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Abstract
The post-anesthesia care unit (PACU) length of stay is an important perioperative efficiency metric. The aim of this study 
was to develop machine learning models to predict ambulatory surgery patients at risk for prolonged PACU length of stay 
- using only pre-operatively identified factors - and then to simulate the effectiveness in reducing the need for after-hours 
PACU staffing. Several machine learning classifier models were built to predict prolonged PACU length of stay (defined as 
PACU stay ≥ 3 hours) on a training set. A case resequencing exercise was then performed on the test set, in which historic 
cases were re-sequenced based on the predicted risk for prolonged PACU length of stay. The frequency of patients remaining 
in the PACU after-hours (≥ 7:00 pm) were compared between the simulated operating days versus actual operating room 
days. There were 10,928 ambulatory surgical patients included in the analysis, of which 580 (5.31%) had a PACU length 
of stay ≥ 3 hours. XGBoost with SMOTE performed the best (AUC = 0.712). The case resequencing exercise utilizing the 
XGBoost model resulted in an over three-fold improvement in the number of days in which patients would be in the PACU 
past 7pm as compared with historic performance (41% versus 12%, P<0.0001). Predictive models using preoperative patient 
characteristics may allow for optimized case sequencing, which may mitigate the effects of prolonged PACU lengths of stay 
on after-hours staffing utilization.

Keywords Perioperative resource management · Outpatient surgery · Machine learning · Artificial intelligence · 
Perioperative informatics

Introduction

Post-anesthesia care unit (PACU) length of stay (LOS) is an 
important focus of efforts to improve quality and decrease 
costs of perioperative care, particularly in the outpatient sur-
gery center where patient throughput is a key determinant 
of efficiency and related financial metrics [1, 2]. The issues 
associated with prolonged PACU stay (especially when the 
stay occurs after-hours in a freestanding ambulatory sur-
gery center) include increased risk for hospital admission, 
decreased patient satisfaction, and increased staffing and 

operational costs [3–8]. Optimizing the sequencing of surgical 
case order in an operating room may aid in reducing PACU 
usage after-hours (e.g. patients predicted to have the longest 
PACU stays could be rescheduled to occur earlier in the day).

The development of predictive models for prolonged PACU 
LOS could be clinically useful in the optimization of case 
order sequencing with the goal of reducing after-hours PACU 
stay in an ambulatory surgery center. Analysis of perioperative 
data with machine learning techniques have been used for the 
development of predictive models aimed at improving PACU 
efficiency [9, 10]. Previously, we reported the development 
of a logistic regression-based predictive model for prolonged 
PACU LOS after outpatient surgery [10]. In this current study, 
the objective was to develop various machine learning mod-
els aimed at identifying patients at risk for prolonged PACU 
LOS and then utilize the models to optimize case sequencing 
in a simulation. We hypothesized that by optimizing operat-
ing room case sequencing based on predicted risk for pro-
longed PACU LOS, we could reduce the frequency of patients 
required to remain in the PACU after-hours.
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Methods

Study sample

As the dataset did not contain any identifiers or other 
protected health information it was deemed exempt 
from informed consent requirements by our Institutional 
Review Board. This report adheres to the SQUIRE guide-
lines for quality improvement studies [11]. Data was ret-
rospectively obtained from procedures occurring at our 
institution’s standalone outpatient surgery center between 
March of 2018 and November of 2020. The objectives of 
this study were to: 1) develop a predictive model using 
preoperative features to classify patients that were high 
risk for prolonged PACU stay; and 2) utilize this model 
to simulate case re-sequencing (in which patients higher 
at risk for prolonged PACU stay were scheduled earlier in 
the day) on historic data and compare frequency of after-
hour staffing needs.

