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Summary.

This paper considers canonical correlation analysis for two longitudinal variables that are 

possibly sampled at different time resolutions with irregular grids. We modeled trajectories of 

the multivariate variables using random effects and found the most correlated sets of linear 

combinations in the latent space. Our numerical simulations showed that the longitudinal 

canonical correlation analysis (LCCA) effectively recovers underlying correlation patterns 

between two high-dimensional longitudinal data sets. We applied the proposed LCCA to data 

from the Alzheimer’s Disease Neuroimaging Initiative and identified the longitudinal profiles of 

morphological brain changes and amyloid cumulation.
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1. Introduction

Canonical correlation analysis (CCA) aims to find the correlation structures between two 

sets of multivariate variables. CCA seeks linear combinations within each set, such that 

the resulting linear combinations from variables are maximally correlated, but orthogonal 

with all other linear combinations in either set. Recently, CCA has been applied to high-

dimensional multivariate variables via dimension reduction (Song et al., 2016), penalization 

(Avants et al., 2010; Bao et al., 2019; Fang et al., 2016; Gossmann et al., 2018; Lin et al., 

2014; Wilms and Croux, 2016; Witten et al., 2009) and combining multiple datasets (Deleus 

and Van Hulle, 2011; Zhang et al., 2014; Kim et al., 2019).
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CCA has been used frequently in medical applications to identify associations between 

clinical/behavior/imaging/genetic variables. For example, CCA has been applied to explore 

the associations between clinical symptoms and behavioral measures (Mihalik et al., 2019), 

functional connections in the brain and cognitive deficits (Adhikari et al., 2019) or clinical 

symptoms (Kang et al., 2016; Grosenick et al., 2019), two sets of imaging data (Avants et 

al., 2010), and gene-imaging associations (Lin et al., 2014; Kim et al., 2019).

When one of the multivariate variables is measured over time, CCA can be extended 

using a multi-set sparse canonical correlation approach via group lasso penalization (Hao 

et al., 2017) and temporal multi-task SCCA (T-MTSCCA) (Du et al., 2019). However, 

existing methods cannot handle missing values, irregular temporal sampling, and temporal 

misalignment between two variables.

To address this gap, we propose a new LCCA method that identifies the patterns of 

canonical variates that maximize the association between longitudinal trajectories. We model 

the longitudinal trajectory of each variable using random effects (e.g. random intercept 

and random slope). Then we find the linear combinations of the random effects that 

maximize the correlations. Since the dimensions of the two multivariate variables can be 

greater than the sample size, we employ dimension reduction via eigen decomposition. 

We implement estimation in the longitudinal principal component analysis framework. We 

conduct extensive simulation experiments to evaluate the performance of LCCA. We also 

apply LCCA to data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort 

(Mueller et al., 2005; Weiner et al., 2012). The ADNI data include longitudinal 18F-AV45 

(florbetapir) Positron emission tomography (PET) images to quantify brain amyloid loads 

over eight years and structural MRI data during the same follow-up. Our LCCA method 

shows stable performance in terms of dimension selection and yields accurate signal 

identification, and the method identifies distinct AD- related brain patterns in the ADNI 

data.

2. Method

2.1. Longitudinal Canonical Correlation Analysis

For each subject i = 1, …, n and visits j = 1, …, Ji, we observe the p-dimensional vector Xij

at time tij. Similarly, for the visits k = 1, …, Ki, we observe a q-dimensional vector Yik at 

time sik. For illustration, we consider the linear trajectories for each variable and later we 

generalize to the nonlinear trajectories via spline regression. We model each observation 

using a random intercept and slope model:

Xij = μij
X + Zi, 0

X + tijZi, 1
X + ϵij

X, (1)

Yik = μik
Y + Zi, 0

Y + sikZi, 1
Y + ϵik

Y , (2)

where μij
X and μik

Y  are fixed effects; Zi, 0
X  and Zi, 0

Y  are random intercepts; Zi, 1
X  and Zi, 1

Y  are 

random slopes; ϵij
X and ϵik

Y  are errors. The random effects are stacked to a 2p-dimensional 

vector Zi
X: = Zi, 0

X′, Zi, 1
X′ ′ ∈ ℝ2p, and a 2q-dimensional vector Zi

Y : = Zi, 0
Y ′ , Zi, 1

Y ′ ′ ∈ ℝ2q, and are 
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assumed to be distributed with zero mean and a covariance Σc = Σc
0,0 Σc

0,1

Σc
1,0 Σc

1,1 , where 

Σc
a, b = E Zi, a

c Zi, b
c

′ , a, b ∈ 0,1 , c ∈ X, Y  and uncorrelated with ϵij
X and ϵik

Y . The random 

intercepts, slopes and errors are assume to follow a Gaussian distribution.

