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Abstract

We present an alchemical enhanced sampling (ACES) method implemented in the GPU-

accelerated AMBER free energy MD engine. The methods hinges on the creation of an “enhanced 

sampling state” by reducing or eliminating selected potential energy terms and interactions that 

lead to kinetic traps and conformational barriers while maintaining those terms that curtail the 

need to otherwise sample large volumes of phase space. For example, the enhanced sampling state 

might involve transforming regions of a ligand and/or protein side chain into a non-interacting 

“dummy state” with internal electrostatics and torsion angle terms turned off. The enhanced 

sampling state is connected to a real-state endpoint through a Hamiltonian replica exchange 

(HREMD) framework that is facilitated by newly developed alchemical transformation pathways 

and smoothstep softcore potentials. This creates a counter-diffusion of real and enhanced-sampling 

states along the HREMD network. The effect of differential response of the environment to the 

real and enhanced-sampling states is minimized by leveraging the dual topology framework in 

AMBER to construct a counter-balancing HREMD network in the opposite alchemical direction 

with the same (or similar) real and enhanced sampling states at inverted endpoints. The method 

has been demonstrated in a series of test cases of increasing complexity where traditional MD, 

and in several cases alternative REST2-like enhanced sampling methods, are shown to fail. The 

hydration free energy for acetic acid was shown to be independent of starting conformation, 

and the values for four additional edge case molecules from the FreeSolv database were shown 

to have significantly closer agreement with experiment using ACES. The method was further 

able to handle different rotamer states in a Cdk2 ligand identified as fractionally occupied in 

crystal structures. Finally, ACES was applied to T4-lysozyme and demonstrated that the side chain 

distribution of V111χ1 could be reliably reproduced for the apo state, bound to p-xylene, and 

in p-xylene→benzene transformations. In these cases, the ACES method is shown to be highly 

robust, and superior to a REST2-like enhanced sampling implementation alone.
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1 Introduction

So-called “alchemical” free energy (AFE) simulations1–4 are routinely applied in drug 

discovery in the prediction (ranking) of binding affinities of ligands to protein targets in 

order to facilitate optimization of potency and selectivity.5–11 A critical barrier to progress 

in the field is the ability to accurately and robustly sample the relevant configurational space 

such that reliable AFE estimates can be made with high precision. Recent advances in AFE 

software that leverage performance advantages of graphical processing units (GPUs) has 

significantly extended the accessible timescales that can be routinely achieved in molecular 

dynamics (MD) simulations.12–17 However, for most drug discovery applications, the use 

of GPU-accelerated AFE simulations alone is necessary but not sufficient to achieve the 

sampling required to obtain robust and reliable statistical free energy predictions.7,9,10,18–24 

Hence, it is of considerable importance to develop improved enhanced sampling methods 

for AFE prediction, and implement them into high-performance simulation software. In the 

present work we report the development of an alchemically enhanced sampling (ACES) 

method for AFE simulations and its implementation into AMBER’s GPU-accelerated MD 

engine.

AFE simulations involve the transformation between real physical states along a non-

physical “alchemical” pathway. In the case of a relative binding free energy (RBFE) 

calculation between two ligands “A” and “B”, ligand A is transformed into ligand B 

along the alchemical pathway, alternately in an aqueous solution environment and in a 

complex with the protein target. The transformation is parameterized by the alchemical 

“λ” coordinate such that values of λ=0 and λ=1 represent the “real-state endpoints” for 

ligands A and B, respectively, and values of 0 < λ < 1 are intermediate alchemical states 

along the transformation pathway. In the process of this transformation, certain atoms 

may be “annihilated” by transforming them into so-called “dummy” atoms25–29 that are 

decoupled from the environment. In theory, the transformation pathway between the ligands 

is arbitrary, owing to the fact that the free energy is a state function, and as such, changes 

in free energy are path-independent. In practice, however, the choice of the transformation 

pathway is crucial, and has been discussed in detail elsewhere,30–38 including a comparison 

of several long-standing and recently developed methods.39 The statistical precision of the 

free energy estimates is highly sensitive to the phase space overlap of states along the 

pathway (and particularly at the real-state endpoints),36,37 such that simulations must be 
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conducted in a series of small steps or else continuously as in λ-dynamics.40 This often 

requires extensive sampling even for fairly modest alchemical transformations.

Enhanced sampling methods for free energy simulations have been discussed extensively 

in the literature.7,9,21,24,41–46 Examples of these methods include Replica Exchange 

(RE)47,48 and multiple-replica strategies that use adaptive biasing forces,49 umbrella 

sampling (US),50,51 parallel or simulated tempering,47,52–54 metadynamics,55 replica-

exchange with solute tempering (REST56 or REST257), multi-canonical algorithm 

(MUCA),58–60 orthogonal space random walk (OSRW),61 enveloping distribution sampling 

(EDS/λ-EDS),37,62,63 thermodynamic integration with enhanced sampling (TIES) and 

others.45,59,64–68

Of particular background relevance to the current work are “Generalized Ensemble Monte 

Carlo” methods45,64,69,70 that use Boltzmann sampling involving exchanges between 

discrete states that differ either in state variables (e.g., temperature, pH or ionic strength) 

or Hamiltonian, the latter for which can include completely artificial states designed to 

“tunnel through” barriers between conformational free energy basins.71–74 A widely used 

set of generalized ensemble methods in drug discovery are REST/REST257,75 approaches 

and later variants.76–79 In these methods, a local selected part of the system is assigned a 

set of variable “effective temperatures” (created through scaling certain energy terms) each 

of which are simulated in a separate “window” (simulation) that are connected through 

a replica-exchange framework. These approaches have two main requirements to achieve 

enhanced sampling: 1) a mechanism to lower the energy barriers, e.g., through raising 

the effective temperature57,75 or modifying/scaling the intramolecular and intermolecular 

energy terms72 such as with softcore potentials;71,73,74 and 2) Boltzmann exchange of 

conformational information between windows so that different basins can be explored and 

sampled. These general ideas have been around for many years,50 but their fruition into 

robust practical methods for prediction of protein-ligand binding affinities has been met with 

challenges and remains a very active area of research and software development. It is in 

the details of how these requirements are achieved that distinguishes many of the different 

methods reported in the literature to date.80–82

A practical challenge for these methods in AFE simulations is mitigating the often 

contradictory requirements of the enhanced sampling state and replica exchange framework 

that otherwise can produce adverse side-effects. Creation of an enhanced sampling state 

through scaling of interactions between the target sampling region and the environment will 

inevitably affect the structural integrity of the latter. For example, scaling of the interactions 

between a ligand and the protein to which it is bound so as to enable enhanced sampling of 

the ligand can also lead to re-arrangement of the protein binding pocket and/or infiltration of 

solvent that impairs replica exchange efficiency or can sometimes even corrupt the ensemble 

of the real-state endpoint. This type of behavior is a known complication for the original 

REST/REST2 methods57,75 that originates from large temperature gaps between the “hot” 

enhanced sampling region and the “cold” surroundings. Progress has been made to reduce 

these “hot-spot” problems with the generalized REST (gREST) approach.79,83
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We report here an alchemical enhanced sampling method (ACES) implemented into the 

AMBER free energy tool set6,16,84–86 that integrates the following features: 1) Creation of 

localized enhanced sampling states through tuning of intra- and intermolecular energy terms 

for selected groups of atoms, 2) Design of robust alchemical transformation pathways39 

to connect real and enhanced sampling states using new smoothstep softcore potentials, 

non-linear Hamiltonian mixing and flexible λ-scheduling capabilities, 3) Construction 

of efficient replica-exchange networks to facilitate Boltzmann sampling of the real-state 

endpoints and maintain equilibrium between discrete windows along the alchemical 

transformation pathway(s).

The paper is organized as follows. The Theory section outlines the theoretical development 

of the method, including introduction of terminology and definitions required to provide 

precise implementation-level details. The Computational Details are described next, 

followed by the Results and Discussion. The latter section starts from a simple illustrative 

example (absolute hydration free energy of acetic acid), followed by examination of outlier 

cases from the FreeSolv database87,88 and more complex protein-ligand binding examples 

in Cdk2 that involve ring flips and T4-lysozyme that involve concerted ligand and protein 

side-chain conformational changes.

2 Theory

We begin by briefly introducing key terminology and notation that will facilitate later 

discussion and enable implementation-level details of the ACES approach to be described. 

