Skip to main content
. 2022 Nov 15;37(10):2007–2019. doi: 10.1038/s41433-022-02307-9

Table 1.

Summary of general characteristics of studies included in the review.

Author(s), (Publication Year) Study design* Country Eye disease Sample size Mean age (SD) Sex (males / females) Study aim classification
Dry Eye, Sjögren’s Syndrome, Meibomian Gland Dysfunction
Aqrawi et al., (2017) Cross-sectional Norway Sjögren’s

pSS: 27

C: 32

pSS: 52.40 (12.22)

C: -

pSS: -

C: -

Biomarker discovery

Identification of pathophysiology

González et al., (2020)

Prospective

case-controlled

Spain

DE

MGD

DE: 29

MGD: 27

CT: 37

DE: 52.1 (13.5)

MGD: 53.4 (15.2)

CT: 40.2 (12.5)

DE: 10/19

MGD: 11/16

CT: 13/24

Biomarker discovery

Identification of pathophysiology

Grus et al., (2005) Cross-sectional Germany DE

DE: 88

CT: 71

Biomarker discovery

Identification of pathophysiology

Huang et al., (2018) Cross-sectional China DE

Biomarker discovery

Identification of pathophysiology

Ji et al., (2019) Prospective cohort South Korea DE

CsA: 9

DQ3: 9

CsA: 46.2 (1.4)

DQ3: 53.3 (15.5)

CsA: 4/5

DQ3: 4/5

Disease severity Treatment outcome
Jiang et al., (2020) Cross-sectional China DE

DE: 85

CT: 28

DE: 55.4 (8.8)

CT: 60.8 (11.2)

DE: 50/35

CT: 15/13

Biomarker discovery

Identification of pathophysiology

Piyacomm et al., (2019) Prospective RCT Thailand MGD

IPL: 57

Sham: 57

IPL: 59.0 (12.7)

Sham: 59.5 (11.4)

IPL: 10/47

Sham: 5/52

Treatment outcome
Sembler-Møller et al., (2020) Cross-sectional Denmark Sjögren’s

pSS: 24

C: 16

pSS: 55 (11)

C: 53 (16)

pSS: 2/22

C: 2/14

Biomarker discovery

Identification of pathophysiology

Soria et al., (2013) Cross-sectional Spain

DE

MGD

CT

DE: 63

MGD: 38

CT: 43

DE: 55.3 (14.1)

MGD: 63.4 (16.6)

CT: 42.7 (14.0)

DE: 31/32

MGD: 22/16

CT: 27/16

Biomarker discovery

Identification of pathophysiology

Srinivasan et al., (2012) Cross-sectional Canada DE

NDE:6

MDE:6

MSDE:6

MXDE: 6

NDE: 29.8 (8.1)

MDE: 59.6 (16)

MSDE: 45.2 (10.5)

MXDE: 36.7 (17)

NDE: 2/4

MDE:2/4

MSDE:2/4

MXDE:4/2

Biomarker discovery

Identification of pathophysiology

Tong et al., (2017) Prospective cohort Singapore DE 23 49.8 (14) 6/23 Treatment outcome
Zou et al., (2020) Cross-sectional China

Adult DM w/ DE

Child DM w/ DE

Adult DM

Child DM

Adult DM w/ DE: 10

Child DM w/ DE:10

Adult DM:10

Child DM:10

Adult CT:10

Child CT:10

Adult DM w/ DE: 58.8 (4.3)

Child DM w/ DE: 11.7 (2.8)

Adult DM: 57.7 (7.2)

Child DM: 12 (3.3)

Adult CT: 58 (4.3)

Child CT: 11.2 (1.3)

Adult DM w/ DE: 6/4

Child DM w/ DE: 6/4

Adult DM: 7/3

Child DM: 6/4

Adult CT: 7/3

Child CT: 6/4

Biomarker discovery

Identification of pathophysiology

Keratoconus and other Corneal Diseases
Borges et al., (2020) Cross-sectional Germany

KC

Pterygium

GVHD

KC: 4

Pterygium: 9

GVHD: 10

CT: 6

KC: 30.5

Pterygium: 47.2

GVHD: 49.6

CT: 47.5

KC: 2/2

Pterygium: 6/3

GVHD: 3/7

CT:1/5

Biomarker discovery

Identification of pathophysiology

Fodor et al., (2009) Prospective cohort Hungary PKP‡ PKP: 12 PKP: 45 (14.2) PKP: 8/4