Then, the objective function defining the canonical correlation is

rm
XY = maxum ∈ ℛ2p, vm ∈ ℛ2q um

′ Zi
X, vm

′ Zi
Y . (3)

When p is greater than n/2, we can employ principal component analysis to represent 

Zi
X ≈ ΦXξi

X, where ΦX = Φ0
X′, Φ1

X′ ′ is a 2p × NX matrix of the leading NX eigenvectors of 

ΣX = V ar   Zi
X  and ξi

X = ξi1
X, …, ξiNX

X ′ ∈ ℝNX are the associated subject i-specific eigenscores. 

Using longitudinal principal component analysis (LPCA) (Greven et al., 2011; Zipunnikov 

et al., 2014; Lee et al., 2015), each term is expressed as

Xij ≈ μij
X +

l = 1

NX

ξil
X Φl

X, 0 + tijΦl
X, 1 + ϵij

X, (4)

where ξil1
X , ξil2

X 0,0; λX
l1, λX

l2; 0 , in which “. μ1, μ2; σ1
2, σ2

2; ρ  “ represents that a pair of gaussian 

variables has a distribution with mean μ1, μ2 , variance σ1
2, σ2

2 , and correlation ρ. Similarly, 

Yik are expressed as

Yik ≈ μik
Y +

l = 1

NY

ξil
Y Φl

Y , 0 + sikΦl
Y , 1 + ϵik

Y , (5)

where ξil1
Y , ξil2

Y 0,0; λY
l1, λY

l2; 0 . The eigenvectors of (4) and (5) can be obtained by the least-

squares estimation of the covariance matrices. Without loss of generality, we assume Xij is 

demeaned to have mean zero. The p × p-covariance of Xij1 and Xij2 is given by

EXij1Xij2
⊤ = ΣX

0,0 + tij2ΣX
0,1 + tij1ΣX

1,0 + tij1tij2ΣX
1,1 + δj1, j2ΣX

ϵ , (6)

where ΣX
ϵ  is the covariance matrix of ϵij

X and δj1, j2 = 1 if j1 = j2 and δj1, j2 = 0
otherwise. Denote vec   ⋅  as the vectorization of a matrix by stacking 

columns of the matrix on top of one another. Then, we can form a matrix 

KX = vec   ΣX
0,0 , vec   ΣX

0,1 , vec   ΣX
1,0 , vec   ΣX

1,1 , vec   ΣX
ϵ  and f ij1j2 = 1, tij2, tij1, tij1tij2, δj1, j2

⊤

such that Evec   Xij1Xij2
⊤ = KXf ij1j2. By concatenating all vectors across all subjects and visits, 

we obtain a moment matrix identity for the p2 × J matrix X:X = KXF, where J = ∑i = 1
N Ji

2. 

Then covariance parameters KX can be unbiasedly estimated by using ordinary least squares 

OLS :KX = XFF⊤ FF⊤ −1
. Given the estimated covariance matrix, the eigenvectors are 

computed via eigen decomposition. Given the eigenvectors, the eigenscores are estimated by 

the best linear unbiased predictors (BLUP) from the equations (4) and (5) as discussed in 

Greven et al. (2011); Zipunnikov et al. (2014).
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Denote the N × NX matrix ξX = ξil
X

i = 1, …, N; l = 1, …, NX and N × NY  matrix 

ξY = ξil
Y

i = 1, …, N; l = 1, …, NY . Then, the objective function defining the canonical correlation is

rm
XY = maxum ∈ ℛNX, vm ∈ ℛNY ξXum, ξY vm (7)

The objective function in (7) is maximized under the restriction that each um is orthogonal to 

the lower order um′, with 1 ≤ m < m′ ≤ min NX, NY . Same restriction is applied for vm of the 

second set of variates. For identification purpose, we require a normalization condition for 

the canonical variates, um
⊤ξi

X, vm
⊤ξi

Y , m = 1, …, min NX, NY , to have unit variance. The canonical 

vectors are estimated in the lower-dimensional space, and the m-th longitudinal canonical 

vectors are computed as Φ0
X + tijΦ1

X um and Φ0
Y + sikΦ1

Y vm for m = 1, …, min NX, NY .

