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Manifestation of depression 
in speech overlaps 
with characteristics used 
to represent and recognize speaker 
identity
Sri Harsha Dumpala 1,2, Katerina Dikaios 3,4, Sebastian Rodriguez 1,2, Ross Langley 3, 
Sheri Rempel 4, Rudolf Uher 3,4 & Sageev Oore 1,2*

The sound of a person’s voice is commonly used to identify the speaker. The sound of speech is 
also starting to be used to detect medical conditions, such as depression. It is not known whether 
the manifestations of depression in speech overlap with those used to identify the speaker. In this 
paper, we test the hypothesis that the representations of personal identity in speech, known as 
speaker embeddings, improve the detection of depression and estimation of depressive symptoms 
severity. We further examine whether changes in depression severity interfere with the recognition 
of speaker’s identity. We extract speaker embeddings from models pre-trained on a large sample of 
speakers from the general population without information on depression diagnosis. We test these 
speaker embeddings for severity estimation in independent datasets consisting of clinical interviews 
(DAIC-WOZ), spontaneous speech (VocalMind), and longitudinal data (VocalMind). We also use the 
severity estimates to predict presence of depression. Speaker embeddings, combined with established 
acoustic features (OpenSMILE), predicted severity with root mean square error (RMSE) values of 6.01 
and 6.28 in DAIC-WOZ and VocalMind datasets, respectively, lower than acoustic features alone or 
speaker embeddings alone. When used to detect depression, speaker embeddings showed higher 
balanced accuracy (BAc) and surpassed previous state-of-the-art performance in depression detection 
from speech, with BAc values of 66% and 64% in DAIC-WOZ and VocalMind datasets, respectively. 
Results from a subset of participants with repeated speech samples show that the speaker 
identification is affected by changes in depression severity. These results suggest that depression 
overlaps with personal identity in the acoustic space. While speaker embeddings improve depression 
detection and severity estimation, deterioration or improvement in mood may interfere with speaker 
verification.

Major depressive disorder, also known as depression, is a common mental disorder and a leading cause of dis-
ability worldwide1. According to the World Health Organization2, more than 300 million people (around 5% 
of the global population) are living with depression. Early and objective diagnosis of depressive symptoms is 
crucial in reducing the burden of depression, but inadequate access to clinical services and associated stigma 
limit detection. In addition to depression identification, it is important to measure the severity of depression as 
repeated measurements are needed to guide effective treatment and improve outcomes3. Measurement-based care 
is known to be effective, yet it is underused in practise because of the perceived burden of existing measurement 
tools4. For treatment purposes, automated assessment systems would have potential to help, if they could detect 
and measure depression with some reliability from easy-to-obtain material. Automated assessment systems may 
facilitate the detection and treatment of depression if they could reliably detect and measure depression in easy 
to obtain material.
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Audio recording of speech is easy to obtain and may contain sufficient information for the detection and 
measurement of depression5–7. The potential vocal biomarkers for depression explored in previous works include 
a range of acoustic features, such as prosodic characteristics (e.g., pitch and speech rate), spectral characteristics 
(e.g., Mel-frequency cepstral coefficients and formant frequencies), and glottal (vocal fold) excitation patterns8–11. 
Previous work explored spectral, prosodic and glottal features for depression detection and severity estimation, 
but the accuracy and generalizability of depression detection is limited by the size of samples with available 
diagnostic information. Obtaining large samples of speech with diagnostic information is expensive and associ-
ated with ethical challenges of datasets combining identifiable (voice) and sensitive (diagnosis) information. 
One way of making better use of valuable datasets of limited size is to use models pre-trained on different but 
related tasks in much larger datasets.

Speech audio is routinely used for recognizing the identity of the speaker. Voice-based speaker identification 
is highly accurate thanks to models trained on large corpus; for instance the VoxCeleb212 dataset includes 3000 
hours of speech by 7160 speakers. The experience of depression is intimately connected with the core of a person’s 
identity13. Depression is associated with self-focused attention and altered perception of the self14. The change 
between depressed and well states is so striking that recovery is commonly described as being a ’different person’. 
Based on the intimate link between depression and personal identity, we hypothesized that a model pre-trained 
for speaker identification will improve the detection of depression and estimation of depression severity from 
natural speech. In this work, we test this hypothesis by exploiting the representations of personal identity, known 
as speaker embeddings, in the detection and measurement of depression in speech.