Full details can be found in Supporting Information and other work that will be referenced in 

context.39,85

2.1 Thermodynamic integration formulation

The free energy is a state function, and thus the free energy difference between 

thermodynamic states is independent of the path that connects them and can be evaluated by 

the thermodynamic integration formalism.89,90 Consider the transformation of a system of 

N particles in an initial state “0” characterized by potential energy function U0(rN), where 

rN = r1, r2 · · · rN represents the degrees of freedom of the system (e.g., Cartesian positions 

of each particle along with any system state variables), to a final state “1” characterized by 

potential energy function U1(rN) having the same degrees of freedom. A thermodynamic 

parameter λ can be defined to smoothly connect these states through a λ-dependent 

potential U(rN; λ) such that U(rN; 0) = U0(rN) and U(rN; 1) = U1(rN). In this case, the 

change in free energy ΔA0→1 = A1 − A0 can be determined through the thermodynamic 

integration formula

ΔA0 1 = ∫
0

1

dλ ⋅ dA
dλ = ∫

0

1

dλ ⋅ ∂U rN; λ
∂λ

λ

≈ ∑
k = 1

M
wk ⋅ ∂U rN; λ

∂λ
λk

(1)

where the second sum indicates numerical integration over M quadrature points (λk, for 

k = 1, · · · , M) with associated weights wk. While the free energy is a state function, 

and formally is invariant to the pathway connecting states, the statistical convergence, and 

thus the resulting values in finite simulations are very sensitive to the pathway although 
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there are different pathways that could surmount the problems. Similar issues arise for FEP 

methods with traditional BAR,50,91 MBAR92,93 and formally equivalent unbinned weighted 

histogram analysis methods (UWHAM),94 as well as their recent extensions that enable 

large-scale network-wide analysis using a constrained variational approach (BARnet and 

MBARnet).86

Our goal here is to construct a flexible form of the λ-dependent total potential energy 

U(rN; λ) that enables both stable alchemical transformations as well as robust enhanced 

sampling. We begin the construction of U(rN; λ) by first considering a decomposition of the 

potential energy for the real-state endpoints U0(rN) and U0(rN) without initially considering 

an explicit λ dependence. These can be expressed in terms of their energy term components 

(indexed by t) as

U0 rN = ∑
t

U0, t rN
(2)

and similarly for U1(rN; λ). The energy term components of relevance to the present 

work are bond stretch, bond angle, torsion, Lennard-Jones, 1–4 Lennard-Jones, PME direct/

real space, 1–4 Electrostatic, and PME reciprocal space, and are denoted as Ubond, Uang, 

Utor, ULJ, U1−4LJ, Udir, U1−4Ele, and Urec, respectively (also see Table S1 in Supporting 

Information).

To set the stage for alchemical transformations described below, the energy terms can 

be further decomposed into interacting sets of atoms divided into three non-overlapping 

regions as described in details elsewhere39 (see additional details in Table S2 of the 

Supporting Information): I (immutable - not transforming), CC (transforming constrained 

coordinate/common core) and SC (transforming separable coordinate/softcore). In previous 

work85 we used the the abbreviations TC and TS for the common core and softcore 

regions, respectively, but feel that SC and CC are more straight forward. In the context 

of the alchemical transformation, the I region has the same atomic coordinates, parameters 

and internal potential energy for both states 0 and 1. The CC region can have different 

parameters between states 0 and 1, but the coordinates of mapped atoms are constrained 

to be the same. The SC region also can have different parameters between states 0 and 1, 

but unlike the CC region each state has its own separable set of atomic coordinates. Within 

the hybrid single/dual-topology approach in AMBER, the immutable region is represented 

by a single “topology” and set of coordinates. The transforming region of the system is 

represented by a formal dual topology with separate sets of coordinates for each state. 

The CC region has corresponding atoms in each topology constrained to have the same 

positions in order to facilitate phase space overlap between states during the alchemical 

transformation. The SC region, on the other hand, has separable independent coordinates for 

each topology corresponding to states 0 and 1 that can adopt different conformations and 

do not directly interact with one another. While a detailed illustration of the CC/SC concept 

can be found elsewhere,39 Figure 1 compares the CC/SC region definitions in the Cdk2 

ligand 1h1q and 1h1r example, using the commonly-used Maximum Common Structure 

(MCS) approach and using the ACES approach when a specific torsion angle is targeted to 

be enhanced sampled.
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Based on the above definitions of regions, we introduce superscripts of the energy 

term components to indicate the energy decomposition (also see Table S2 in Supporting 

Information):

• USC: Internal energy of softcore (SC) region.

• UCC: Internal energy of common core (CC) region.

• UI: Internal energy of immutable (I) region.

• U(CC+I): Internal energy of the combined CC and I regions.

• USC/(CC+I): Interaction energy between SC and (CC+I) regions; USC/(CC+I) = 

USC/CC+ USC/I.

• U(SC+CC+I): Total internal of the system; U = U(SC+CC+I).

The general expanded form of the λ-independent potential energy U0(rN) can be written as

U0 rN = U0, rec
SC + CC + I rN + ∑

t ≠ rec
U0, t

SC rN + U0, t
SC/(CC + I) rN + U0, t

(CC + I) rN
(3)

and similarly for U1(rN). With the exception of the PME reciprocal space energy that is not 

convenient (cost effective) to decompose, each energy term is divided into three interacting 

atomic sets: 1) internal energy of the SC region, 2) the internal energy of the (CC+I) region, 

and 3) the interaction between the SC and (CC+I) regions. Here, the SC/(CC+I) interaction 

is defined if for any 1, 2, 3 or 4-body potential energy term contains at least one atom in the 

SC region and one atom in the (CC+I) region.

The decomposition in eq 3 is important as it enables a flexible framework for introducing 

the required λ dependence into the the total potential energy U(rN; λ) to enables a 

robust and stable alchemical transformation pathway. This λ dependence will be integrated 

in two different ways: 1) λ-dependent softcore potentials to “soften” interactions so as 

to stabilize transformations involving creation and/or annihilation of atoms or functional 

groups, and 2) λ-dependent weight functions that alternatively switch off the energy 

terms of state 0 while turning on those of state 1. Herein we will utilize the recently 

developed 2nd-generation smoothstep softcore potentials for non-bonded interactions and 

optimized non-linear weight functions for alchemical transformation pathways that have 

been described in detail elsewhere.39 The new form, with modified Coulomb and Lennard-

Jones exponents in the softcore potentials to achieve consistent power scaling of Coulomb 

and Lennard-Jones interactions, and with unitless control parameters to maintain balance 

of electrostatic attractions and exchange repulsions, has been shown to be superior to the 

traditional methods in terms of numerical stability and minimal variance of the free energy 

estimates.39 The new form has been shown to be superior to the traditional methods in terms 

of numerical stability and minimal variance of the free energy estimates.39 Here we now 

extend this framework to create a new alchemical enhanced sampling method.

The general expanded form of the λ-dependent total potential energy U(rN; λ) can be 

written as
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U rN; λ = W 0, rec(λ) ⋅ U0, rec
SC + C + I rN; λ + W 1, rec(λ) ⋅ U1, rec

SC + CC + I rN; λ
+ ∑

t ≠ rec
W 0, t

SC(λ) ⋅ U0, t
SC rN; λ + W 1, t

SC(λ) ⋅ U1, t
SC rN; λ

+ ∑
t ≠ rec

W 0, t
SC/(CC + I)(λ) ⋅ U0, t

SC/(CC + I) rN; λ + W 1, t
SC/(CC + I)(λ)

⋅ U1, t
SC/(CC + I) rN; λ

+ ∑
t ≠ rec

W 0, t
(CC + I)(λ) ⋅ U0, t

(CC + I) rN; λ + W 1, t
(CC + I)(λ) ⋅ U1, t

(CC + I) rN; λ

(4)

The above equation builds off of the decomposition in eq 3 by introducing λ-dependence 

through the softcore potential, indicated by the addition of the explicit λ parameter argument 

in the individual energy terms for each state, and the weight functions W(λ) that control the 

scaling (switching off/on) of state 0 and 1 energy term as λ is varied continuously from 0 to 

1. It is in the details of which specific energy terms are scaled by λ and precisely how they 

are scaled that enables a robust alchemical enhanced sampling approach.