Depending on the availability of time points, this formation can be naturally extended to 

higher-order trends or modeled via B-spline basis expansion. Assume that the trajectory 

of the imaging measure at location v is represented by a spline function with fixed knot 

sequence τ1 < ⋯ < τD and fixed degree d.

Xij v = μX v +
r = 1

D + d + 1
Zi, r v br tij + ϵij

X, (8)

where the br are a set of basis functions and Zi, r v  are the associated spline coefficients. 

The D + d + 1 V -dimensional stacked vector of Zi = Zi, 1
⊤ , …, Zi, D + d + 1

⊤ ⊤ can be approximated 

by the principal component analysis: Zi ≈ ∑l = 1
NX ξil

XΦl
X with each element expressed as 

Zi, r v ≈ ∑l = 1
NX ξil

XΦl
X, r v , for r = 1, …, D + d + 1. Then, (8) is reorganized as

Xij v = μX v +
l = 1

NX

ξil
X

r = 1

D + d + 1
Φl

X, r v br tij + ϵij
X . (9)

Similarly, Y  is modeled as

Yik v = μY v +
l = 1

NY

ξil
Y

r = 1

D + d + 1
Φl

Y , r v br sik + ϵik
Y . (10)

This method does not require that X‘s and Y  ‘s are observed at the same time. As long as 

they are observed within a time frame that the research question asks, the proposed method 

can extract association patterns.

2.2. The number of canonical covariates

To determine the dimension of the CCA, we employ a traditional likelihood ratio testbased 

approach in the latent space. Starting with m = 0, we test the null hypothesis H0 : d = m
versus the alternative hypothesis H1:d > m. If H0 is rejected, m is incremented and a new 
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test is conducted. This proceeds until H0 is not rejected or m reaches M = min NX, NY . For a 

given number of canonical variates, m, the Wilk’s test statistics (Wilks, 1935; Bartlett, 1947; 

Friederichs and Hense, 2003) is given by

Λm = Πj = m + 1
min NX, NY 1 − r̂j

2 . (11)

Based on Rao’s F-approximation (Rao et al., 

1973), F = df2/df1 1 − Λm/ Λm
1/ν follows asymptotically Fdf1, df2, 

where ν = df1
2 − 4 / NX − m 2 + NY − m 2 − 5 , df1 = NX − m * NY − m , and 

df2 = n − 1.5 − NX + NY /2 ν − df1/2 + 1.

The performance of LCCA depends on the selection of NX and NY . Previous works 

suggested using 80% threshold of the variance explained by the number of individual 

components (Greven et al., 2011; Lee et al., 2015) or pre-specified numbers (Zipunnikov 

et al., 2014). In practice, the performance depends on the signal-to-noise ratio, which 

is particularly relevant for imaging applications. Our numerical experiments show good 

performance using a threshold of 80–90% as a rule of thumb. The algorithms are 

implemented as an R package LCCA and available in github (https://seonjoo.github.io/

lcca/).

3. Alzheimer’s Disease Neuroimaging Data Analysis

3.1. Participants

We apply our LCCA method to the ADNI data to identify longitudinal associations 

between brain morphometry and amyloid deposition. The data were downloaded from 

the ADNI database (http://adni.loni.usc.edu). The initial phase (ADNI-1) recruited 800 

participants, including approximately 200 healthy controls, 400 patients with late mild 

cognitive impairment (MCI), and 200 patients clinically diagnosed with probable AD over 

50 sites across the United States and Canada and followed up at 6- to 12-month intervals 

for 2–3 years. ADNI has been followed by ADNI-GO and ADNI-2 for existing participants 

and enrolled additional individuals, including early MCI. To be classified as MCI in ADNI, 

a subject needed an inclusive Mini-Mental State Examination score of between 24 and 30, 

subjective memory complaint, objective evidence of impaired memory calculated by scores 

of the Wechsler Memory Scale Logical Memory II adjusted for education, a score of 0.5 

on the Global Clinical Dementia Rating, absence of significant confounding conditions such 

as current major depression, normal or near-normal daily activities, and absence of clinical 

dementia.