To qualify the above hypothesis, we define speaker embeddings as text-independent speaker-specific informa-
tion that include acoustic characteristics that are independent of what the speaker is saying. Speaker embeddings 
represent not only the identifiable information such as gender, age, etc., but have been shown to provide impor-
tant cues about the traits of the speaker such as personality, physical state, likability, and pathology15. Speaker 
embeddings extracted from speech have previously been used for tasks such as automatic speaker verification16, 
improving speech recognition performance17, multi-speaker speech synthesis18, and emotion classification19. In 
this work, we apply speaker embeddings to the tasks of depression detection and severity estimation from speech. 
We empirically show that the speaker characteristics of an individual—as represented by speaker embeddings—
are affected by changes in depression severity of the individual. We consider three established variants of speaker 
embeddings; the x-vectors, ECAPA-TDNN (Emphasized Channel Attention, Propagation, and Aggregation 
Time-delay neural network) x-vectors20, and d-vectors21. By using speaker embeddings, we demonstrate that 
large, public, unlabeled datasets in conjunction with much smaller labeled datasets, can be leveraged to improve 
on the state-of-the-art (SOTA) performance in clinically meaningful tasks with implications for public health.

Related work.  The application of deep learning techniques significantly boosted the performance of depres-
sion detection using speech22–27. Initial work on speech-based depression detection used deep neural networks 
(DNNs) with fully-connected layers22. Then, convolutional neural networks (CNNs) and recurrent neural net-
works with long short-term memory (LSTM) units achieved better performance for depression detection and 
severity estimation23,24. Later, CNN-LSTM, dilated CNN and dilated CNN-LSTM models improved the SOTA 
performance in depression detection and severity estimation25–28. Further, sentiment and emotion embeddings 
were used for depression severity estimation29. To the best of our knowledge, none of the previous studies have 
explored the application of speaker embeddings for depression detection and severity estimation. i-vector-based 
models have been trained from scratch for detecting depression30–32, but these studies did not use i-vector mod-
els to extract speaker embeddings for depression detection. In this work, we use speaker embeddings to train 
multi-kernel CNN (MK-CNN)33 and LSTM models for depression detection and severity estimation.

Methods
Our method consists of three phases, (1) Pre-training, (2) Depression analysis on longitudinal data, and (3) 
Depression detection and severity estimation. In pre-training phase of the speaker embedding models, given 
speech data collected from a large pool of speakers, we train speaker classification models to classify the speech 
samples based on the speaker labels. In the second phase, we use longitudinal data to analyze the effect of the 
changes in depression severity on speaker embeddings of an individual. In the third phase, we analyze the 
significance of speaker embeddings for the task of depression detection and severity estimation using speech. 
We use the speaker embeddings extracted using the pre-trained speaker classification models (trained in the 
first phase) in the second and third phases. Figure 1 shows an overview of our method.

Dataset.  In this work, we used two depression datasets, DAIC-WOZ34 ((Distress Analysis Interview Cor-
pus - Wizard of Oz—a corpus of clinical interviews) and Vocal Mind (spontaneous speech corpus obtained 
in a clinical setting) for analysis. DAIC-WOZ dataset contains a set of 219 clinical interviews collected from 
219 participants (154 healthy and 65 depressed). Each audio sample was labeled with a PHQ-8 (Patient Health 
Questionnaire) score, in the range of 0–24, to denote the severity of depression. Vocal Mind dataset contains 
speech samples collected from 514 participants (403 healthy and 111 depressed). Depression severity of each 
speech sample was scored on the Montgomery and Asberg Depression Rating Scale (MADRS), which is in the 
range of 0–60. Further, longitudinal speech data also collected as a part of the Vocal Mind project was used. Lon-
gitudinal speech data was collected from 65 individuals at different dates, where variations in their depression 
severity scores were observed during this period. Manual transcripts with timestamps of the DAIC-WOZ and 
Vocal Mind datasets were used to discard the interviewer speech segments and retain only the participant speech 
segments for analysis. The retained participant speech segments were combined and were then divided into non-
overlapping segments of 5–6 seconds in duration. This resulted in 15710 and 25144 segments for DAIC-WOZ 
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and Vocal Mind datasets, respectively. The depression label assigned for each segment is same as the label of the 
entire speech sample. For DAIC-WOZ dataset, speech samples with PHQ-8 scores greater than or equal to 10 
(PHQ-8 ≥ 10) were considered as depressed and those samples with PHQ-8 scores less than 10 (PHQ-8 < 10) 
were considered as healthy. This corresponds to the recommended threshold for depression identification35,36. 
For the Vocal Mind dataset, speech samples with MADRS greater than or equal to 10 (MADRS ≥ 10) were con-
sidered as depressed and those samples with MADRS less than 10 (MADRS < 10) were considered as healthy. 
This corresponds to the established threshold for remission on MADRS37. Table 1 provides various statistics of 
the DAIC-WOZ and the Vocal Mind datasets.