Treatment outcome

Prognosis

Fodor et al., (2021) Prospective cohort Hungary KC KC: 45 KC: 34 (12.3) KC: 30/15 Prognosis
Kim et al., (2014) Cross-sectional South Korea Pterygium

Pterygium: 24

HCC: 24

Pterygium: 49 (5.2)

HCC: 49 (5.2)

Pterygium: 10/14

HCC: 10/14

Biomarker discovery

Identification of pathophysiology

Leonardi et al., (2014) Cross-sectional Italy VKC

VKC: 18

C: 10

VKC: 10.06 (4.76)

C: -

VKC:16/2

C:-

Biomarker discovery

Identification of pathophysiology

Treatment outcome

Linghu et al., (2017) Cross-sectional China Pterygium Pterygium: 10 Pterygium: 52 Pterygium: 6/4 Risk factors
Menegay et al., (2008) Cross-sectional U.S. Germany CDKDE

CDK: 2

C: - DE: 88

CT: 71

CDK: 69.5 (3.54)

C:--

CDK:2/0

C:--

Biomarker discovery

Identification of pathophysiology Biomarker discovery

Identification of pathophysiology

O’Leary et al., (2020) Cross-sectional Switzerland oGVHD

NIH 0: 14

NIH 1: 9

NIH 2: 16

NIH 3: 10

NIH 0: 56.1 (9.6)

NIH 1: 48.4 (15.4)

NIH 2: 52.6 (14.0)

NIH 3: 52.6 (15.2)

NIH 0: 9/5

NIH 1:7/2

NIH 2: 9/7

NIH 3:10/1

Treatment outcome

Prognosis

Soria et al., (2015) Cross-sectional Spain KC

KC: 5

Myopic: 5

KC: 34.2 (9.6)

Myopic: 36 (7.5)

KC: 4/1

Myopic: 3/2

Biomarker discovery

Identification of pathophysiology

Wojakoswka et al., (2020) Cross-sectional Poland KC

KC: 7

C: 6

KC: 42–59

C: 40–69

-

Biomarker discovery

Identification of pathophysiology

Yawata et al., (2020) Prospective cohort Japan

BK

FED

BK: 19

FED: 2

BK: 69.8 (15.1)

FED: 73.2 (11.3)

BK: 9/10

FED:2/0

Treatment outcome

Prognosis

CsA topical cyclosporine A, DQS diquafosol tetrasodium, NDE no symptoms and sign, MDE mildly symptomatic with aqueous deficiency, MSDE symptomatic aqueous deficiency, MXDE combination group, KC keratoconus, GVD graft-versus-host-disease, MGD meibomian gland dysfunction, DE dry eye, DM diabetes, w/ with, CDK climatic droplet keratopathy, BK bullous keratopathy, FED Fuchs’ endothelial dystrophy, PKP penetrating keratoplasty, VKC vernal keratoconjunctivitis, IPL intense pulsed light, oGVHD ocular graft versus host disease, NIH National institute of health, NIH 0 normal no symptoms, NIH 1 mild no effect on activities of daily living, hydrating drops <3 time/day, NIH 2 moderate, some effect on activities of daily living, loss of vision caused by keratopathy, pSS primary Sjögren’s syndrome (pSS), HCC healthy conjunctiva from the same patient who underwent pterygium excision.

‡PKP patients with various indications: bullous keratopathy (1), keratoconus (3), salzmann’s nodular degeneration (2), herpes keratitis, transplant rejection (2), Haab-Dimmer dystrophy, recurrence of dystrophy (2), chronic superficial keratitis (pannus) (1), bullous keratopathy, transplant rejection.

Controls refers to healthy individuals unless otherwise specified.

Validation refers to an additional analysis based on discovered candidate proteins performed on a new sample.

Treatment outcome refers to articles that analysed biofluids using AI/bioinformatics with the purpose of predicting treatment responses.

Biomarker discovery or identification of pathophysiology refers to articles that analysed biofluids using AI/bioinformatics with the purpose of identifying candidate markers for ocular surface disease pathogenesis, classify ocular surface diseases based on identified biofluids, or classify different subgroups within one ocular surface disease category based on biofluids.