All studies were approved by their respective institutional review boards and all subjects 

or their surrogates provided informed consent compliant with HIPAA regulations. In total, 

the analysis included PET-MRI scan pairs of 680 subjects on average 2.7 ± 0.79  visits over 

3.7 ± 1.66  years on average. There are 291 cognitively normal (CN), 365 mild cognitive 

impairment (MCI), and 24 AD participants at baseline. Detailed characteristics of these 

individuals are given in Table 1.
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3.2. Structural imaging processing

For internal consistency, 3.0 MPRAGE T1-weighted MR images were used. Cross-sectional 

image processing was performed using FreeSurfer Version 6. Region of interest (ROI)-

specific cortical thickness and volume measures were extracted from the automated 

FreeSurfer v6 anatomical parcellation using the Desikan-Killiany Atlas (Desikan et al., 

2006) for cortical regions; there were 68 ROIs (34 each on the left and right hemispheres), in 

which the longitudinal cortical thickness and volume measures were collected. The volume 

measures from 28 subcortical regions (Fischl et al., 2002) were computed, including Lateral 

Ventricle, Inferior Lateral Ventricle, Thalamus, Caudate, Putamen, Pallidum, Hippocampus, 

Amygdala, Accumbens area, Third Ventricle, Fourth Ventricle, and five corpus callosum 

subregions. In addition, the total intracranial volume was included.

We computed amyloid SUVR levels using the PetSurfer pipeline (Greve et al., 2014, 2016), 

which is available with Freesurfer version 6. The PetSurferpipeline first registers the PET 

image with the corresponding MRI scan, then applies Partial Volume Correction, and finally 

resamples the voxel-wise SUVR values onto the cortical surface. The 81 ROI-level summary 

was computed based on Desikan Atlas for the cortical and subcortical regions.

3.3. Naive approach

There are no existing CCA methods to handle the longitudinal data’s missing and irregular 

temporal sampling. Thus, we consider the following approach. First, we computed the 

intercept and slope of each variable for each subject. Then, within each modality, the vectors 

of intercepts and slopes were stacked, and we performed a canonical correlation analysis. 

Finally, the number of canonical variates was estimated in the same principles described in 

Section 2.2. We named this approach the naive approach.

3.4. Results

The longitudinal CCA identified 7 canonical variates. The significant canonical correlation 

coefficients are displayed in Figure 1. The longitudinal canonical vectors were reorganized 

as a function of time Φ0
X + tΦ1

X um and Φ0
Y + sΦ1

Y vm for m = 1, …, min NX, NY  are displayed 

in Figures 2 at time = 0, 1, 2, 3, 4. For visualization, the vectors are standardized with the 

total variance of the vectors, and the ROIs with at least one element of the vector over 

1.64 are included in the heatmaps. Figures 2 and 3 include the longitudinal canonical 

(LC) vectors of the longitudinal canonical variates of T1 and PET. The LC vectors are 

presented separately by volumetric (Vol) and cortical thickness (CT) measures. For better 

interpretation, the rows of the matrix are sorted by the Braak staging (Braak et al., 2006), 

a semi-quantitative measure of the severity of neurofibrillary tangle (NFT) pathology used 

in Alzheimer’s disease. The order of stage consists of transentorhinal regions (B1, B2, 

initial stage), limbic regions (B3, B4, incipient AD stage), and neocortical regions (B5-B6, 

fully developed AD stage) by order of severity. Additional brain regions not included on 

the Braak staging were also included (NA). We also performed the Naive approach and 

compared its performance. The longitudinal canonical vectors of the naive methods are 

displayed in Figures 4 and 5. We only present the LCVs that are significantly associated 

with either baseline diagnosis or AD transition.
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Further, we investigated the longitudinal canonical variates (CV). First, we compared 

CVs by each subject’s baseline clinical status. For group comparison, linear regression 

was conducted with age, sex and years of education as covariates, followed by multiple 

comparison correction controlling for false discovery rate (Benjamini and Hochberg, 1995). 