Figure 1.   Schematic depiction of the outline of the paper. There are three different phases in this work (a) Pre-
training for speaker embeddings using a large non-medical speech data collected from N different speakers, (b) 
Depression analysis using speaker embeddings extracted from pre-trained models on longitudinal data, and (c) 
Depression detection and severity estimation using speaker embeddings extracted from pre-trained models.

Table 1.   Details of the DAIC-WOZ and Vocal Mind datasets. Std. refer to standard deviation.

Metrics

DAIC-WOZ Vocal Mind

Dataset Dataset

Data collection format Interview Spontaneous

Severity rating scale PHQ-8 MADRS

Total samples 219 514

Total duration (in h) 59 41

Total participant speech duration (in h) 32 37

Count (%) Count (%)

Female speakers 92 (42%) 390 (76%)

Male speakers 127 (58%) 124 (24%)

Non-depressed samples 154 (70%) 403 (78%)

Depressed samples 65 (30%) 111 (22%)

Mean (Std.) Mean (Std.)

Sample duration (in min) 16.04 (4.55) 4.79 (1.04)

Participant speech Duration (in min) 8.75 (5.02) 4.33 (1.09)

Age 40.70 (12.53) 43.58 (16.97)

Severity score 6.64 (6.01) 6.41 (6.05)



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11155  | https://doi.org/10.1038/s41598-023-35184-7

www.nature.com/scientificreports/

Pre‑training.  We use the pre-trained models available in speech-brain38 for extracting the x-vectors and 
ECAPA-TDNN x-vectors from the speech samples. To extract d-vectors, we pre-trained the GE2E network on 
the task of speaker verification by consolidating two large non-clinical datasets (LibriSpeech39 and VoxCeleb212), 
which are publicly available. LibriSpeech dataset consists of speech samples collected from 1166 speakers, and 
the VoxCeleb dataset consists of speech samples collected from 1166 speakers. In this work, We did not fine-tune 
the pre-trained speaker classification models on the depression datasets (i.e., DAIC-WOZ and Vocal Mind datasets).

We then used these pre-trained models to extract speaker embeddings (x-vector, ECAPA-TDNN x-vectors, 
and d-vectors) at segment-level for the depression datasets. The dimensions of the speaker embeddings are 512, 
256, and 192 for x-vector, ECAPA-TDNN x-vector, and d-vector, respectively. Finally, we use these speaker 
embeddings to train and test the LSTM and MK-CNN models for depression detection and severity estimation. 
We train separate models for x-vector, ECAPA-TDNN x-vector, and d-vector speaker embeddings.

Speaker embeddings for depression.  We train MK-CNN (shown in Fig. 2) and LSTM networks with 
different speaker embeddings for depression detection and severity estimation.

MK‑CNN model.  We trained a MK-CNN model, as shown in Fig. 2, for depression detection and severity 
estimation using the extracted speaker embeddings. The first convolutional layer consists of 3 different kernels 
with sizes (3, L), (4, L), and (5, L), respectively. Here, L refers to the length of the input feature vector. L = 512, 
256 and 192 for x-vector, ECAPA-TDNN x-vector and d-vector, respectively. Each kernel consists of 50 channels. 
In the second convolutional layer, the size of all kernels is 4, with 50 channels in each kernel. Outputs from each 
kernel of the second convolutional layer are flattened and then concatenated before passing through a fully-
connected (FC) layer with 100 units and an output layer.

LSTM model.  We also trained an LSTM network for depression detection and severity estimation using the 
extracted speaker embeddings. The LSTM network is the same as the MK-CNN network shown in Fig. 2, with 
the MK-CNN block replaced by an LSTM block consisting of 2 LSTM layers with 128 units each. The output of 
the LSTM block, for the last timestep, is passed through an FC layer with 100 units and an output layer.

Baseline DNN.  We considered a fully-connected deep neural network (DNN) as a baseline for comparison. 
This DNN has three hidden layers with 128, 64, and 128 ReLU units, respectively, followed by an output layer.