Form of the λ-dependent weight functions W(λ) used to combine/mix energy 
terms in alchemical transformations—Here we describe a flexible scheme for the 

scaling behavior of the weight functions W(λ) for different energetic terms and interacting 

atomic sets that have been implemented in AMBER22.36,96 The form of the weight 

functions are chosen from the family of so-called smoothstep functions of different orders 

P, SP (λ). These functions and their use in alchemical transformations have been described 

recently.39 Briefly, these functions have the properties that they are monotonically increasing 

functions in the interval [0,1] that have endpoint/boundary properties

SP(0) ≤ 0 and SP(1) ≥ 1 ∀ P (5)

endpoint derivative properties

dkSP(x)
dxk

x = 0

= dkSP(x)
dxk

x = 1

= 0 ∀ k ∈ ℕ, 0 < k ≤ P (6)

and symmetry conditions

SP 1 − x = 1 − SP x (7)

The zeroth-order (P = 0) smoothstep function is simply a linear function, S0(x) = x, 0 ≤ x ≤ 

1, and is the only order that does not have derivatives that vanish at the boundaries x = 0, 1. 

AMBER22 allows flexible selection of the order of the smoothstep function used to define 

the weight functions, in addition to more advanced λ-scheduling features described in other 

work.39 Here we use the form of the λ-dependent weight functions validated previously39 

that are based on the 2nd-order smoothstep functions using a symmetric norm-preserving 

constraints, i.e.,

W 0, t(λ) = 1 − S2(λ) = S2(1 − λ)
W 1, t(λ) = S2(λ) = 1 − W 0, t(λ) = W 0, t(1 − λ) (8)
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2.2 Flexible control of the λ-scaling in the SC region

In the previous section, the form of the λ-dependent weight functions for scaling energy 

terms was presented. This section discusses the mechanism to control which specific energy 

terms involving the SC region should be scaled and which should be retained is discussed. 

Recall that when an alchemical transformation involves annihilation of particles, these 

particles do not truly disappear, but rather are transformed into so-called “dummy” atoms.29 

Dummy atoms are placeholders that are designed to interact with the real atoms of the 

physical system only through select bonded interactions such that they do not alter the 

relative free energy (i.e., they do not introduce a net potential of mean force on any of the 

real atoms).25–29,97 Nonetheless, as the dummy atoms still contribute to the potential energy 

through the internal potential energies between dummy atoms even at the endpoint dummy 

state, thus they will contribute to the free energy corresponding to a given alchemical 

transformation. This contribution will amount to an additive constant if simulations are 

properly sampled and the interactions between dummy atoms and real atoms are treated 

adequately.29 Under such conditions, the free energy contribution from dummy atoms 

is independent of the environment such that it will be canceled if the same alchemical 

transformation is made in a different environment as is usually the case for solvation and 

binding free energy simulations, although theoretically it requires careful considerations in 

certain cases. Transformation of real atoms into dummy atoms requires use of a softcore 

potential,30,31,34,39,98,99 and can be especially challenging if there is poor phase space 

overlap of neighboring states along the transformation coordinate.29,100–103 Hence, while 

the specific choice of the internal energy of the region containing the dummy atoms is 

theoretically somewhat arbitrary, the ability efficiently sample the necessary configurational 

space to satisfy theoretical constraint conditions is highly sensitive to this choice. In the 

present context, real atoms that will be transformed into dummy atoms are contained in 

the SC region. As will be described in more detail below, we will exploit the flexibility 

in defining the internal energy of the SC region to create a tunable and focused (local) 

enhanced sampling state that forms a key element in the ACES approach.

When performing an alchemical transformation, we will refer to the specific energy terms 

that are being switched off/on by the weight functions in eq 4 as being “scaled by λ” 

or simply “scaled” (S), whereas those terms that are not are not scaled with λ and are 

therefore present in the dummy state are referred to as “not scaled” or simply “present” (P) 

in the dummy state. Alternatively stated, the energy terms that are “scaled” will have weight 

functions that are λ-dependent controlled by the functional form described above, and the 

energy terms that are “unscaled” (present in the dummy state) will have weight functions 

that are constant (unity):

W 0/1 , t
SC (λ) = W 0/1 , t(λ), if scaled with λ (“S” in Table 1),

1, if not scaled with λ (“P” in Table 1); (9)

Recall, ALL interactions between the SC and (CC+I) regions, with the possibly exception of 

select bonded terms that connect the SC region with the CC region and obey dummy-atom 

constrain conditions,25–29,97 are scaled and therefore switched off/on in the alchemical 

transformation. It is only the terms that affect the internal energy of the SC region (and 
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possibly the select bonded terms across the SC/CC boundary) that we can chose to be 

unscaled and thus present in the dummy state. AMBER22 enables flexible selection of the 

scaled and unscaled (present) internal energy terms of the SC region. These options are 

controlled by the gti_add_sc flag and are summarized in Table 1.

2.3 AlChemically Enhanced Sampling (ACES) method

We have now set the stage for development of the ACES method that can be used as 

a stand-alone enhanced sampling method or one used in the context of alchemical free 

energy simulations. As mentioned earlier, there are a number of existing enhanced sampling 

methods that have been reported,80–82 an perhaps the most widely cited in the field of drug 

discovery being the REST/REST2/gREST family of methods.56,57,75–78 Our initial strategy 

was to implement and test some of these methods from their description in the published 

literature, and in doing so, we confirmed some of the limitations that other studies have 

recently reported.46,79,104–107 In working to overcome these limitations, we arrived at the 

current ACES method. It should be emphasized that many of the existing enhanced sampling 

methods share similar conceptual strategies, but it is in the details of how these strategies 

are actually achieved through choice of enhanced sampling states and their coupling with the 

environment, functional forms of the pathways connecting states, and approaches to efficient 

exchange within the generalized ensemble that distinguishes many of the different methods 

and ultimately makes them into useful practical tools.

The current ACES method brings together three fundamental elements:

• Creation of localized (focused) enhanced sampling states through tuning of intra- 

and intermolecular energy terms for selected groups of atoms in the SC region

• Design of a robust alchemical transformation pathways to connect real and 

enhanced sampling end-states using new smoothstep softcore potentials, λ-

dependent weight functions and flexible λ-scheduling capabilities

• Construction of efficient Hamiltonian replica-exchange (HREMD) networks 

to facilitate Boltzmann sampling of the real-state endpoints and maintain 

equilibrium between windows along the alchemical transformation pathway(s)

The first element creates a fictitious “enhanced sampling” state with barrier-reducing 

potential energy, whereas the second and third elements work together provide a mechanism 

to rigorously and efficiently connect the conformational ensembles of the real state and 

enhanced sampling state endpoints using a Hamiltonian replica exchange framework. To 

achieve this, the following are needed:

Creation of localized (focused) enhanced sampling state.—The creation of a 

focused enhanced sampling state has two requirements: 1) selection of the atoms to be 

targeted for enhanced sampling (i.e., selection of atoms that define the SC region), and 2) 

selection of the internal SC potential energy terms to be scaled (Table 1). The selection 

of the atoms to be targeted for enhanced sampling is problem specific and somewhat 

subjective. As a general guideline, the minimal number of atoms required to distinguish 

and represent the different important conformational states should be selected. Choosing 
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an excessively large SC region increases the amount of conformational space required 

in the enhanced sampling state, and as will be discussed below, may also lead to less 

efficient replica exchange. As a series of examples that will be illustrated in the Results 

and Discussion, selection could involve: 1) atoms within a single functional group such as a 

carboxylic acid so as to enhance the sampling of hydrogen bond orientations, 2) atoms of an 

aromatic ring substituent in a drug compound so as to enhance sampling of orientations that 

involve high-barrier ring flipping, and 3) atoms within a protein amino acid side chain so as 

to enhance sampling of coupled ligand-binding/side chain rotamer transitions.

The selection of the internal SC potential energy terms to be scaled should balance 

the enhanced sampling of relevant conformations by eliminating kinetic traps and 

conformational barriers, and reduction of phase space volume by excluding non-relevant 

structures and conformations. We explored the use of all the gti_add_sc options listed in 

Table 1, and found the single most significant sampling obstacle in the SC region in the 

enhanced sampling “dummy” state are internal electrostatic interactions. Recall, that both 

electrostatic and Lennard-Jones interactions between the SC region and the environment 

(CC+I region) are switched off (not present) in the enhanced sampling dummy state. 

Whereas the SC internal electrostatic interactions can produce kinetic traps, for example 

through internal hydrogen bonding, the SC internal LJ terms are weak interactions that can 

be helpful to maintain as they eliminate phase space associated with conformations that 

have high-energy atomic overlap. The second most significant sampling obstacle are the 

torsion angle energy terms. The remainder of the energy terms we not found to significantly 

enhance sampling and were chosen to remain unscaled so as to benefit from the resulting 

reduction of phase space volume. For these reasons, moving forward we chose to eliminate 

both SC internal electrostatic and torsion angle energy terms (gti_add_sc=5 in Table 1) 

for the ACES method, and for comparison purposes, also ran simulations eliminating only 

electrostatic interactions (gti_add_sc=2).