Table 2 reports the F-statistics, unadjusted p-values and multiple comparison corrected 

p-values. For all analyses, we excluded extreme outliers beyond 3 IQR from the first and 

third quartiles. For post-hoc pair-wise group comparison, least squared mean differences 

were computed. Figure 6 shows jittered boxplots and pair-wise comparison results with 

unadjusted p-values for the CVs with significant group difference after multiple comparison 

correction.

The CV 2, 4, and 7 of T1 and CVs 2 and 5 of PET showed group differences after multiple 

comparison correction. The CV2 indicates that AD patients at baseline showed atrophy in 

bilateral hippocampus and amygdala (B1 and B2 regions). The amyloid deposition showed 

a decreased pattern in bilateral Pallidum (no Braak staging regions), and increasing amyloid 

deposition in the cortical areas (right lingual, right pericalcarine, right fusiform, and inferior 

temporal cortices, B3-B5 regions). The CV4 of T1 showed the enlarged volume in right 

caudal middle frontal gyus and longitudinal atrophy in right pars orbitalis in AD and MCI 

comparing to CN, while PET did not showed any differences. The CV5 of T1 did not show 

differences across baseline clinical status. The AD patients showed brain atrophy in the 

left Accumbens area volume, and right paracentral thickness, smaller volume in the left 

temporal transverse volume and right caudal middle frontal volume, while thicker thickness 

in the left isthmus cingulate and right lateral orbitofrontal gyrus. The CV5 of av45 showed a 

longitudinal increase in the left hippocampus and right Pallidum and left paracentral area in 

AD participants, while MCI and CN participants did not show that pattern on average. CV7 

showed enlarged volumes in right lingual gyrus, but atrophy in left caudal ACC and pars 

orbitals, while no significant difference in amyloid deposition. The naive method identified 

CV 3 and 5 with significant T1 differences and CVs 9 and 12 for PET. Unlike LCCA, 

naive method did not identify CVs showed group differences between diagnosis status in 

both T1 and PET. For AD transition, only CV3 T1 and CV9 PET showed significant group 

difference.

Secondly, among the non-demented participants at baseline, we compared CVs between the 

participants who translated to AD within 5 years and those who remained non-demented. 

Among 656 non-demented participants, 120 participants (18.3%) converted to AD in 

5 years. Table 2 reports the F-statistics, unadjusted p-values and multiple comparison 

corrected p-values. For post-hoc pair-wise group comparison, least squared mean differences 

were computed. Figure 8 shows jittered boxplots and pair-wise comparison results with 

unadjusted p-values for the CVs with significant group difference after multiple comparison 

correction. The CVs 1, 2 and 4 for T1 and CVs 1, 2, 4 and 6 of PET showed a significant 

difference between those who converted to AD and those who did not.

4. Simulations

We conducted extensive numerical experiments to evaluate the performance of the LCCA 

comparing to the naive approach. The first simulation setting was designed to evaluate 
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general performance of LCCA when the data were generated from the LCCA model. The 

second simulation was designed when the data were generated with a low signal-to-noise 

ratio. We also conducted a third simulation to determine the ability of LCCA to recover 

subgroups across a range of sample sizes and a varied degree of subgroup imbalance.

For all simulation settings, we generated 100 independent datasets and compared the 

performance of LCCA according to the following criteria: (1) number of estimated canonical 

variates;(2) bias of the estimated canonical correlation coefficients; (3) accuracy of the 

estimated canonical loading using cosine similarity. For the third simulation, we report 

the correlation between the true and estimated canonical variates in the place of (2). 

Since the true number of canonical variates is one, we compared the first canonical 

variate’s performance even if the LCCA or the naive approach selected different numbers of 

canonical variates.