Further, we extracted COVAREP24 and OpenSMILE40 features for performance comparison with speaker 
embeddings. COVAREP and OpenSMILE features, obtained at the segment level, were used to train and test 
the MK-CNN, LSTM, and DNN networks. We extracted the 384-dimensional OpenSMILE features using the 
IS09 configuration. We obtained the 444-dimensional COVAREP by computing the higher-order statistics 
(mean, maximum, minimum, standard deviation, skew, and kurtosis). We calculated statistics on the frame-
level COVAREP features.

Combining embeddings (CE).  We also try combining speaker embeddings (one of the x-vector, ECAPA-
TDNN x-vector or d-vector) with the OpenSMILE or COVAREP features (as shown in Fig. 3), for depression 
detection and severity estimation. The proposed network consists of two branches, one for speaker embeddings 
and the other for OpenSMILE or COVAREP features. The input features to each branch are passed through an 
LSTM (CE l  ) or MK-CNN (CEc ) block and then through a fully-connected (FC) layer (100 units). The outputs 
of the FC layer of each branch are combined using dot product and then passed through an output layer to get 
the final decision.

For all the above networks, the final output layer is a softmax with two units when trained for the task of 
depression detection and a single linear unit when trained for depression severity estimation. The context in 

Figure 2.   Network for depression detection using speaker embeddings as input. S, C, K refers to the stride, 
number of channels and kernel size of the convolutional layer, respectively. FC refers to a fully-connected layer. 
The same network is used for OpenSMILE and COVAREP features.
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Figs. 2 and 3 refers to the number of contiguous segments in an audio recording considered to train and test the 
models. We experiment with temporal contexts of different lengths to analyze the optimal number of contiguous 
speech segments required to train the models (see subsection ”Temporal Context in Depression Detection” in 
supplementary material). Even though the networks are trained and tested at segment-level with different con-
texts, the final performance metrics are obtained based on the prediction for the entire audio file. For depression 
detection, we use majority voting on the segment-level decisions for the final decision. For depression severity 
score prediction, we compute the mean of the segment-level scores to compute the overall depression severity 
score.

Analysis of longitudinal data.  Here, we performed experiments on longitudinal speech data to analyze 
whether the speaker embeddings of an individual change as the depression severity score of that individual var-
ies. For this analysis, we used the longitudinal data collected from speakers. For the given longitudinal speech 
samples, we extracted and analyzed different speaker embeddings i.e., x-vector, , ECAPA-TDNN x-vector, and 
d-vector. We then computed the cosine similarity scores between the speaker embeddings of the longitudinal 
speech samples. We also noted the difference in MADRS scores between the longitudinal samples. Finally, we 
analyzed the cosine similarity (A.B = ||A|| ||B|| cosθ ) scores in relation to the variations in the MADRS score.

Training details.  We used Adam optimizer ( β1 = 0.9 , β2 = 0.99 ), with an initial learning rate of 0.0005, 
to train all the networks. Dropout rates of 0.3, 0.4, and 0.3 were used for the MK-CNN block, LSTM block, and 
FC layers, respectively. ReLU activation was used for all the CNN, LSTM, and FC layers. All networks were 
trained for 50 epochs using a batch size of 128. For training the depression detection model, we used the nega-
tive log-likelihood loss function. Whereas for training the depression severity estimation model, we used the 
mean-squared error loss function. Class weights were set based on the distribution of samples in the train set to 
alleviate the class imbalance issue during training. We maintained a constant value for temporal context (num-
ber of contiguous segments in a sample) across the train, validation, and test phases.

Measurements.  Depression detection performance is measured using the F1 score ( F1(D) and F1(H) ) 
and balanced accuracy (BAc.). F1(D) and F1(H) are the F1 scores of depressed and healthy classes, respectively. 
Depression severity estimation performance is measured using root mean squared error (RMSE). The higher the 
F1 and BAc. values, the better the performance. Similarly, the lower the RMSE values, the better the performance. 
We report results using 5-fold cross-validation. There is no speaker overlap between folds, and we maintain the 
same proportion of depressed and healthy participants across all the folds.