For the predictive model, the primary dependent vari-
able was a binary variable that classified prolonged PACU 
LOS, defined as ≥ 3 hours (0 = PACU stay was < 3 hours 
and 1 = PACU stay was ≥ 3 hours). This threshold was 
chosen as it represented the 75% quartile of PACU stay dura-
tion. The following independent features were obtained for 
each case: surgical procedure (Supplementary Table 1 lists 
frequency of each surgical procedure), American Society 
of Anesthesiologists (ASA) Physical Status (PS) Classifi-
cation, sex, age, scheduled case duration in minutes, and 
body mass index (BMI). Additionally, selected comorbidi-
ties were identified based on International Classification of 
Diseases, Ninth and Tenth Revision Codes (ICD9, ICD10, 
respectively). All ICD9 and ICD10 codes assigned prior to 
day of surgery were collected. The diagnosis with the high-
est frequencies among the entire dataset were then included 
as features. These included patients identified as active 
smokers or having history of alcohol abuse, anxiety, asthma, 
chronic kidney disease (CKD), chronic obstructive pulmo-
nary disease (COPD), chronic pain, coronary artery disease 
(CAD), depression, diabetes mellitus (DM), dysrhythmias, 
gastroesophageal reflux disease (GERD), history of sei-
zures, hypertension, hypothyroidism, or obstructive sleep 
apnea (OSA). Patients who had multiple surgical encounters 
had each encounter treated as a unique patient case.

Statistical analysis

Python (v3.10.4) was used for all statistical analysis. First, 
the data was divided into two datasets, a training dataset and 
a blind test dataset, utilizing an 80:20 split respectively using 
a randomized splitter— the “train_test_split” method from 
the sci-kit learn library—thus, proportions for the binary 

outcome stayed roughly the same in both datasets [12]. 
K-fold cross validation was used on the training dataset to 
optimize each machine learning model (measuring sensitiv-
ity, specificity, and area under the curve (AUC) for receiver 
operating characteristics curve). The models with the opti-
mal hyperparameters were then tested on the blind test data-
set. The area under the curve (AUC) for receiver operating 
characteristics curve were measured for each model after 
being implemented on the blind test set to evaluate model 
performance. Calibration curves were also developed to 
examine the fit of the model on the blind test dataset with 
the top performing model. The predicted risk was plotted 
against the observed risk for each of the 10 risk percentiles 
created from the data set.

Data balancing

Synthetic Minority Oversampling Technique (SMOTE) and 
random under-sampling were both implemented using the 
“imblearn” library to obtain a balanced class distribution 
with minimal differences between positive and negative out-
comes. Datasets with large differences in positive and nega-
tive outcomes were considered to be unbalanced. Imbalance 
data may make it difficult for predictive modeling due given 
the uneven distribution of positive and negative outcomes. 
Random under-sampling of the majority class is frequently 
used to obtain a more balanced class distribution. SMOTE 
is a technique that oversamples the minority class to reduce 
the impact of data imbalance—without affecting the major-
ity class [13]. SMOTE takes samples from the target class 
and five of its nearest neighbors, and then generates syn-
thetic samples, increasing the percentage of the target class. 
Combining random under-sampling and SMOTE improved 
the model outcomes. Both techniques were only applied to 
the training splits. The SMOTE and random under-sampling 
ratios for each model were optimized using k-folds cross val-
idation on the training dataset. SMOTE and random under-
sampling were found to be more successful than solely using 
SMOTE or random under-sampling.

Machine learning models

We evaluated six different classification models: logistic 
regression, feedforward neural network, XGBoost regres-
sor, balanced random forest classifier, balanced bagging 
classifier, and random forest classifier. For each model, we 
compared the following: oversampling the training set via 
SMOTE and no oversampling or undersampling technique. 
We report results using no oversampling or undersampling 
technique and results from using both. For each model, all 
features were included as inputs. One-hot encoding was used 
for categorical features. For each machine learning model, 
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we performed hyperparameter tuning based on k-folds cross 
validation prior to performing the final version on that model.