Design of a robust alchemical transformation pathways.—The goal is to develop 

a stable pathway that connects the real state and enhanced sampling state endpoints 

using the dual topology framework in AMBER and leveraging very recently developed 

new alchemical free energy transformation methods and infrastructure.39 This form of the 

softcore potential and weight functions has the following key features:

• use of smoothstep functions to stabilize behavior near the transformation 

endpoints

• consistent power scaling of Coulomb and Lennard-Jones interactions with 

unitless control parameters to maintain balance of electrostatic attractions and 

exchange repulsions

• pairwise form based on the LJ contact radius for the effective interaction distance 

with separation-shifted scaling

• rigorous smoothing of the potential at the non-bonded cut-off boundary

A critically important feature of the new smoothstep softcore potential and alchemical 

transformation is that path-dependent thermodynamic derivatives are well-behaved and 
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rigorously vanish at the λ=0, 1 end states eliminating commonly encountered instabilities 

that arise along the transformation pathway but often are most prominent at the endpoints, 

even when the simulations at the endpoints are stable. These instabilities arise from 

poor phase space overlap29,100–103 between neighboring λ windows leading to large 

variances that in turn directly affect the HREMD acceptance ratio and efficiency. The 

latest official AMBER22 release offers a rich set of options for customizing alchemical 

transformation pathways that are not exhaustively explored here. Rather we use the latest 

tested and validated set of recommended functional forms and control parameters reported in 

concurrent work.39

Construction of efficient Hamiltonian replica-exchange (HREMD) networks.—
Hamiltonian replica exchange has been used in wide variety of contexts for enhanced 

sampling. In the context of free energy simulations, HREMD also facilitates ensemble 

equilibrium between different λ windows so as to reduce variance in the free energy 

estimates. A common issue that can create an obstacle for HREMD sampling is when 

different Hamiltonians along the λ dimension produce large changes in conformational 

ensembles and energy differences that create poor phase space overlap.

Consider an enhanced sampling problem involving a single ligand that is bound to a protein 

target. One strategy that has been used, for example in REST/REST2, is to create a HREMD 

network whereby the ligand is “annihilated” through transformation into a non-interacting 

enhanced sampling dummy state in much the same way an absolute binding free energy 

calculation might be conducted (bearing in mind that certain restraints would be required to 

maintain the dummy state in the binding pocket29). In the present work, this approach would 

imply a transformation where the U0 terms in eq 4 correspond to the ligand annihilation 

and the U1 terms would be set to zero such that U(rN; 0) and U(rN; 1) would correspond 

to the ligand real state and enhanced sampling dummy state, respectively. As the U1 terms 

are not present, this transformation can be carried out using a single topology. However, 

at the λ=1 state, the ligand would not be interacting with the protein, potentially causing 

unwanted or irrelevant re-arrangement of the protein binding pocket and/or infiltration of 

solvent. Under such circumstances, obtaining efficient exchanges might require a very large 

number of replicas and/or extensive sampling time.

In order to circumvent this problem in the context of a stand-alone enhanced sampling 

application, we introduce a real and enhanced sampling state counter-diffusion approach. 

Rather than creating a HREMD network that has one real-state endpoint at λ=0 and one 

enhanced sampling state endpoint at λ=1 modeled within a single topology, we introduce 

a dual topology where both U0 and U1 terms in eq 4 correspond to the same ligand but 

represented by two distinct topologies and coordinate sets (and as above, restraints are 

used for each topology to maintain the dummy state in the binding pocket29). At λ=0, the 

U0 potential would represent the real state of the ligand, but the U1 potential would be 

in a pure non-interacting enhanced sampling dummy state. At λ=1, these roles would be 

reversed. The HREMD network would couple the real and enhanced sampling states for 

both topologies at the same time, but at both λ=0 and 1 endpoints, the real-state ligand 

would be fully represented. Similarly, along the entire set of HREMD windows, as the U0 

ligand representation is being annihilated, the U1 ligand representation is being created such 
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that there is minimal re-arrangement of the protein and solvent environment. In this way the 

HREMD network facilitates a counter-diffusion of real and enhanced sampling states such 

that both real-state endpoints achieve enhanced sampling with minimal perturbation along 

the λ coordinate.

In the context of an alchemical free energy simulation, the ACES method can be applied 

to any of the real-state endpoints to achieve enhanced sampling. However, in the context 

of a relative binding free energy calculation that involves the transformation between two 

somewhat similar ligands, the ACES method can be seamlessly integrated into the free 

energy simulation itself. The counter-diffusion of real and enhanced sampling states works 

in the same was as described previously, with the only difference that is a net free energy 

involved with the transformation that can be easily computed at the same time as the ACES 

simulations are being conducted.

2.4 Distinguishing features and advantages of ACES

As mentioned previously, there exists a number of methods that utilize conceptually similar 

alchemical strategies to achieve enhanced sampling that have been discussed in recent 

reviews.80,82 It is the details of how these strategies are implemented that distinguish 

them as practical tools. Meaningful cross-comparison between different methods is made 

challenging as no one software package has a consistent implementation of all of the 

methods with the same set of features. Due to the popularity of the REST2 method57 

for drug discovery applications, we implemented a REST2/gREST108 like method into the 

AMBER22 package (see Supporting Information) in order to directly compare with ACES. 

While the simulation results are reported in Section 4.2, here we provide a brief theoretical 

comparison of the ACES method developed here with the REST2 method.

The central REST2 equation is given by (U is used for potential energy, instead of E in the 

original work57)

Um
REST2 rN = βm

β0
URe/Env rN + βm

β0
URe/Re rN + UEnv/Env rN , (10)

where URe/Env, URe/Re, and UEnv/Env represent the REST–environment, REST–REST, and 

environment–environment interaction energies, respectively, REST is the region to be 

enhanced sampled, rN represents the configuration of the whole system, m is the index 

of different temperatures with βm ≡ 1/(kBTm), and T0 is the temperature of interest. This 

equation illustrates that the REST2 equation is conceptually similar to eq 4 if one relates 

the REST region with the SC region of the present work, where 
βm
β0

 is related to the 

weight functions for interactions between the REST region and the environment, while 
βm
β0

is related to the weight functions of interactions within the REST region. Typically the 

weight functions 
βm
β0

 are only used for non-bonded and torsion terms, and are set to 1 (i.e., 

“not scaled”) for bond stretch and bond angle terms.57 One key difference between eq 4 of 

the current work and eq 10 of the REST2 approach is that the latter does not discriminate 

the scaling of different types of energy terms and interactions as in the current method 
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and implementation in AMBER22. This universal treatment of the weight functions in the 

original REST2 might be not optimal. A follow up improvement, the gREST108 approach 

allows different weight functions for different types of interactions that greatly increases the 

transition probability in REMD and hence reduces the number of replicas needed.

Many of the existing enhanced sampling methods are formulated as an additional layer of 

HREMD simulations, for example as a set of “boost” replicas connecting to the real-state 

endpoints as in FEP/λ-REMD69 and FEP/REST109,110 approaches, or in 2D networks as in 

the FEP/HREMD,111,112 or condensed 1D variations such as HREST-BP.113 These added 

simulations increase the computational requirements of the calculations. In the context of 

an AFE calculation, the ACES approach makes use of the same discretized alchemical 

pathway (set of λ windows) used for free energy estimation to enhance sampling without 

the increase in computational cost of additional simulations. This is achieved through 

the dual-topology approach used by ACES that has unique advantages also recognized in 

other work.72 The counter-diffusion of real and enhanced sampling states enables tunneling 

through physical barriers and produces minimal rearrangement of the environment along the 

λ path. This allows ACES to more easily overcome the local “hot-spot” problems sometimes 

encountered in REST/REST2 approaches,79 and facilitates seamless integration with free 

energy simulations as will be illustrated in the examples below. The implementation of 

ACES within AMBER22 further leverages the newly developed optimized alchemical 

transformation pathways (with flexible λ scheduling) and smoothstep softcore potentials,39 

along with custom selection of internal energy terms that enhance sampling by eliminating 

kinetic traps and conformational barriers while otherwise minimizing the required volume 

of phase space to be sampled. Combined with the high performance of the GPU-accelerated 

MD and free energy simulation engine in AMBER, ACES provides a powerful new tool for 

free energy drug discovery applications.