Experiments and discussion
Depression detection and severity estimation.  Tables 2–4 provide the experimental results obtained 
using ECAPA-TDNN x-vector (ECAPA) based speaker embeddings. Table 2 shows the depression detection 
and severity estimation performance when ECAPA speaker embeddings are combined with the OpenSMILE 
((ECAPA, OpenSMILE)) or COVAREP ((ECAPA, COVAREP)) features, respectively. Models trained on 
speaker embeddings outperformed the models trained on COVAREP or OpenSMILE features for DAIC-WOZ 
and Vocal Mind datasets. The depression detection and severity estimation performance further improved when 
the speaker embeddings were used in conjunction with the OpenSMILE or COVAREP features. This shows 
that the speaker embeddings and the OpenSMILE or COVAREP features carry complementary information. 
The performance of the LSTM models was better or comparable to the MK-CNN models. To obtain the results 
in Tables 2–4, we used a context of 16 segments for DAIC-WOZ, and a context of 20 segments for Vocal Mind 

Figure 3.   Network for combining speaker embeddings, and OpenSMILE or COVAREP features for depression 
detection.
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datasets to train the LSTM and MK-CNN models. (see Supplementary Table S1 and S2 for the depression assess-
ment results using x-vector and d-vector based speaker embeddings.)

We compared the performance of our proposed approach with previous SOTA approaches for depression 
detection and severity estimation (see Table 3). In Sequence24, LSTM models trained with COVAREP features 
were used for depression detection and severity estimation. In eGeMAPS41, CNN models were trained using 
OpenSMILE features for depression detection. In FVTC-MFCC27, channel-delayed correlations of MFCCs were 
used to train dilated CNN models. In FVTC-FMT27, channel-delayed correlations of formant frequencies were 
used to train dilated CNN models. None of these approaches explicitly considered speaker-specific features for 
depression detection. Table 3 shows that the models trained on speaker embeddings performed better (or at least 
comparable to) than the SOTA approaches for speech-based depression detection and severity estimation tasks. 
The depression detection and severity estimation performances obtained by combining speaker embeddings 
with the OpenSMILE features ((ECAPA, OS)) outperformed the previous SOTA approaches.

Estimating depression from demographic variables.  To understand the extent to which speaker 
embeddings make use of information beyond demographics such as biological sex and age for depression assess-
ment, we trained machine learning models (decision trees, support vector machines and DNNs) for depression 
detection and severity estimation when only biological sex and age are provided as input. We found that the 
best performance obtained on the Vocal Mind dataset by combining biological sex and age ( F1(D) = 0.16, F1(H) 
= 0.65 and GM = 0.32, RMSE = 8.35) was significantly worse than the performance obtained by the speaker 
embedding ( F1(D) = 0.34, F1(H) = 0.81 and GM = 0.55, RMSE = 6.62). This shows that the speaker embeddings 
capture more information that is relevant for depression detection and severity estimation than just biological 
sex and age. Further details are provided in Supplementary Table S3.

Previous works reported that some machine learning models simply learned gender-specific information 
from the voice for depression detection42–44. To analyze the contribution of the gender-agnostic information 
contained in speaker embeddings for depression detection, we performed gender-specific depression detec-
tion as done in previous works43,44. We observed from the experimental results that the speaker embeddings do 
not rely completely on the gender-specific information for depression detection. For the DAIC-WOZ dataset 
(see Supplementary Table S4a), both Female and Male models achieved similar performance with the Female 
model performing slightly better than the Male model. Whereas for the Vocal Mind dataset (see Supplementary 
Table S4b), there is a large difference between the performance of the Female and the Male models, with the 
Female model performing significantly better than the Male model. but could this also be partially explained 
if, e.g. males depression does not manifest as clearly in their voice? or maybe that is the point here? This might 
be attributed to the difference in imbalance ratio between non-depressed to depressed samples in each gender: 
for females, the imbalance ratio between non-depressed to depressed = 294:95 ≈ 3:1 whereas for males the 
imbalance ratio between non-depressed to depressed = 109:16 ≈ 7:1. Experimental results are provided in Sup-
plementary Table S4.

Comparison with other pre‑trained embeddings.  We compared the performance of the proposed 
speaker embeddings (d-vector and ECAPA-TDNN x-vectors) with embeddings extracted using other pre-train-

Table 2.   Depression detection and severity estimation performance, in terms of F1 ( F1(D) and F1(H) ), 
Balanced Accuracy (BAc.) and RMSE, on DAIC-WOZ and Vocal Mind datasets. F1(D) and F1(H) are F1 scores 
for depressed and healthy classes, respectively. COVAREP and OpenSMILE are acoustic features. Results 
obtained using ECAPA-TDNN x-vectors (ECAPA), COVAREP and OpenSMILE features on DAIC-WOZ 
(DAIC) and Vocal Mind (VM) datasets. For results obtained by combining Acoustic and Speaker embeddings 
((ECAPA, COVAREP) and (ECAPA, OpenSMILE)), MK-CNN and LSTM models refer to CE models with 
MK-CNN and LSTM blocks, respectively. Bold values indicate best results in each comparison group.