4.1. Simulation Setting 1.

Data were generated from the model 4 setting NX and NY  to 3. The LPC loadings were 

generated as depicted in Figure 10; we set p = 144 and q = 81. The LPC scores ξik
X and ξik

Y

were generated from the N 0, λk , λ1 = 8, λ2 = 4, λ3 = 2, where Cor   ξi2
X, ξi2

Y = r. We note that 

we correlated the second pairs of the LPCs to evaluate LCCA’s performance when the 

correlated signals explain more minor variances. For each subject, the number of visits were 

generated from Poisson(1) followed by adding 3 such that each subject has on average 4 

time points. The time intervals between visits were generated from U[1, 2]. Figure 11 shows 

examples of the time variables tij and sik from the first 10 subjects from a simulation setting. 

The time points between X and Y  variables are not aligned, and the numbers of visits differ. 

We conducted simulations for r = 0.1,0.3,0.5, at n = 100, 200, 400, and different threshold for 

LPC dimension selection (80% or 90%). For each scenario, 100 independent datasets were 

generated.

Overall, LCCA outperforms the naive approach in the three criteria. Figure 12 shows 

that both LCCA and the naive approach tend to overestimate canonical correlation when 

the sample size is small and the true canonical correlation is smaller, while LCCA 

performs better than the naive approach. The results show that the approximation-based 

CV dimension estimation performs better as the sample size increases, and the underlying 

true canonical correlation is larger. LCCA identifies the number of canonical variates more 

accurately than the naive approach. Similar patterns were found in the cosine similarity 

measures. The cosine similarity between estimated LCV loadings performs better as the 

sample size increases, and the underlying true canonical correlation is larger.

4.2. Simulation Setting 2.

Data were generated similarly to the first simulation, except the first five LPC loadings were 

taken from ADNI data from Section 3 (Figure 13). The LPC scores ξik
X and ξik

Y  were generated 

from the N 0, λk , λ1 = 45.4, λ2 = 17.2, λ3 = 7.0, λ4 = 4,1, λ5 = 3.8, where Cor   ξi2
X, ξi2

Y = r. For 

each subject, the number of visits were generated from Poisson(1) followed by adding 3 

such that each subject has on average 4 time points. The time intervals between visits were 

generated from U[1, 2]. We conducted simulations for r = 0.1, 0.3, 0.5, at n = 100, 200, 400, 
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and different threshold for LPC dimension selection (80% or 90%). For each scenario, 100 

independent datasets were generated. We found very similar results as Simulation 1 (Figure 

14, assuring our data analysis results in Section 3 have less bias in estimating canonical 

weights and correlations. The both methods tend to underestimate canonical correlation 

when the threshold = 0.8  is smaller, while this issue does not persist when the threshold is 

more lenient.

4.3. Simulation Setting 3.

We also examined whether the LCCA can recover subgroups. We employed the same 

simulation settings from Simulation 2, except longitudinal canonical variates (LCVs). 

Instead of generating the LCVs from a multivariate normal distribution, we imposed two 

subgroups. One group was generated from MV N 0, λI2  and the other group was generated 

from N μ12, I2  as shown in Figure 15. We varied the proportion of subsamples from 0.1 to 

0.5 and evaluated whether the LCCA can identify subgroups.

To evaluate whether LCCA recovers the true LCVs with subgroups, the correlations between 

the true and estimated LCVs were calculated. Figure 16 shows that the LCCA identified 

LCVs, LC vectors, and the number of LCVs well, even with smaller sample sizes and a 

highly unbalanced subgroups subsample proportion = 0.1 .

5. Conclusion

In this manuscript, we proposed a new longitudinal CCA method that can handle different 

temporal samplings and missing values that often occur in longitudinal data. The proposed 

method is very flexible in its ability to handle linear and nonlinear trajectories. The 

application to ADNI data, the longitudinal CCA revealed the most relevant patterns between 

Amyloid deposition associated neuronal loss measured as cortical thickness and subcortical 

volume. The canonical variates are associated with the baseline clinical status and predicted 

AD transition. The numerical experiments showed that LCCA outperformed the naive 

approach, also showing the performance of LCCA is not very sensitive to the selection 

of the threshold but requires adequate sample size or an effect size of the correlation.

Our two-stage approach is computationally fast, and our numerical experiments showed 

good performance using a threshold of 80–90% as a rule of thumb. However, the dimension 

reduction step using the LPCA possibly removes small but important biological signals 

in other neuroimaging modalities such as functional magnetic resonance imaging (fMRI). 