The logistic regression classifier predicts probabilities for 
each of the different class possibilities based on the model 
input. A limited-memory BFGS (L-BFGS) solver was imple-
mented without specifying individual class weights. This 
model provided a baseline score and helped make the case 
for improvement over the evaluation metrics. The optimal 
value for C (inverse of regularization strength) was found to 
be 6. The optimal SMOTE ratio was found to be 0.75. The 
optimal RandomUnderSampler ratio was found to be 0.9.

Using the Keras interface for Tensorflow [14], we built a 
basic shallow feed-forward neural network. The activation 
function was set to the rectified linear unit function. For 
hyperparameter tuning, we performed grid search cross-
validation to find the optimal parameter values for num-
ber of hidden layers, number of neurons per hidden layer, 
maximum number of iterations, batch size, and learning 
rate, which were 1, 128, 100, 64, and 0.0001 respectively. 
The optimal SMOTE ratio was found to be 0.4. The optimal 
RandomUnderSampler ratio was found to be 0.5.eXtreme 
Gradient Boosting or XGBoost is an optimized version of 
the tree boosting system [15]. After hyperparameter tun-
ing, we found the optimal parameter values for the objec-
tive, subsample ratio of columns when constructing each 
tree, learning rate, maximum depth of a tree, number of 
estimators, and L2 regularization term on weights, to be 
binary:hinge, 0.55, 0.01, 300, 500, and 1.5, respectively. 
The optimal SMOTE ratio was found to be 0.5. The optimal 
RandomUnderSampler ratio was found to be 0.85.

Random forest is a technique that combines the predic-
tions from multiple decision trees together to make more 
accurate predictions than an individual tree [16]. After 
hyperparameter tuning, we found the optimal parameter 
value for the number of estimators to be 500. The optimal 
SMOTE ratio was found to be 0.8. The optimal Rando-
mUnderSampler ratio was found to be 0.9. The Balanced 
Random Forest is an implementation of the random forest, 
which randomly under-samples each bootstrap to balance it. 
After hyperparameter tuning, we found the optimal param-
eter values for the number of estimators and sampling_strat-
egy (the desired ratio, after resampling, of the number of the 
minority class over the number of the majority class) to be 
2000 and 0.95 respectively. The optimal SMOTE ratio was 
found to be 0.35. The optimal RandomUnderSampler ratio 
was found to be 0.75. Bagging or bootstrap-aggregating is 
another way to develop ensemble models. Bagging meth-
ods build several models on random subsets of the original 
dataset. The predictions are then aggregated to form a final 
prediction. Bagging classifiers are generally more immune 
to overfitting. After hyperparameter tuning, we found the 
optimal parameter value for the number of estimators to be 
1200. The optimal SMOTE ratio was found to be 0.4. The 
optimal RandomUnderSampler ratio was found to be 0.6.

SHAP analysis

SHapley Additive exPlanations or SHAP was used to deter-
mine feature importance for the highest performing model 
[17]. Frequently, machine learning models can be hard to 

Fig. 1  Study methodology
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interpret. SHAP provides a framework to interpret the pre-
dictions of a complex machine learning model by giving each 
input feature an importance value for a specific prediction.

Case resequencing

After performance evaluation of each classification model was 
complete, the highest performing model was then used in an 
exercise to re-sequence case order against historic results. The 
re-sequencing was performed on the test set (20% of entire 
dataset), which consisted of 198 previous days in which a full 
OR day (defined as cases scheduled at least past 3pm) was 
scheduled. The model was then used to predict which cases 
would have a prolonged PACU LOS. Identified cases with the 
highest probability of prolonged PACU LOS were scheduled 
earliest, while those with lowest probability were scheduled 
later. One hundred and sixty-two cases were resequenced and 
the historic results were compared against model performance. 
The chi-square test was used to compare frequencies between 
the simulated versus actual historic cohorts’ number of times 
patients were in the PACU past 7pm (Fig. 1).