Acoustic features
Alone

Speaker embeddings
Alone

Acoustic and speaker
Embeddings combined

 Dataset1: 
DAIC

  Model
COVAREP ECAPA (ECAPA, COVAREP)

F1(D) F1(H) BAc. RMSE F1(D) F1(H) BAc. RMSE F1(D) F1(H) BAc. RMSE

  MK-CNN 0.35 0.70 0.52 7.39 0.43 0.78 0.60 6.35 0.45 0.79 0.61 6.21

  LSTM 0.32 0.70 0.51 7.41 0.46 0.79 0.61 6.31 0.47 0.80 0.63 6.19

OpenSMILE ECAPA (ECAPA, OpenSMILE)

  MK-CNN 0.37 0.74 0.55 6.87 0.43 0.78 0.61 6.35 0.49 0.81 0.65 6.08

  LSTM 0.39 0.73 0.56 6.82 0.46 0.79 0.63 6.31 0.50 0.83 0.66 6.01

 Dataset2: 
VM

  Model
COVAREP ECAPA (ECAPA, COVAREP)

F1(D) F1(H) BAc. RMSE F1(D) F1(H) BAc. RMSE F1(D) F1(H) BAc. RMSE

  MK-CNN 0.30 0.68 0.49 7.61 0.32 0.80 0.55 6.64 0.34 0.80 0.57 6.55

  LSTM 0.32 0.67 0.50 7.63 0.34 0.81 0.57 6.62 0.37 0.81 0.60 6.51

OpenSMILE ECAPA (ECAPA, OpenSMILE)

  MK-CNN 0.32 0.74 0.53 6.96 0.32 0.80 0.56 6.64 0.41 0.81 0.61 6.41

  LSTM 0.34 0.75 0.54 6.94 0.34 0.81 0.57 6.62 0.43 0.84 0.64 6.28
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ing techniques such as Mockingjay45, vq-wav2vec46, wav2vec 2.047, and TRILL48. We trained the MK-CNN and 
LSTM networks with the speech-based embeddings extracted from the different pre-trained models. In Table 4, 
we reported results obtained using the LSTM networks (LSTM models performed better than the MK-CNN 
models across different embeddings). Speaker embeddings (both d-vector and ECAPA-TDNN x-vectors) per-
formed better than the speech-based embeddings extracted using other pre-trained models. This signifies that 
the speaker embeddings alone could provide effective cues for detecting depression and estimating the severity 
of depression.

Effect of depression on speaker embeddings in longitudinal data.  Figure 4a–c shows the mean 
cosine similarity scores plotted with respect to the difference in MADRS scores between longitudinal speech 
samples. As the difference in the MADRS score increases, the cosine similarity value decreases. For longitudi-
nal speech samples of a speaker, the higher the variation in MADRS score, the higher the variation in speaker 
embeddings for that speaker.

Figure 4d–f shows the mean equal error rates (EER in %) plotted with respect to the difference in MADRS 
scores between longitudinal speech samples. As the difference in the MADRS score increases, the EER values 
increases. This further confirms that for longitudinal speech samples of a speaker, the higher the variation in 
MADRS score, the higher the variation in speaker embeddings of that speaker.

It can also be observed that the variance or EER in speaker embeddings increase as the difference in depression 
severity scores increase. One reason for this behavior could be the skewed distribution of the samples across 
different values. There are more longitudinal samples with low differences in depression severity compared to 
samples with higher differences in depression severity. This might have led to higher variance at the end of the 
curve. Higher number of longitudinal samples might give us a better understanding of this behavior.

Analysis of the speaker embeddings.  We also analyzed the effectiveness of the extracted speaker 
embeddings (d-vector and ECAPA-TDNN x-vectors) for the task of speaker classification. The DAIC-WOZ 
dataset consists of recordings from 189-speakers—189-class speaker classification. Similarly, the Vocal Mind 
dataset consists of recordings from 514-speakers — 514-class speaker classification. We randomly selected 25 
and 15 non-overlapping segments from each speaker to form the train and test sets for that speaker. We extracted 
ECAPA-TDNN x-vectors and d-vectors for all the samples. We trained logistic regression classifiers (with no 
hidden layers) separately on the d-vectors and ECAPA-TDNN x-vectors for the task of speaker classification. 
Speaker classification results are reported in terms of equal error rate (EER)—lower the value of EER, better the 
performance. Using d-vectors, we achieved EERs of 1.29 and 1.69 on the test sets of DAIC-WOZ and Vocal Mind 
datasets, respectively. Using ECAPA-TDNN x-vectors, we achieved EER values of 1.10 and 1.46 on the test sets 

Table 3.   Performance comparison of proposed approach with SOTA approaches. CEl refers to models with 
LSTM block. 