Furthermore, the two-step approach does not optimize both dimension reduction and 

dimension selection for CCA simultaneously, unlike the unified estimation approach for 

cross-sectional high-dimensional data (Song et al., 2016). Nonetheless, our novel LCCA 

approach offers a computationally efficient and well performing tool that could have 

important applications in neuroimaging and other settings producing high-dimensional, 

longitudinal, multivariate data.
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Fig. 1. 
Canonical correlation coefficients. Seven canonical correlation coefficients were significant 

p < 0.05  using F-test based on Rao’s F-approximation of Wilk’s Lambda.
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Fig. 2. 
LCCA: the longitudinal canonical vectors for T1 are displayed at time = 0, 1, 2, 3, 4. We 

separately present the LC vectors by volumetric (Vol) and cortical thickness (CT) measures. 

The rows are sorted by the Braak staging (B1-B6, NA). T1 measures have higher vectors at 

baseline with little longitudinal changes in the earlier Braak staging brain regions such as 

entorhinal (LCV1), Hippocampus and Amygdala (LCV2). Later Braak staging brain regions 

show longitudinal changes.
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Fig. 3. 
LCCA: the longitudinal canonical vectors for PET are displayed at time = 0, 1, 2, 3, 4. The 

rows were sorted by the Braak staging (B1-B6, NA). All LCVs represent longitudinal 

changes over time.
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Fig. 4. 
Naive: the longitudinal canonical vectors for T1 are displayed at time = 0, 1, 2, 3, 4. We 

separately present the LC vectors by volumetric (Vol) and cortical thickness (CT) measures. 

The rows were sorted by the Braak staging (B1-B6, NA). The Naive LCV 3 represents a 

global longitudinal patterns in volumes and cortical thickness.
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Fig. 5. 
Naive: the longitudinal canonical vectors for PET are displayed at time = 0,1, 2,3, 4. The 

rows were sorted by the Braak staging (B1-B6, NA). The Naive LCV 3 represents a global 

longitudinal changes in amyloid accumulation.
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Fig. 6. 
LCCA: Baseline diagnosis status comparison. Significant CVs are reported. Age, sex and 

education were adjusted for statistical testing. For post-hoc pair-wise group comparison, 

least squared mean differences were computed, and unadjusted p-values are reported.
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Fig. 7. 
Naive: Baseline diagnosis status comparison. Significant CVs are reported. Age, sex and 

education were adjusted for statistical testing. For post-hoc pair-wise group comparison, 

least squared mean differences were computed, and unadjusted p-values are reported.
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Fig. 8. 
LCCA: Group comparison of the canonical variates between participants who transition 

to dementia within 5 years compared to those who did not. Age, sex and education were 

adjusted.
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Fig. 9. 
Naive: Group comparison of the canonical variates between participants who transition to 

dementia within 5 years compared to those who did not. Age, sex and education were 

adjusted.
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Fig. 10. 
Simulation 1. LFPCA models for simulation.
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Fig. 11. 
Example of the time variables tij and sik from the first 10 subjects from a simulation setting. 

The time points between X and Y  variables are not aligned, and the numbers of visits differ.
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Fig. 12. 
Simulation 1. Performance evaluation.
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Fig. 13. 
Simulation 2. LFPCA models for simulation.
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Fig. 14. 
Simulation 2. Performance evaluation.
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Fig. 15. 
Simulation 3. An example of the longitudinal canonical variates (LCVs) at the different 

ratios of subgroups.
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Fig. 16. 
Simulation 3. Performance evaluation.
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Table 1.

Demographic characteristics at baseline and 5 year conversion rate.

