Skip to main content
. 2022 Nov 15;37(10):2007–2019. doi: 10.1038/s41433-022-02307-9

Table 2.

Characteristics of biofluids, and artificial intelligence/bioinformatics analysis methods and aims.

Author(s) year Biofluid sample type Biofluids (Significant/Total) Sample collection method Statistical/ AI Model Type AI Application / Bioinformatic type: Bioinformatic Purpose
Dry Eye, Sjögren’s Syndrome, Meibomian Gland Dysfunction
Aqrawi et al., (2017)

Tears

Saliva

Saliva: (30/500) † Ig kappa chain C region*, Calmodulin*, Annexin A1*, Alpha-enolase*, Hemopexin*, L-lactate dehydrogenase B chain*, Granulins*, Plastin-2*, etc.

Tears: (197/900) † Galectin-3*, Fibrinogen beta chain*, Copine-1*, Calpastatin*, Ig gamma-1 chain C region*, Calpastatin*, Ig gamma-3 chain C region*.

Schirmer strip

Prediction

Classification

Proteomics, Scaffold, STRING, GO analysis with DAVID: protein identification, functional pathway identification, protein-protein interaction
González et al., (2020) Tears (2/-)†† lipocalin-1*, lysozyme C. Tear collection with glass capillaries Classification Multilayer perceptron neural network, stepwise discriminant analysis, nonlinear iterative partial least squares.
Proteomics with MASCOT: identify proteins, cluster biofluids based on similarities.
Grus et al., (2005) Tears (7/††)? (3700 Da),? (3916 Da), nasopharyngeal* carcinoma-associated proline-rich protein*, proline-rich protein 4*, alpha-1-antitrypsin*, c-terminal fragment*, proline rich protein 3*, calgranulin A*. Schirmer strip

Prediction

Classification

Discriminant analysis, artificial neural network MLFN with back-propagation training algorithm.
Proteomics: classify biofluids and make predictions about their function.
Huang et al., (2018) Tears

(18/50) † Albumin*, Lactotransferrin* Lysozyme*

Transferrin*, Lipocalin 1*Zinc-alpha-2-glycoprotein*, Prolactin-induced protein*, Keratin 1*, Secretoglobin*, family 2 A, member 1,* Apolipoprotein A-I*, Serpin peptidase inhibitor 1*, Polymeric immunoglobulin receptor*, Complement component 3*, S100 calcium binding protein, A8*, Haptoglobin*,S100 calcium binding protein A9*, Lacritin*, Cystatin S*, Proline rich, lacrimal 1*, Orosomucoid 1*, Keratin 10*, Keratin 2*, Clusterin*, Annexin A1*, Secretoglobin*, family 1D*, member 1 Hemopexin*, Immunoglobulin J*, polypeptide alpha-2-HS-glycoprotein*, Apolipoprotein H (beta-2-glycoprotein I)*, Heat shock 27 kDa protein 1*, Glutathione S-transferase*,Filamin A interacting protein 1-like* POTE ankyrin domain family*, member F Alpha-2-macroglobulin Transglutaminase 3*Proline rich 4 (lacrimal)*, CCCTC-binding factor (zinc finger protein)-like*

Schirmer strip Classification Proteomics, Proteome Discoverer, GO analysis, STRING: identify proteins and their biological processes
Ji et al., (2019) Tears (0/794) †Haemoglobin subunit delta, Haemoglobin subunit alpha, Haemoglobin subunit beta, Transitional endoplasmic reticulum ATPase, Vimentin, Coronin-1A, Tubulin beta-4B chain, etc. Schirmer strip

Classification

Prediction

GO with DAVID, KEGG pathway mapping, functional annotation clustering, protein-protein interaction with STRING database: identify function of biofluids, assess similarities with existing ones, and determine biological pathways.
Jiang et al., (2020) Tears

(48/51) † Thiodiacetic acid* Uridine*

Octadecanamide* Phthalic anhydride*, 3-Acrylamidopropyl trimethylammonium*, Triglyme*, N-Heptane*, 1-Piperidinecarboxaldehyde*, 2-Methylbutyroylcarnitine*, Palmitic amide Diglyme*, N-(3-Indolylac etyl)-L-isoleucine* N,N?-Dicyclohexylurea (S)-Desoxy-D2PM*

Tuckolide*, Alanyl-Alanine* Dihydroterrein*

Indoline*, N-methyl corydaldine (-).