DAIC-WOZ Vocal mind

Approach F1(D) F1(H) BAc. RMSE F1(D) F1(H) BAc. RMSE

 Sequence 0.32 0.70 0.51 7.41 0.32 0.67 0.49 7.63

 eGeMAPS 0.32 0.71 0.52 7.05 0.27 0.74 0.50 7.22

 FVTC-MFCC 0.37 0.79 0.58 6.41 0.30 0.77 0.54 6.85

 FVTC-FMT 0.39 0.79 0.59 6.37 0.34 0.76 0.55 6.82

 Mk-CNN (COVAREP) 0.35 0.70 0.52 7.39 0.30 0.68 0.49 7.61

 LSTM (OpenSMILE) 0.39 0.73 0.56 6.82 0.34 0.75 0.55 6.94

 MK-CNN (ECAPA-TDNN) 0.43 0.78 0.60 6.35 0.32 0.80 0.56 6.64

 LSTM (ECAPA-TDNN) 0.46 0.79 0.63 6.31 0.34 0.81 0.57 6.62

 CE l  (ECAPA, COVAREP) 0.47 0.80 0.64 6.19 0.37 0.81 0.59 6.51

 CE l  (ECAPA, OpenSMILE) 0.51 0.83 0.66 6.01 0.43 0.84 0.64 6.28

Table 4.   Performance comparison of the speaker embeddings with other pre-trained embeddings.

Model

DAIC-WOZ Vocal Mind

F1(D) F1(H) BAc. RMSE F1(D) F1(H) BAc. RMSE

 Mockingjay 0.27 0.70 0.49 7.09 0.27 0.70 0.48 7.58

 vq-wav2vec 0.32 0.71 0.52 6.95 0.25 0.73 0.49 7.12

 wav2vec-2.0 0.38 0.74 0.55 6.77 0.32 0.74 0.52 7.03

 TRILL 0.36 0.77 0.56 6.46 0.34 0.76 0.55 6.80

 ECAPA (Proposed) 0.46 0.79 0.63 6.31 0.34 0.81 0.57 6.62



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11155  | https://doi.org/10.1038/s41598-023-35184-7

www.nature.com/scientificreports/

of DAIC-WOZ and Vocal Mind datasets, respectively. These low EER values show that the extracted speaker 
embeddings carry crucial information about the speaker-specific characteristics.

Comparison with a no‑information system.  To provide context for interpreting the lower RMSE val-
ues achieved by our proposed depression assessment system (i.e. an LSTM model trained by combining ECAPA-
TDNN speaker embeddings with OpenSMILE features), we present a detailed confusion matrix (see Fig. 5): 
We used known levels of depressive severity to evaluate the seriousness of misclassification. We found that our 
ECAPA-TDNN-Open SMILE model made the less severe mistakes of misclassifying between healthy controls 
and mild cases of depression, as shown in Fig. 5a. This compares favourably to the no-information system that 
is equally likely to make the bigger mistake of misclassifying severe cases of depression as controls (see Fig. 5b).

Specifically, the depression severity score values (PHQ-8) are clinically divided into 4 different groups: No 
depression or healthy (PHQ-8<= 8), Mild depression (PHQ-8 range 9-12), Moderate depression (PHQ-8 range 
13-16) and Severe depression (PHQ-8 range 17-24). In matrix (a) on the left, we show a confusion matrix based 
on our system’s predicted regression scores and in matrix (b) we show a confusion matrix obtained for a Majority 
classifier (or a no-information system). These matrices demonstrate interesting characteristics: (1) Many of the 
errors made by our model are between healthy (None) and mild classes, which would likely be more tolerable, 
since a goal would be to track longitudinal changes; if a patient is already known to be depressed, then it may be 
less critical for a system to automatically detect where they lie relative to this particular border. (2) Our system 
misclassified only 5 patients who are clinically depressed as healthy (None), and 4 of these are mild depression 
cases. This is a less significant error than it would be to misclassify a severely depressed patient as being healthy 
(i.e. failing to flag them). The no-information system (majority predictor) classified all 16 clinically depressed 
patients as healthy. Indeed it would always have all of its errors in the first column: misclassifying all depressed 
patients as being healthy, regardless of the severity of their depression. (3) Indeed, in our system, none of the 
severely depressed patients are misclassified as healthy, whereas in the no-information system, 100% of severely 
depressed patients will be misclassified as healthy (red bin in Fig. 5b) (4) For our proposed system, most of the 
misclassification errors are “one bin apart” (light green diagonals in Fig. 5a), i.e. confusion between adjacent 
classes such as mild-none or mild-moderate, as opposed to confusion between more separated classes such as 
none-moderate. The no-information system misclassified all the 3 moderately depressed people as healthy and 
the 4 severely depressed people as healthy.