Results

The final study population consisted of 10,928 patient cases, 
in which 580 (5.31%) had PACU LOS ≥ 3 hours (Table 1). 
The median [quartile] PACU LOS in the non-prolonged 
PACU stay versus prolonged PACU stay cohorts were 81 
[61, 107] minutes versus 210 [192, 246] minutes, respec-
tively. On unadjusted analyses, female sex (P<0.0001) and 
scheduled surgical case duration (P<0.0001) were associated 
with prolonged PACU LOS.

Each machine learning model was trained on the training 
set (80% of original dataset). Using 10-fold cross-validation 
on the training set, hyperparameters for each model type 
were optimized (Table 2) before they were then validated 
on the separate test set

The models were then tested on the hold out test set. For 
each model, performance was compared when SMOTE was 
versus not used. Based on AUC, the best performing model 
with SMOTE was XGBoost (AUC 0.779), whereas the worst 
performing model with SMOTE was logistic regression 
without SMOTE (AUC 0.718) (Fig. 2).

Goodness-of-fit of the XGBoost model was visualized 
with a calibration plot measuring the deciles of predicted 
probabilities with observed rates (Fig. 3). Supplemental 
Fig. 1 is the associated histogram corresponding to the cali-
bration plot illustrating the differences in the observed and 
predicted rates at each probability bucket.

Features in the XGBoost model identified as having the 
most significant impact on the model outputs were identified 

by SHAP analysis (Fig. 4). BMI, age, and scheduled case 
duration had the highest impact on model performance.

Next, we calculated the prediction of the XGBoost model 
on each case within the test set – whether that patient would 
have prolonged or no prolonged PACU LOS. Then we looked 
at individual operating room days, defined as a full operating 
room (cases scheduled at least passed 3pm and same surgeon) 
and resequenced the order of cases based on the prediction 
calculated from XGBoost (e.g. cases with highest risk of pro-
longed PACU LOS were scheduled earlier in the day while 
those with lowest risk were scheduled near the end of the day). 
There was a total of 198 operating room days analyzed from 
the test set, in which the median [quartile] number of cases per 
operating room day was 4 [3, 6] cases. Historically, there were 
82 (41.4%) operating room days that had patients stay in the 
PACU after-hours (passed 7pm). After resequencing of cases 
based on the machine learning prediction 24 (12.1%) of the 
operating room days had patients stay in the PACU after-hours 
(P < 0.0001) (Table 3).

Discussion

Several machine learning models were developed in this 
study to predict prolonged PACU LOS for outpatient surger-
ies. The XGBoost model combined with a class balancer, 
SMOTE, outperformed the other models and was used to 
identify at-risk patients on a separate test set. Using this 
knowledge, the surgical procedures were resequenced 
and re-evaluated, demonstrating a statistically significant 
reduction in after-hours PACU care. Though previous stud-
ies have reported the use of machine learning for PACU 
LOS prediction [10, 18–20], utilization of ensemble learn-
ing with features only known preoperatively and the sub-
sequent testing of the ability of the model to reduce after 
hours PACU stay is novel. The potential to resequence cases 
using preoperative metrics could reduce staffing overages 
and other associated costs.

Running surgical centers incurs various indirect and direct 
costs [21]. To enhance operational efficiency and patient care, 
it is crucial to decrease labor costs in outpatient surgery cent-
ers. The cost of PACU staffing varies among institutions and 
is influenced by staffing practices and labor costs, particularly 
overtime compensation. The number of nurses and anesthesi-
ologists required per patient may also differ among surgery 
centers. Several studies over the last few decades have evalu-
ated interventions that may reduce costs in recovery rooms - 
including fast-tracking programs – which aimed to reduce both 
PACU time and staffing needs [22–24]. While many of these 
studies have demonstrated decreased PACU stay, it is unclear if 
total labor costs or workload in an ambulatory surgery setting 
were significantly reduced.
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The concept of case resequencing - which aims to strate-
gically order cases based on predicted PACU stay - has the 
theoretical benefit of reducing after-hour care in the PACU. 
A reduction in staffing needs during after-hours may translate 
to decreased overtime pay for both nursing and anesthesiol-
ogy but would also depend on the staffing structure at a given 
institution. To address this issue, a machine learning-based 
model capable of predicting cases with prolonged PACU 
stay was developed and then the simulated resequencing of 
cases from historic data validated the ability of resequencing 
to reduce PACU LOS using key features from the machine 
learning models. It is important to point out barriers of imple-
menting this type of clinical decision support in practice [25]. 
For example, surgeons may not want to lose control over the 
order of their cases or there may be existing case conflicts 
that would not allow certain cases to be scheduled at a dif-
ferent time. Nonetheless, the simulation demonstrated nearly 