Schirmer strip Prediction Least absolute shrinkage and selection operator regression.
Proteomics, KEGG and Metaboanalyst: identify biofluids associated with increased risk of disease
Piyacomm et al., (2019) Tears (1/2) IL-Ra*, IL-6. Schirmer strip Prediction Multilevel mixed-effect linear regression: predict which biomarkers are associated with treatment response
Sembler-Møller et al., (2020) Saliva, plasma, salivary gland tissue Saliva (40/1013) †, Matrix Gla protein*, Basic salivary proline-rich protein 1*, Basic salivary proline-rich protein 2*, Histatin-3*, Basic salivary proline-rich protein 4*, Histatin-1*, Neutrophil elastase*, Calreticulin*, Tripartite motif-containing protein 29*, Clusterin*, Vitronectin*, Catalase*, Complement factor B*, etc.; Plasma (0/219) ††; Salivary gland tissue (0/2773) ††. Blood draw, sialometry, labial salivary gland biopsy Classification Hierarchical clustering, PCA.
Proteomics, GO analysis, KEGG analysis.
Soria et al., (2013) Tears (5/5)100A6*, annexin A1*, annexin A11*, cystatin-S*, phospholipase A2-activatingprotein*.

Schirmer strip

Glass capillaries

Merocel sponge

Classification K-nearest neighbour, support vector machine, classification trees, random forest, naive bayes.
Proteomics using GO and DAIVD, protein-protein interactions: identification of protein function, biological process, and classification into disease groups.
Srinivasan et al., (2012) Tears (33/386)†Cystatin-S, Ig lambda chain C region, Lipocalin-1, Putative lipocalin 1-like protein, Secretoglobin family, zinc-alpha-2-glycoprotein, mammaglobin-b, Polymeric immunoglobulin receptor, arin, lysozyme, Zymogen granule protein-16, etc. Schirmer strip Classification Proteomics with MASCOT, GO analysis: identification or proteins and their function
Tong et al., (2017) Tears (8/400) †† Glutathione synthetase*, IL-1RN*, ADH1C*, AGT*, CHRNA7*, HIST1H4E*, LCP1*, H3P3A*. Schirmer strip

Classification

Prediction

Hierarchical clustering, logistic regression.
Proteomics: classify cytokines into groups based on similarity and assess how change in cytokines predicts treatment response.
Zou et al., (2020) Tears

(3/1922) †† Adult, lysozyme C*, zinc-alpha-2-glycoprotein*, DNA J homolog subfamily C member 3*.

(1/2709) †† Child, Phosphoglycerate kinase 1*.

Schirmer strip Classification Weighted correlation network analysis.
Proteomics, GO/KEGG: identify and cluster biofluids based on similarities between and within groups.
Keratoconus and other Corneal Diseases
Borges et al., (2020) Tears (38/208 KC), (29/322 pterygium), (79/517 GVHD)†, Keratin*, type I cytoskeletal 13*, Immunoglobulin heavy vari-able 5–10–1*, Immunoglobulin heavy variable 5–51*, Proline-rich protein 27, Immunoglobulin heavy variable 3–23*, Histone H2B type 1-A*, Apolipoprotein*, prolactin-inducible protein*, S100-A8*, annexin A2*, cystatin-C*, lipocalin-1*, lysosome C*, lysosome C*,etc. Micropipette Classification Partial Least Squares analysis with Metaboanalyst, PCA
Proteomics with KEGG: identify and cluster biomarkers in different groups based on similarities.
Fodor et al., (2009) Tears (5/6)/IL-8*, IL-1β, IL-6*, TNF-α*, IL-10, and IL-12p70*. Schirmer strip Prediction Locally weighted regression: compare cytokines of groups over time
Fodor et al., (2021) Tears (8/13) IL-6, IL-10, IL-13*, IL-17A*, CXCL8*, IL-8, CCL5*, RANTES, IFN-gamma*, MMP-9, MMP-13*, TIMP-1, NGF*, t-PA, PAI-1*. Tear collection with glass capillaries Prediction Logistic Regression: predict change in biomarkers at follow-up
Kim et al., (2014)

Pterygium

Healthy conjunctiva

(40/230) † aldehyde dehydrogenase*, dimeric NADP- preferring*, protein disulphide-isomerase A3*, peroxiredoxin-2*, Isoform 1 of Protein-glutamine gamma-glutamyltransferase 2 TYMP*, FH Isoform Mitochondrial of Fumarate hydratase,* mitochondrial IGHV4–31*, Putative uncharacterized protein IGKC Ig kappa chain C region*, etc. Excision Classification Proteomics, GO with DAVID: protein classification
Leonardi et al., (2014)

Tears

Serum

(3/78) † serum albumin*, lactotransferrin, lysozyme, lacritin, secretoglobin 1D, mammoglobin B, lipocalin-1, proline-rich, protein 4, cistatine-S, hemopexin*, serotransferrin*, Ig a-1 chain Tear collection with glass capillaries Prediction Stepwise linear regression.
iTRAQ proteomics with Mascot engine: identify differences in biomarker expression and predict group differences.
Linghu et al., (2017)