Figure 4.   Analysis of speaker embeddings with respect to changes in depression severity scores using 
longitudinal data. (a–c) shows the variation in cosine similarity scores (between speaker embeddings extracted 
from longitudinal data) when the difference in MADRS score changes. (d–e) shows the variation in equal error 
rates (EER) (for the task of speaker classification) with respect to the difference in MADRS score between 
longitudinal samples. The different speaker embeddings are x-vector, d-vector and ECAPA-TDNN x-vector.
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Limitations
In this work, we showed that speaker embeddings can be used to build machine learning models for depression 
assessment. Using speaker embeddings in combination with acoustic features, we achieved incremental progress 
in performance over the previous state-of-the-art machine learning techniques for the tasks of depression 
severity estimation and depression detection. However, there is a need to further improve performance before 
deploying AI-based depression assessment systems. In this work, we considered acoustic features, but not text-
based features (i.e. linguistic content). It is possible that the latter, in combination with acoustic features, might 
in future further improve the performance of these machine learning models. The main objective of this work 
is not to build machine learning models to replace human clinicians, but to develop models which can be used 
for measurement-based treatment and to assist (i.e. work in co-ordination with) human clinicians in making 
better assessment of depression. Moreover, the specificity of the current models in diagnosing depression from 
other mental disorders remains to be established.

Conclusions
In this work we train a speaker embedding network on standard large datasets and then use two small clinical 
datasets to show that the resulting embeddings can then be used to estimate the severity of depression and to 
detect depression from speech. In particular, when we combine these embeddings with OpenSMILE speech 
features, we achieve SOTA performance on the depression severity estimation and the depression detection tasks. 
Further, we show that the changes in depression severity affects the speaker identification by analyzing repeated 
speech samples collected from a subset of speakers.

Data availability
Publicly available Voxceleb2 (https://​www.​robots.​ox.​ac.​uk/​~vgg/​data/​voxce​leb/​vox2.​html) and LibriSpeech 
(https://​www.​opens​lr.​org/​12) datasets were used to train the speaker embedding models i.e., x-vector, d-vector 
and ECAPE-TDNN x-vector models. The DAIC-WOZ dataset is publicly available at https://​dcaps​woz.​ict.​usc.​
edu/). The Vocal Mind dataset generated and analyzed during the current study is not publicly available due 
to potential identifiable character of speech data, sensitive character of the associated information on mental 
disorders, and limits of consent provided by participants. The study procedures for Vocal Mind dataset, and 
all the experiments in this research have been carried out in accordance with the Canadian Tri-Council Policy 
Statement: Ethical Conduct for Research Involving Humans - TCPS 2 (2018) policy statement. The Research 
Ethics Board of Nova Scotia Health Authority approved all study procedures. All the participants provided writ-
ten informed consent. The consent covers the publication of de-identified data and results. The consent does 
not permit publication of identifiable information. A proportion of participants have additionally consented for 
their de-identified audio recordings to be shared with other researchers in other Canadian research institutions 
and/or research institution outside of Canada. De-identified version of these samples are available from the 
corresponding author on reasonable request.
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Figure 5.   Confusion matrix obtained by considering predicted depression severity scores (PHQ-8) by (a) 
our proposed system—LSTM model trained combining ECAPA-TDNN with OpenSMILE features, and (b) 
a no-information system which predicts the mean value for every input. Fine grained clinical levels of the 
predicted depression severity scores obtained by dividing the depression severity scores into 4 different groups: 
None (PHQ-8<= 8); Mild (PHQ-8 range 9–12), Moderate (PHQ-8 range 13–16) and Severe (PHQ-8 range 
17–24).

https://www.robots.ox.ac.uk/%7evgg/data/voxceleb/vox2.html
https://www.openslr.org/12
https://dcapswoz.ict.usc.edu/
https://dcapswoz.ict.usc.edu/
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