AD (N=24) MCI (N=365) CN (N=291) Total (N=680) p value

Sex, Female, n (%) 10 (41.7) 162 (44.4) 147 (50.5) 319 (46.9) 0.257

Age, years, Mean (SD) 76.75 (7.15) 71.88 (7.74) 74.62 (6.47) 73.23 (7.35) <0.001

Non-hispanic, n (%) 22 (91.7) 351 (96.2) 279 (95.9) 652 (95.9) 0.245

Race , White, n (%) 23 (95.8) 342 (93.7) 267 (91.8) 632 (92.9) 0.713

MMSE1, Mean (SD) 18.83 (4.90) 26.89 (3.34) 28.81 (1.63) 27.43 (3.39) < 0.001

ADAS2, Mean (SD) 37.35 (13.75) 16.64 (11.06) 9.05 (5.71) 14.10 (10.93) < 0.001

5 Yr AD Transition3, n (%) N/A 104 (28.5) 16 (5.5) 120 (18.3) < 0.001

1
Eight participants has missing values.

2
Nine participants had missing values.

3
Only non-demented participants at baseline were analyzed.
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Table 2.

ANOVA of diagnosis group comparison and AD conversion with age, sex and education adjusted for LCCA.

T1 PET

LCV F p ηp
2 outliers F p ηp

2 outliers

Group Comparison 1 3.47 0.032 0.010 0 0.57 0.566 0.002 1

2 19.83 <0.001 * 0.056 0 38.73 <0.001 * 0.103 0

3 2.13 0.120 0.006 1 1.08 0.342 0.003 2

4 4.86 0.008 * 0.014 1 3.34 0.036 0.010 2

5 0.95 0.386 0.003 0 11.60 <0.001 * 0.033 2

6 2.42 0.090 0.007 0 2.46 0.086 0.007 1

7 8.26 <0.001 * 0.024 0 3.86 0.022 0.011 2

AD Conversion 1 11.74 0.001 * 0.018 0 5.76 0.017 * 0.009 1

2 102.21 <0.001 * 0.136 0 164.90 <0.001 * 0.202 0

3 1.51 0.220 0.002 0 0.08 0.773 0.000 1

4 6.11 0.014 * 0.009 0 7.70 0.006 * 0.012 1

5 0.00 0.972 0.000 0 0.75 0.386 0.001 1

6 3.19 0.074 0.005 0 7.05 0.008 * 0.011 0

7 2.80 0.095 0.004 0 3.44 0.064 0.005 2
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Table 3.

ANOVA of diagnosis group comparison and AD conversion with age, sex and education adjusted for the Naive 

approach.

T1 PET

CV F p ηp
2 outliers F p ηp

2 outliers

Group Comparison 1 0.02 0.984 0.000 3 3.23 0.040 0.010 4

2 4.24 0.015 0.012 3 1.18 0.308 0.004 4

3 47.83 <0.001 * 0.124 1 51.68 <0.001 * 0.133 0

4 0.75 0.472 0.002 0 1.92 0.148 0.006 1

5 8.74 <0.001 * 0.025 1 2.17 0.115 0.006 1

6 2.03 0.132 0.006 2 8.47 <0.001 * 0.025 1

7 0.24 0.787 0.001 1 1.19 0.304 0.004 3

8 0.78 0.458 0.002 0 1.60 0.202 0.005 1

9 0.53 0.589 0.002 0 1.71 0.183 0.005 2

10 0.25 0.780 0.001 0 1.47 0.230 0.004 0

11 1.00 0.367 0.003 0 1.71 0.182 0.005 2

12 1.17 0.310 0.003 0 4.96 0.007 * 0.015 0

AD Conversion 1 0.64 0.424 0.001 2 1.89 0.170 0.003 3

2 0.80 0.372 0.001 2 0.94 0.334 0.001 3

3 248.28 <0.001 * 0.276 1 226.29 <0.001 * 0.258 0

4 0.47 0.494 0.001 0 1.00 0.317 0.002 1

5 0.23 0.635 0.000 1 0.03 0.874 0.000 1

6 8.72 0.003 * 0.013 2 13.11 <0.001 * 0.020 1

7 0.38 0.541 0.001 1 0.81 0.368 0.001 3

8 0.02 0.886 0.000 0 3.43 0.064 0.005 1

9 0.09 0.769 0.000 0 1.16 0.282 0.002 2

10 5.84 0.016 0.009 0 11.10 0.001 * 0.017 0

11 0.01 0.910 0.000 0 0.14 0.713 0.000 2

12 0.31 0.578 0.001 0 1.21 0.271 0.002 0

*:
adjusted p < 0.05.
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