3 Computational Methods

We describe the relevant molecular system setup and simulation protocols as follows. All 

simulations in the present work were performed with the pmemd.cuda module of AMBER 

Drug Discovery Boost package (AMBER DD Boost)85 as a modified software patch to 

AMBER20 that now has been fully implemented and is available in AMBER22.96

Absolute hydration free energy simulations:

The hydration free free energy simulations for acetic acid and the selected FreeSolv entries 

reported in the next section were modeled using the GAFF force field16,114 and solvated 

with TIP3P115 waters extending to 12 Å from the ligand. All the initial structures for 

gaseous simulations were prepared by stripping water from those equilibrated structures in 

the aqueous phase with a periodic box. One-step concerted softcore potential were used with 

11 alchemical states: λ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Four independent 

trials of each simulation were run using different random number seeds to adjust the initial 

conditions. Each simulation was run in the isothermal-isobaric ensemble for 2.5 ns using a 1 

fs timestep. The Berendsen barostat116 and Langevin thermostat117 were used to maintain a 
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temperature of 298 K and 1 atm pressure. The long-range electrostatics were evaluated with 

the particle mesh Ewald method using a 1 Å3 grid spacing.118,119

PMF profile of acetic acid:

The PMF calculations of acetic acid were done with ff14SB120 and GAFF force field16,114 

with TIP3P115 waters. There are a total of 61 umbrella simulations involving equally-spaced 

displacements along the O=C-O-H torsion angle coordinate between 0 and 180 degrees. 

Each window is minimized and followed by 5 ps equilibration. Each simulation is performed 

for 2.7 ns (the first 200 ps was discarded and the remaining 2.5 ns was used for data for 

analysis), and restrained harmonically using a force constant of 200 kcal/mol/rad2.

REST2-like enhanced sampling implementation:

To compare the established REST2 and gREST enhanced sampling methods, we 

implemented a REST2-like enhanced sampling approach in the AMBER DD Boost package. 

While the details are described in the Supporting Information, the implemented REST2-

like enhanced sampling approach provides flexible mechanisms to control interactions 

withing the enhanced sampling region and the interactions between the enhanced sampling 

region and its environment and can replicate REST2 and gREST approaches. This REST2-

like enhanced sampling implementation also can be utilized together with alchemical 

transformation simulations to enhance sample the λ = 0 and λ = 1 real states. Three 

additional windows for REST2-like enhanced sampling are added (resulting in total 14 

windows) with effective REST2 temperatures of 367.90K, 465.63K, and 608.16K.

Relative binding free energy simulation preparation:

Cdk2 with 1h1r to 1h1q mutation setup: For the ligands in the protein complex, the crystal 

structure of the chain A of PDBID:1H1R (Structure of human Thr160-phospho Cdk2/cyclin 

A complexed with the inhibitor NU6086) is selected as the starting point. Hydrogen atoms 

were added by the tLeap module. Water molecules were added to have at least 12 Å 

buffer. Total 40 Na+ and 43 Cl− ions were added to counter balance the protein charge 

and reach the physiological concentration of 0.15 M. The initial positions of ligand 1h1q 

atoms were simply taken from 1h1r and modified. For the ligands in aqueous solution, 

the initial structures of ligands were taken from the protein complex, followed by adding 

water molecules to have at least 15 Å buffer. T4 – lysozyme with xylene to benzene 

mutation setup: For the ligands in the protein complex, the crystal structure of the chain A 

of PDBID:3GUM (T4 lysozyme M102E/L99A mutant with buried charge in apolar cavity p-

xylene binding) is selected as the starting point. The Cys-Cys bridge bond between Residue 

21 and Residue 142 was manually added. Hydrogen atoms were added by the tLeap module. 

Water molecules were added to have at least 15 Å buffer. Total 34 Na+ and 40 Cl− ions were 

added to counter balance the protein charge and reach the physiological concentration of 

0.15 M. The initial positions of benzene atoms were simply taken from xylene and removed 

the extra atoms. For the ligands in aqueous solution, the initial structures of ligands were 

taken from the protein complex, followed by adding water molecules to have at least 15 Å 

buffer.
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PMF along the T4-lysozyme V111 χ1 angle:

Umbrella sampling simulations for PMF along the T4-lysozyme V111 χ1 angle were 

performed with 25 windows starting from −180° to 180° with a 15° spacing. A harmonic 

force constant of 70 kcal/rad2 is used to keep the V111 χ1 angle near the desired range and 

the simulation of each window is 1 ns. The resulting angle distributions were analyzed using 

the vFEP program121,122 to produce the PMF results.

Relative binding free energy simulation protocols:

The protein and the ligand were modeled using the AMBER ff14SB and the GAFF2 

force fields,123 respectively, and the condensed phase environment was explicitly modeled 

with TIP4P Ewald124 waters. The whole ligands are defined as the transforming regions 

(CC+SC) while the phenyl ring is defined as the SC region in the Cdk2 1h1r to 1h1q 

transformation. The transformations were performed in the modified SSC(2) softcore 

potentials with (m=n=2, α=0.5; unitless β = 1)39 and with one-step concerted softcore 

protocol using 21 alchemical evenly-spaced states between λ = 0.0 and λ = 1.0 with spacing 

of 0.05. SHAKE125 with Hydrogen Mass Repartition are applied to both the protein and 

the ligand.126 Each simulation was performed in the isothermal-isobaric ensemble for 25 

ns using a 2 fs time step. The Monte Carlo barostat127 and Langevin thermostat117 were 

used to maintain a temperature of 298 K and 1 atm pressure. The long-range electrostatics 

were evaluated with the particle mesh Ewald method using a 1 Å3 grid spacing.118,119 The 

HREMD exchange interval is 20 time steps.

4 Results and Discussion

In the sections that follow, we compare the effectiveness of different methods to the 

ACES approach. In order to facilitate these comparisons, we introduce an abbreviated 

notation that is used in the figures, tables and discussion. We will use the notation “SC1”, 

“SC2”, ... “SC5” to indicated the integer value of the gti_add_sc flag (1, 2, ... 5) that 

controlled the energy terms that are scaled by λ in the dummy state indicated in Table 1. 

When comparisons are being made with and without the use of replica exchange, we use 

the notation SCX/R and SCX/N to indicate the gti_add_sc=”X” model using HREMD 

(SCX/R) and not using HREMD (SCX/N). In this notation, the ACES approach is equivalent 

to SC5/R, but for clarity we will endeavor to consistently refer to this as simply “ACES”. In 

some instances, we also perform comparison with a REST2/gREST-like enhanced sampling 

method that has been implemented in the AMBER Drug Discovery Boost package (see 

details in Supporting Information). This is an endpoint enhanced sampling method that can 

be used independently or in conjunction with HREMD along the alchemical dimension 

and also the ACES approach. We indicate the use of the REST2/gREST-like approach 

applied to the real states with an additional “/E” designation, e.g., SC2/R/E indicates the 

use of SC2 with HREMD in the alchemical dimension (R) plus REST/gREST enhanced 

endpoint sampling (E). The notation “ACES/E” indicates the ACES approach with REST/

gREST enhanced endpoint sampling (E). it is noteworthy to mention that the addition of 

HREMD along the λ dimension (“/R”) does not considerably increase the computational 

cost, as HREMD typically requires a fairly small overhead (~20%) with respect to running 

independent simulations without HREMD. On the other hand, the addition of REST/gREST 
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enhanced sampling (“/E”) is a significant added computational cost as is adds a new set 

of replica exchange simulations to those already being performed along the alchemical 

dimension with “/R”. Finally, in some instances we perform exhaustive umbrella sampling 

(many independent simulations for a given real or dummy endpoint state) along a selected 

torsion angle coordinate to generate reference distributions and free energy profiles for 

comparison, in which case we do not use the “/N”, “/R” or “/E” notation.