Table 2  Performance metrics of all models with their optimal hyperparameters based on k-folds cross-validation

AUC  Area under the receiver operating characteristics curve, CI Confidence Interval, SMOTE Synthetic Minority Oversampling Technique, 
bolded numbers indicate best performance for that metric

Classification 
Model

AUC (95% CI) AUC (95% CI)
(SMOT)

Specificity (95% 
CI)

Specificity (95% 
CI)
(SMOT)

Sensitivity (95% 
CI)

Sensitivity (95% 
CI)
(SMOT)

Neural Network 0.586 (0.557, 
0.615)

0.628 (0.583, 
0.673)

0.969 (0.943, 
0.994)

0.880 (0.835, 
0.925)

0.204 (0.137, 
0.271)

0.375 (0.282, 0.467)

XGBoost 0.663 (0.624, 
0.702)

0.685 (0.652, 
0.718)

0.964 (0.948, 
0.979)

0.917 (0.905, 
0.929)

0.363 (0.287, 
0.439)

0.452 (0.387, 0.517)

Random Forest 
Classifier

0.625 (0.584, 
0.666)

0.637 (0.600, 
0.676)

0.969 (0.965, 
0.973)

0.952 (0.932, 
0.972)

0.279 (0.197, 
0.361)

0.209 (0.156, 0.262)

Logistic Regres-
sion

0.589 (0.560, 
0.618)

0.667 (0.628, 
0.706)

0.971 (0.961, 
0.980)

0.744 (0.704, 
0.783)

0.209 (0.156, 
0.262)

0.591 (0.526, 0.656)

Balanced Bagging 
Classifier

0.672 (0.627, 
0.717)

0.657 (0.624, 
0.690)

0.814 (0.784, 
0.843)

0.858 (0.842, 
0.874)

0.529 (0.456, 
0.602)

0.457 (0.396, 0.518)

Balanced Random 
Forest Classifier

0.684 (0.653, 
0.715)

0.681 (0.642, 
0.720)

0.727 (0.709, 
0.744)

0.819 (0.792, 
0.846)

0.642 (0.577, 
0.707)

0.542 (0.466, 0.618)

Fig. 2  Comparison of MachineLearning Model Performance Via Area Under the Receiver Operating Characteristic(ROC) Curve With and 
Without Synthetic Minority Oversampling Technique (SMOTE)

Fig. 3  Calibration plotillustrating goodness-of-fit of the XGBoost 
model tested on the blind test set
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a threefold decrease in potential after-hour staffing needs. 
While it would likely not be possible to re-sequence every 
operating room in practice due to other conflicts (e.g. surgeon 
preference, patient requests, equipment conflicts), it may still 
provide some benefit. A prospective study would be needed 
to validate the potential effectiveness.

