Accuracy

0.37 0.41 038 0.76

A, W → D 0.31 0.38 0.57 0.74

D, W → A 0.21 0.19 0.24 0.44

LOF FABOD iForest COR

Outlier detection

caltech

Jaccard

0.02 0.08 0.28 0.97

fbis 0.08 0.06 0.05 0.34

re1 0.22 0.19 0.17 0.28
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Problem Data set Metric Competitive methods K-means solution

CSPA HCC PTGP KCC

wap 0.11 0.13 0.11 0.22

yeast 0.11 0.14 0.24 0.50

Note: For the first three cluster analysis related tasks, we report cluster validationin terms of Rn, NMI, and Accuracy for evaluation. For image 

co-segmentation, the competitive methods only report the Accuracy performance. For the reminder of non-cluster analysis tasks, we employ 
task-specific measurements for evaluation.
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TABLE 7

Execution time of the K-means solutions and other competitive methods in seconds.

Task Data set Competitive methods K-means solution

CSPA HCC PTGP KCC

Consensus clusteringwith utility function

iris 1.34 4.57 285 0.29

cranmed 5.27 105.41 35.76 0.44

hitech 4.77 102.93 36.93 0.43

k1b 5.66 119.36 35.27 0.21

mm 6.57 112.34 10.61 0.14

CSPA HCC PTGP SEC

Consensus clusteringwith co-association matrix

cacmcisi 18.55 543.20 117.69 0.25

classic 32.14 1640.71 524.76 0.62

la12 21.48 1148.17 44.27 0.17

reviews 10.97 397.16 26.89 0.12

wine 0.83 4.57 2.85 0.05

CNMF LCVQE KCC PLCC

Constrained clustering

breast 0.43 0.05 0.27 0.01

ecoli 0.19 0.03 0.22 0.01

iris 0.13 0.01 0.07 0.01

pendigits 195.38 76.73 4.98 0.45

satimage 0.05 0.01 0.10 0.01

LOF FABOD iForest BP COR

Outlier detection

caltech 13.69 140.68 6.91 12.86 0.14

fbis 17.54 1319.21 12.60 15.66 0.38

re1 16.86 738.22 8.50 20.03 0.10

wap 26.81 1811.28 8.53 36.58 0.19

yeast 0.09 3.44 4.35 0.28 0.03

Note: All the algorithms in the above table were implemented by MATLAB and run on a Ubuntu 14.04 platform with Intel Core i7-6900K @ 
3.2GHz and 64 GB RAM.
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