4.1 Simple illustrative example: acetic acid

4.1.1 Free energy barriers of acetic acid along the O=C-O-H torsion—It is well 

known that acetic acid has different favorable conformations of the acid hydrogen in gas 

phase and in aqueous phase that are also related to the molecular dipole moment. The energy 

barriers between the syn and anti conformations (about the O=C-O-H torsion) are ~11.0 

and ~6.5 kcal/mol in gas phase and in aqueous phase, respectively.128 These high energy 

barriers lead to challenges for accurate calculation of the absolute hydration free energy of 

acetic acid. One might naively think that simply using a starting structure that had the proton 

in the correct conformation, should that conformation be known a priori, would solve the 

problem. In fact, this is not the case in general. Conformational barriers may persist even 

in the dummy state, depending on how the dummy state is defined. Recall, for an absolute 

hydration free energy, the dummy state arising from the gas phase and aqueous phase edges 

are formally identical. However, if there is a large energy barrier between conformations 

in the dummy state itself, the transformation from the gas phase (syn) will remain trapped 

in the syn conformation in the dummy state, whereas the transformation from the aqueous 

phase (anti) will remain trapped in the anti conformation in the dummy state, leading to 

inconsistent results. In order to remedy this potential problem, one must define the energy 

terms in the dummy state such that transitions can readily occur between syn and anti, and 

an enhanced sampling equilibrium can be achieved. This also ensures, that the conformers 

in the real state will be sampled with the correct occupations. As discussed previously and 

illustrated below, this can be achieved by inclusion of only the bond, angle and van der 

Waals terms contribution to the internal SC potential energy in the dummy state (SC5: no 

electrostatics, torsion angle or 1–4 terms).

In order to establish an independent benchmark for the conformational free energy profile 

(PMF) for acetic acid, we first performed umbrella sampling simulations scanning the 

relevant O=C-O-H torsion angle. Figure 2 shows the PMF’s of the O=C-O-H torsion angle 

of acetic acid in different conditions: in aqueous or gas phases, in real (the acetic acid 

molecule has full interactions with its environment) or dummy (the acetic acid molecule has 

no interactions with its environment) states, and with different gti_add_sc flags which 

control the internal interactions of acetic acid. With SC1, all internal interactions within the 

SC region (defined as the whole acetic acid molecule) are not scaled and hence present in 

the dummy states, and the dummy states of the acetic acid both in gas phase and in aqueous 

phase are exactly the same as the real state in gas phase. This is confirmed and illustrated 

in the leftmost panel of Figure 2. The forward and reverse barriers of the dummy state with 

SC1 are 10.9 and 6.5 kcal/mol, respectively. With SC2, the internal electrostatic interactions 

within the SC region are scaled to zero in the dummy states, and this leads to a dummy state 

that prefers the anti conformation and energy barriers are similar in magnitude but the order 
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is reversed (forward and reverse barriers are 7 and 11, respectively), shown in the middle 

panel of Figure 2. With SC5, when only the internal LJ interactions (excluding 1–4 LJ), 

bond length and bond angles terms are kept in the dummy state (Table 1), the PMFs become 

essentially flat in the dummy states (forward and reverse barriers less than 0.1 kcal/mol, 

shown in the rightmost panel of Figure 2). As a result, simulations of latter dummy state 

will not be kinetically trapped by artificial high energy barriers between the syn and anti 
conformations, enabling enhanced conformational sampling and free energy convergence 

using ACES.

4.1.2 Hydration free energy of acetic acid—In order to achieve the ACES 

requirement of conformation propagation between different λ-windows, the HREMD 

framework of AMBER20 is utilized. Herein, we performed the absolute free energy 

calculation of acetic acid with SC5 but with different starting conformations (Table 2). Since 

the HREMD framework propagates the conformational ensembles through the different 

λ states, the real-state endpoint can sample conformations originating from the enhanced 

sampling dummy state, and will do so in the correct Boltzmann populations. As a result, the 

computed absolute hydration free energies without the HREMD are 5.33 ± 0.23 kcal/mol 

and 6.83 ± 0.28 kcal/mol started from syn and anti, respectively. The free energy differences 

derived from different conformational starting points here reflects the degree to which 

sampling of the conformations is incomplete (larger differences result from less complete 

sampling). With ACES (SC5/R), the absolute hydration free energies are 6.06 ± 0.08 kcal 

and 5.95 ± 0.10 kcal/mol from syn and anti starting conformations, respectively, which 

are not statistically distinguishable. A previous study of absolute hydration free energy 

of acetic acid employing multiple real and dummy state conformations connected with 

rigorous umbrella sampling PMFs84 produced 5.96 ± 0.10 kcal/mol, the same as the ACES 

result here. The agreement suggests that ACES successfully overcomes the conformational 

challenges in calculating the absolute free hydration free energy of acetic acid.

4.2 Absolute hydration free energy example: edges cases from the FreeSolv database

The FreeSolv database87,88 provides an excellent source of calculated and experimental 

solvation free energies of a wide range of small molecules. In the current latest version 

(v0.51) of the FreeSolv database, the deviations between the calculated AMBER/GAFF and 

experimental solvation free energies are generally smaller than 2 kcal/mol. Nevertheless, 

there are still 34 entries (out of a total of 643) having deviations larger than 3 kcal/mol when 

comparing the results of experiment and those calculated with a older version of AMBER 

prior to the methods developed in the current work. We selected 5 FreeSolv database 

entries (Table 3) with among the largest deviations and that exhibited different accessible 

conformations in the gas phase and in the aqueous solution, similar to the acetic acid case, in 

order that they form a set for which calculated hydration free energies would be particularly 

sensitive to sampling.

Table 3 shows the hydration free energies of the five selected FreeSolv entries calculated 

with different enhanced sampling protocols: SC2/R, SC2/R/E, ACES and ACES/E, where as 

mentioned previously, the “R” indicated HREMD along the λ dimension, and “/E” indicates 

additional REST2/gREST-like enhanced sampling applied to the real states (i.e., λ = 0). The 
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mean absolute error (MAE) and RMS error (RMSE) with respect to experimental values 

reported for by FreeSolv (using a different protocol described in published work87,88) are 

3.8 and 4.4 kcal/mol, respectively. The results for SC2/R show similar MAE and RMSE 

(4.1 and 4.4 kcal/mol, respectively), although individual errors values differ. Upon additional 

REST2/REST-like real-state sampling (SC2/R/E), the MAE and RMSE are significantly 

reduced to 2.0 and 2.5 kcal/mol, respectively. The ACES values, on the other hand, 

are considerably improved (MAE/RMSE 1.1/1.2 kcal/mol) that is relatively insensitive to 

additional enhanced sampling with ACES/E (MAE/RMSE 1.1/1.2 kcal/mol). The origin 

of these differences involve the inability of SC2 to overcome barriers in the dummy state 

that creates kinetic traps and hinders enhanced sampling all along the λ dimension. While 

application of additional REST2/gREST-like sampling to the SC2/R (i.e., SC2/R/E) results 

in reducing errors by roughly 1/2. The SC2/R/E is expected to improve the sampling of the 

real state itself, but not the dummy state and not necessarily more non-locally along the 

λ dimension. The relative invariance of ACES with respect to additional REST2/gREST 

sampling (ACES/E) suggests that the ACES method alone is able to accomplish the required 

enhanced sampling.

This simple examples highlight a few key points. First, HREMD is needed along the λ 
dimension. Second, for HREMD to be effective as an enhanced sampling mechanism, 

the real-state endpoint must be connected with an enhanced sampling dummy state (this 

can be achieved through the dual topology ACES approach at minimal cost, or partially 

through REST2/gREST-like approach). Third, use of REST2/gREST alone on the real-state 

endpoint does not guarantee the required enhanced sampling along the full λ dimension 

(and particularly to avoid traps latent in the dummy state endpoint) needed to improve the 

free energy estimates. In the remainder of the manuscript, we examine two successively 

more complex examples that involve protein-ligand binding and correlated side-chain 

conformational transitions. For these examples, we focus on demonstrating that the ACES 

approach is robust and can overcome the limitations of other selected methods, but in doing 

so we select the most relevant illustrative methods and do not exhaustively compare to all 

the combinations enumerated and analyzed in this section.

4.3 Protein-ligand binding example: 1h1r → 1h1q transformation in Cdk2

In this section we apply the ACES approach on a well-known protein-ligand binding 

problem: the 1h1r/1h1q ligands bound to Cdk2.12,129,130 The torsion angle of the phenyl 

ring (Fig. 1) of the 1h1r ligand has two distinguished states, syn (torsion angle = −8.81 ° ) 

and anti (torsion angle = 150.75 °), in the crystal structure (PDBID: 1H1R129). A binding 

free energy study using the REST2 enhanced sampling approach110 has demonstrated that 

simulations without enhanced sampling cannot access both syn and anti conformational 

states and utilizing the REST2 approach will at least in part overcome the problem.