Our model included features that were previously 
described in other studies evaluating clinical features asso-
ciated with PACU LOS. We previously reported the use of 
multivariable logistic regression to predict prolonged PACU 
LOS after outpatient surgery among over 4,000 patients and 
included the following features: morbid obesity, hyperten-
sion, surgical specialty, primary anesthesia type, and sched-
uled case duration [10]. Elsharydah et al. reported a subse-
quent study validating this model on their institutional data 
and refined a model specific to their institution using similar 
features, including anesthesia type, obstructive sleep apnea, 
surgical specialty, and scheduled case duration [20]. Devel-
opment of a predictive model for prolonged PACU LOS after 
laparoscopic cholecystectomy had also been reported [19]. 
The current study showed the advantages of using ensem-
ble learning such as XGBoost and oversampling techniques 
such as SMOTE to improve prediction. As the models were 
trained solely with known pre-operative variables independ-
ent from anesthesia type, actual surgical duration, and other 

intraoperative factors, the outputs can be used to suggest an 
ideal case sequencing order a day prior to surgery. Imple-
menting this technique in a prospective study would be an 
important next step. The cost-effectiveness of ambulatory 
surgery has been established in multiple clinical settings, 
and predictive models that improve efficiency can optimize 
resource utilization [26–28].

The most impactful features in the XGBoost model were 
BMI, age, and scheduled case duration. The association of 
BMI and PACU LOS is controversial as various studies are 
demonstrated a correlation [10], while others have not [20, 
29]. BMI has a strong correlation with obstructive sleep 
apnea, which is a known risk factor for prolonged PACU 
LOS, and thus may be a mediator rather than an independent 
risk factor [20, 29]. Scheduled case duration is also a known 
predictor for prolonged PACU LOS, which may be a direct 
indicator of surgical complexity and need for longer anesthe-
sia times [10, 20, 29]. Age has also been demonstrated to be 
a predictor for prolonged PACU LOS [19], which could be 
related to longer recovery needed for elderly patients after 
anesthesia. Of note, our dataset did not include any features 
that were unknown preoperatively (e.g. final anesthesia type 
and actual case duration) as the purpose of the model was be 
able to re-sequence cases prior to day of surgery in an effort 
to improve PACU staffing efficiency.

Fig. 4  Feature Impact onXG-
Boost Model as Identified by 
Shapley Additive Explantations 
(SHAP)

Table 3  Improvement in patient discharged after 7pm using machine 
learning to resequence cases based on predicted prolonged PACU 
length of stay. An OR day is defined as a full operating room (cases 
scheduled at least passed 3pm and same surgeon). Machine learn-
ing was used to predict cases in the test dataset that would have pro-

longed PACU length of stay (≥ 180 minutes). Those cases were then 
moved earlier in the day. Patients with the highest probability of pro-
longed PACU length of stay were scheduled earliest while those with 
the lowest probability were scheduled later. Chi-square was used to 
calculate statistical significance between the categorical outcome

ML Machine Learning (XGBoost model), OR Operating Room, PACU  Post-Anesthesia Care Unit

Historic Performance Performance Utilizing ML-based Case 
Resequencing

P-value

Total Number of OR Days 198
Cases per OR Day, median [quartile] 4 [3, 6]
# of OR Days Resequenced n/a 162 (81.8%)
# OR Days where patient was discharged from 

PACU after 7pm
82 (41.4%) <0.0001
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This study has several limitations such as its retrospective 
design, data being collected from a single site, focusing on 
specific comorbidities to the exclusion of others, and not 
providing a severity level of comorbidities (i.e. hypertension 
or obstructive sleep apnea). Subsequent models developed 
may include additional features not included in this iteration, 
including history of postoperative nausea and vomiting, con-
comitant medication use, and cognitive baseline. Moreover, 
the data was collected from an ambulatory surgery facil-
ity at a quaternary academic medical center which may not 
be representative of the general outpatient population, and 
many patients in this dataset were ASA ≥ 3. Further research 
should include validating these models in external settings 
and conducting a prospective study to evaluate the impact 
of the model on PACU efficiency.

In conclusion, we described the development of a pre-
dictive model using XGBoost and a class balancer to iden-
tify ambulatory surgical patients that were highest risk for 
prolonged PACU stay. This information was then used in 
simulation that re-sequenced surgeries in historic operating 
room days. The results demonstrated a statistically signifi-
cant decrease in the number of patients that stayed passed 
7pm in an ambulatory surgery PACU.
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