Ptergyia

Healthy conjunctiva

(156/156) †† Fibrinogen alpha chain*, fibrinogen gamma chain*, microfibril- associated glycoprotein 4*, fibrinogen beta chain*, fibronectin1*, collagen alpha-3*, MMP-1*, −8*, −13*, MMP-3*, −10*, −21*, −22*, CD34*, CD3*. Cohen forceps and iridodialysis spatula Classification Proteomics, GO analysis with DAVID, KEGG pathway analysis: identify function of proteins, putative biological pathways.
Menegay et al., (2008) Cornea (105/105) 14-3-3 Protein gamma, 14-3-3 Protein sigma, 14-3-3 Protein zeta/delta, 24 kDa Protein, 60 S Ribosomal protein L3, Actin, alpha skeletal muscle, Actin, cytoplasmic 1, Actin-like protein 2, Actin-related protein 2/3 complex subunit 1B, Aldehyde dehydrogenase, Alpha 3 type VI collagen isoform 1, Alpha-actinin-4, etc Sharp scissors and fine forceps, capturing an area of the droplets Classification KEGG Pathway Database/ Proteomics: identify proteins against reference healthy cornea.
O’Leary et al., (2020)

Tears

Serum

(13/785) Phosphoglycerate mutase 1*, Keratin type I*, cytoskeletal 9*, Keratin type 2*, cytoskeletal 1*, Fatty acid binding protein*, epidermal Profilin-1*, Immunoglobulin κ constant*, Dermicidin*, Protein S100-A4 Lysozyme C*, Polymeric immunoglobulin receptor*, Glyceraldehyde 3 phosphate dehydrogenase*, Serum albumin*, Gelsolin*. Schirmer strip

Prediction

Classification

Random forest, logistic regression.
Proteomics, GO analysis: classification of severity, identification of predictive biofluids, functional annotation of biological pathways.
Soria et al., (2015) Aqueous humour (16/137) haemoglobin subunit beta*, haptoglobin*, plasma protease C1 inhibitor*, alpha-2-HS-glycoprotein*, basement membrane-specific heparan sulphate proteoglycan core protein* haemoglobin subunit delta*, carbonic anhydrase 1*, ceruloplasmin*, hemopexin*, apolipoprotein A-II*, prostaglandin-H2 D-isomerase*, actin cytoplasmic 2, semaphoring-7A, alpha-1-acid glycoprotein 1, latent transforming growth factor beta-binding protein 2, Ig kappa chain V-I region EU.

Paracentesis

KC patients during keratoplasty

Controls during phakic intraocular Lens implantation

Classification PCA, hierarchical clustering, k-nearest neighbour.
Proteomics, APEX, MASCOT with Proteome Discover, GO analysis: determine the overlap and differences in expression of biofluids between groups.
Wojakoswka et al., (2020) Corneal buttons (13/377) ††Benzoic acid*, Glycolic acid*, Succinic acid*, Gluconic acid*, Linoleic acid*, Myristic acid*, Palmitic acid*, Pentadecanoic acid*, Stearic acid*, trans-13-Octadecenoic acid*, Petroselinic acid*, Cholesta-3,5-diene—isomer 1*, Cholesta-3,5-diene—isomer 2*, Cholesterol*, Cholesterol propionate*, Hexadecanol*, Phosphoric acid*. Penetrating corneal transplantation surgery Classification PCA, hierarchical clustering.
Metabolomics, MSEA: classify cytokines in multiple groups and differentiate between healthy cornea and keratoconus
Yawata et al., (2020) Tears (11/51) IL-1a, IL-2Ra, IL-3, IL-12 (p40), IL-16, IL-18, CTAK, GRO-a, HGF, IFN-a2, LIF, MCP-1*, M-CSF, MIF, MIG*, NGF, SCF*, SCGF-b, SDF-1a, TNF-b, TRAIL, IL-1b, IL-1Ra, IL-2, IL-4*, IL-5, IL-6*, IL-7*, IL-8, IL-9*, IL-10, IL-12p70, IL-13, IL-15, IL-17, Eotaxin, FGF basic*, G-CSF, GM-CSF, IFN-g*, IP-10, MCP-1, MIP1-a, PDGF-bb, MIP-1b, RANTES, TNF-a, VEGF*, TGF-b1, TGF-b2*, TGF-b3. Schirmer strip Classification PCA.
Proteomics; classify the cytokines into multiple groups to identify common patterns.

†All available biofluids included in the respective article.

“–“ indicates that information was not available.

*That had significant implications as determined by statistical analysis.

††Full list of proteins not available

? unknown name.

MSEA metabolite set enrichment analysis, PCA principal component analysis, MLFN multiple-layer feed-forward network, Da Dalton, GO gene ontology analysis, IL-Ra interleukin-1 receptor agonist, IL-6 interleukin receptor, DAVID Database for Annotation, Visualization and Integrated Discovery, STRING Search Tool for the Retrieval of Interacting Genes/Proteins, MASCOT Mascot Daemon by MatrixScience version 2.2.2 (Boston, MA).