We applied ACES on this system with different starting conformational states and studied 

the distributions of both syn and anti conformational states in the Cdk2–1h1r to Cdk2–1h1q 

alchemical relative binding simulations (details of the simulation set up and protocol are 

described in the Computational Methods section). Figure 3 shows the time series and 

distributions of the relevant torsion of the real state of 1h1r (λ = 0) with and without 

Lee et al. Page 18

J Chem Theory Comput. Author manuscript; available in PMC 2024 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACES. ACES is clearly able to to sample both states, leading to the same population ration 

(80:170 for anti:syn) regardless of the starting conformation. This ability is particularly 

important when the relative occupations of syn and anti conformational states changes 

during a transformation from one ligand into another.

In the present example, the occupations do not change significantly, and both syn and anti 
states are thermally accessible (as supported by the fact that both states are observed in the 

crystal structures with partial occupancy129). Table 4 lists the calculated relative binding free 

energies (ΔΔG values) of Cdk2–1h1r to Cdk2–1h1q alchemical simulations using different 

procedures. Without ACES using SC2/N, SC5/N and SC2/R methods, the calculated ΔΔG 
values starting from syn and from anti conformations give about a 0.2 kcal/mol difference, 

although as illustrated previously these methods produce different anti/syn distributions. 

As these states are similar in energy and populated in both the 1h1r and 1h1q states, we 

do no expect a significant resulting free energy result (although in other work using a 

different force field, a difference between FEP/MD and FEP/REST2 of 1.43 kcal/mol has 

been reported12). With ACES, the calculated ΔΔG values starting from syn and from anti 
conformations in Table 4 give statistically identical results (0.02 kcal/mol difference, which 

is below the statistical error estimates).

4.4 Coupled ligand-binding/side chain rotamer transition example: T4-lysozyme V111 χ1 

angle

The L99A mutant of the T4 lysozyme (T4L) is a classic example of conformational changes 

upon the binding of various aromatic molecules to the nonpolar cavity of the protein and 

hence a good illustration case for enhanced sampling methods.131–134 Specifically, for the 

bound complexes with small ligands, e.g., benzene, the side chain torsion of Valine 111, 

the V111 χ1 angle, has a dominant trans (180°) population with a smaller population of 

gauche+ (~ +60°), while with larger ligands such as p-xylene, the V111 χ1 angle still has 

a dominate trans population but the second largest population is now gauche-(~ −60°). The 

energy barriers around the V111 χ1 angle are sufficient (~ 5–10 kcal/mol) to prevent the 

side chain from rotating and visiting different conformation states effectively on the time 

scale of typical practical MD and free energy simulations; hence simulations started from 

the different rotation states of V111 will likely deliver different resulting conformational 

distributions. It has been further suggested that larger scale conformation changes involving 

multiple residues need be considered in order to get accurate estimations of the binding 

free energy,69 which is beyond the scope of the current work. Here, we focus only on one 

key aspect of the problem: the V111 χ1 distributions in different environments and using 

different sampling procedures.

We performed various simulations on T4L complexed with benzene and p-xylene, and 

analyzed the V111 χ1 distributions using umbrella sampling and different methods and 

transformations between (B) and p-xylene (X) (see Computational Details):

• Umbrella sampling (US) simulations on T4L-p-xylene complex, T4L-benzene 

complex, and T4L apo state, to obtain the relevant baseline PMF curves along 

the V111 χ1 angle.
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• alchemical simulations of p-xylene to benzene transformation in T4L complex, 

where the V111 side chains are defined as part of the SC region in both 

end states. The two non-ring carbon atoms and their connected hydrogens of 

p-xylene, and the corresponding hydrogens of benzene are included in the SC 

regions as well. We denote this alchemical simulation as XB.

• alchemical simulations of p-xylene to dummy state transformation in T4L 

complex, where the V111 side chains are defined as part of the SC region in 

both end states. We denote this alchemical simulation as X0.

• alchemical simulations of p-xylene to p-xylene transformation in T4L complex, 

where the V111 side chains as well as the entire p-xylene molecules are defined 

as part of the SC region in both end states. We denote this alchemical simulations 

as XX.

Figure 4 shows the baseline PMF results (the left y-axis in kcal/mol) from US simulations 

(shown on the leftmost column), the predicted V111 χ1 distributions based on the PMF 

results (gray curves in all sub-figures), and the histogram distributions from simulations 

using SC2/N, SC2/R and ACES (from 2500 snapshots and with 45 bins between −180° 

and 180°, the right y-axis is the histogram count). The upper, middle, and the bottom rows 

correspond to the p-xylene-bound, benzene-bound, and apo states. respectively. While the 

PMF results are qualitatively similar to previously reported,69,111,135 the calculated energy 

barriers here differ by about 1–2 kcal/mol. In the XB simulations, the p-xylene-bound state 

is the λ = 0 real state and the distribution of the first copy of V111 in the dual topology 

(V1111) is shown; while the benzene-bound state is the λ = 1 real state and the distribution 

of the second copy of V111 in the dual topology (V1112) is shown. In the X0 simulations, 

the apo state is the λ = 1 real state and the distribution of the second copy of V111 in the 

dual topology (V1112) is shown.

The ACES results of all three binding states (the rightmost column in Figure 4) are 

consistent with the PMF reference results (shown as gray curves), suggesting that ACES 

naturally produces the correct distributions without explicitly sampling along a predefined 

torsion coordinate. Contrarily, the SC2/N results of all three binding states (the second 

column from left in Figure 4) produce trans only distribution, suggesting the simulations 

were trapped in the local trans basins. Nevertheless, the SC2/R results of all three binding 

states (the second column from right in Figure 4) suggest that the reduction of energy of 

the dummy states with SC2, although can escape the local energy traps to certain degree, 

is not quite enough to produce the desired distributions, demonstrated by the overpopulated 

gauche+ (~60°) distributions of the p-xylene and benzene bound states and underpopulated 

gauche+ distributions of the apo states.

To further understand the underlining reasons leading to the incorrect distributions from the 

(SC2 /R) simulations, we examine the corresponding distributions of the dummy states. 

Figure 5 shows the V111 χ1 histogram distributions from SC2/N, SC2/R and ACES 

simulations. The upper, middle, and the bottom rows are referred to the same simulations as 

shown in Figure 4 but the distributions are for the dummy copy V111s, instead of the real 

copy V111s.
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The SC5/R results of all three binding states (the rightmost column in Figure 5) show that 

the V111 χ1 can almost freely rotate in its dummy state with SC5; while the rotation is 

still hindered with SC=2 (the left and the middle column, regardless of the usage of replica 

exchange). The results shown in Figure 4 and Figure 5 reconfirm what has been observed 

from the acetic acid case: to produce the correct distribution, or to effectively escape the 

local energy traps, a simulation must have an enhanced sampling dummy state that is able 

to overcome relevant conformational barriers and provide and effective replica exchange 

mechanism to transmit that information along the λ dimension and to the real state.

To further explore different ways that ACES can be applied, we examine the V111 χ1 

distributions from alchemical transformations with different SC region definitions. Figure 

6 shows the V111 χ1 histogram distributions of V111 of the p-xylene-bound states from 

different alchemical transformation simulations. The upper sub-figure shows the result of the 

second copy of V111 at λ = 1 in the XX simulation. The middle sub-figure shows the result 

of the first copy of V111 at λ = 0 in the XX simulation. The bottom sub-figure shows the 

result of the first copy of V111 at λ = 0 in the XB simulation. The results show that SC5/R 

(ACES) give virtually the same results from the p-xylene real state of the XB simulations 

and from the both copies of p-xylene in the XX simulations.

Noticeable is that the XX simulations, where two copies of p-xylene and two copies of 

V111 side chains are defined with each copy corresponding to one end state, are not 

formally “alchemical transformation” simulations, since the two end states are exactly the 

same. In such ACES scenarios there is no net contribution to the free energy that arises 

in the transformation, but the greatest enhanced sampling is realized. As the enhanced 

sampling dummy states do not interact with the environment, they are analogous to an 

infinite REST2 effective temperature. In the XX simulations, there are two identical copies 

of the xylene and V111 that are defined in the SC region and contained within the dual 

topology framework. Each copy achieves enhanced sampling as the real-state endpoints 

are connected to the enhanced sampling dummy state through HREMD. However, as the 

first copy is being turned “off” by being transformed into the dummy state, the second 

copy is being “turned on” in the compensating transformation such that the net effect on 

the environment is minimal. This counter-diffusion of real and enhanced sampling states 

prevents large scale rearrangements of parts of the system that were not selected in the SC 

region and targeted for enhanced sampling. In this way, ACES avoids “hot-spot” problems 

and exchange bottlenecks that can occur with REST2-like approaches46,104–106 and an 

effective “infinite” temperature (for interactions with the environment) can be utilized to 

accelerate the sampling in the dummy states.

5 Conclusion

We present a new alchemical enhanced sampling method (ACES) that combines: 1) creation 

of localized (focused) enhanced sampling states through flexible selection of the atoms to 

be targeted for enhanced sampling and tuning of the internal potential energy terms of the 

atoms in the enhanced sampling region; 2) design of a robust alchemical transformation 

pathways that connects the real state and enhanced sampling state endpoints using very 

recently developed new smoothstep alchemical free energy transformation methods and 
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infrastructure; and 3) construction of efficient Hamiltonian replica-exchange networks using 

a real and enhanced sampling state counter-diffusion approach to reduce or eliminate 

exchange bottlenecks caused by re-arrangement of the environment. The ACES approach 

has unique advantages due to its dual-topology nature that enables the counter-diffusion 

of real and enhanced sampling states to overcome local “hot-spot” problems sometimes 

encountered in REST/REST2 approaches and enables seamless integration with free energy 

simulations. The method is demonstrated with a tiered set of examples of increasing 

complexity: the absolute hydration free energies of acetic acid and several edge cases from 

the FreeSolv database, protein-ligand binding in the 1h1r→1h1q transformation in Cdk2, 

and coupled ligand-binding/side chain (V111 χ1 angle) rotamer transition in T4-lysozyme. 

In all cases, the ACES method was shown to be superior to the other methods compared, 

and able to circumvent kinetic traps and robustly sample complex conformational states 

and produce reliable free energy estimates. In this way ACES can be used as a stand-

alone enhanced sampling method, or as an importance sampling method integrated with 

alchemical free energy simulations.
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Figure 1: 
Illustration of the CC/SC regions and torsion angle of the phenyl ring of the 1h1r/1h1q 

ligands. Upper panel: Maximum Common Structure (MCS) atom-mapping approach95 used 

to define the SC region (shown in red). Lower panel: Using ACES, with the χ angle is the 

enhanced sampling target and hence the entire phenyl ring is defined as the SC region. The 

rest of the ligand, i.e., the non-SC part, is defined as the CC region while the environment, 

solvent or protein, is defined as the immutable (I) region.
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Figure 2: 
The PMF profiles along the O=C-O-H torsion angle of acetic acid in the aqueous and gas 

phases, created through umbrella sampling with 61 windows for the real state (λ=0, the 

acetic acid has full interactions with the environment) and the dummy state (λ = 1, the acetic 

acid is fully decoupled from the environment) and with three gti_add_sc switches (see 

Table 1). In the gas phase, the preferred orientation is syn whereas in the aqueous phase, the 

preferred orientation is anti.
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Figure 3: 
Time series (5 ns) of the relevant torsion angle with and without ACES from Cdk2–1h1r 

to Cdk2–1h1q alchemical relative binding simulations. The distributions are for the the real 

state of 1h1r (λ = 0). Without ACES, the ligand torsion will stay trapped in the initial 

conformation (syn or anti) for the duration of the simulations. With ACES, the ligand torsion 

will jump between syn and anti regardless of the initial conformation. The distribution 

figures are created for the last 2.5 ns data and show that ACES delivers similar distributions 

for simulations starting from different initial conformations. The number pairs are the counts 

of (anti:syn) and the blue colored pairs are for all 500 snapshots collected while the red pairs 

are for the last 250 snapshots (i.e., the last 2.5 ns).

Lee et al. Page 29

J Chem Theory Comput. Author manuscript; available in PMC 2024 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Comparison of the PMF results, and their resulting predicted V111 χ1 histogram 

distributions (from 2500 snapshots and with 45 bins between −180° and 180°, the y-axis 

is the histogram count) along with histogram distributions of real states of alchemical 

simulations with different protocols. In all cases, V111 is contained in the enhanced 

sampling SC region for both end states and are contained in both copies of the dual 

topology. V1111 and V1112 indicate the first or second copy of the side chain within 

the dual topology. Hence for xylene→benzene (XB), at λ=0 the system is represented as 

xylene in the first copy of the topology that contains V1111, whereas at λ=1 the system 

is represented as benzene in the second copy of the topology that contains V1112. For 

xylene→0 (X0), at λ=1 the system is in the enhanced sampling “dummy” state such that the 

apo enzyme is represented by the second copy of the topology that contains V1112.
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Figure 5: 
The V111 χ1 histogram distributions (from 2500 snapshots and with 45 bins between −180° 

and 180°, the y-axis is the histogram count) of dummy states from different alchemical 

simulations protocols.
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Figure 6: 
The V111 χ1 histogram distributions (from 2500 snapshots and with 45 bins between −180° 

and 180°, the y-axis is the histogram count) real states from XX and XB ACES simulations.
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Table 1:

The scaling behavior/λ-dependence of the weight functions in eq. 4, controlled by the gti_add_sc flag, for 

different energy terms and regions/interactions in AMBER22a.

Weight Symbol Energy Term Abbreviation Region / Interaction
gti_add_sc flag

1 2 3 4 5 6

W 0/1 , bond
SC bond SC P P P P P P

W 0/1 , ang
SC ang SC P P P P P P

W 0/1 , tor
SC tor SC P P P S S S

W 0/1 , dir
SC dir SC P S S P S S

W 0/1 , 1 − 4Ele
SC 1–4 Ele SC P S S S S S

W 0/1 , LJ
SC LJ SC P P S P P S

W 0/1 , 1 − 4LJ
SC 1–4 LJ SC P P S S S S

W 0/1 , bond
SC/(CC + I) bond SC/(CC+I) Special treatmentb

W 0/1 , ang
SC/(CC + I) ang SC/(CC+I) Special treatmentb

W 0/1 , tor
SC/(CC + I) tor SC/(CC+I) Special treatmentb

W 0/1 , dir
SC/(CC + I) dir SC/(CC+I) S S S S S S

W 0/1 , 1 − 4Ele
SC/(CC + I) 1–4 Ele SC/(CC+I) S S S S S S

W 0/1 , LJ
SC/(CC + I) LJ SC/(CC+I) S S S S S S

W 0/1 , 1 − 4LJ
SC/(CC + I) 1–4 LJ SC/(CC+I) S S S S S S

W 0/1
CC + I all CC+I S S S S S S

W{0/1},rec rec all S S S S S S

a
Energy terms and interacting regions are defined in the text (and also Tables S1 and S2 of the Supporting Information).

Flags:

S: Scaled (S) with λ (weight in eq 9 set to the λ-dependent weight function) and the corresponding energy term is NOT present in the dummy state.

P: Not scaled with λ (weight in eq 9 set to 1) and corresponding energy term is present (P) in the dummy state.

b
Bonded terms between the SC and (CC+I) regions require special treatment such that they obey certain conditions in order that the ensembles 

generated in the state that contains “dummy atoms” reproduce the same potential of mean force on the real atoms as the real system without the 

dummy atoms. A discussion of the energy term requirements that satisfy these conditions has been made by Boresch and Karplus26,27 and Roux 

and co-workers,25,28 and recently discussed in depth in the context of alchemical transformations.29
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Table 2:

The forward and reverse energy barriers for acetic acid and the absolute hydration free energy with different 

gti_add_sc flags.

Method Phase ΔG (syn/anti) SC1 SC2 SC5

PMF profile

(dummy state)

aq

ΔG‡ (forward) 10.95 6.54 −0.10

ΔG‡ (reverse) 7.05 10.29 −0.03

ΔG 3.90 −3.75 −0.07

gas

ΔG‡ (forward) 10.94 6.54 −0.10

ΔG‡ (reverse) 7.10 10.32 −0.01

ΔG 3.84 −3.78 −0.09

Method ΔG hyd SC1/R SC2/R ACES

TI with HREMD

starting in syn 4.57 4.41 6.06*

starting in anti 9.60 9.64 5.95*

differenc† 5.03 † 5.23 † 0.11 †

All free energy values are in kcal/mol. The data for ΔG (syn/anti) is derived from the PMF profiles for acetic acid in the dummy state (λ=1) as 

defined by different gti_add_sc flags as follows.

gti_add_sc=1 (SC1): USC = Ubond + Uang + ULJ + Utor + U1–4LJ + Udir + U1–4Ele;

gti_add_sc=2 (SC2): USC = Ubond + Uang + ULJ + Utor + U1–4LJ.

gti_add_sc=5 (SC5): USC = Ubond + Uang + ULJ.

The data for the ΔGhyd is the hydration free energy as defined by ΔGhyd=ΔGaq−ΔGgas, where the ΔGgas and ΔGaq values are obtained from 

alchemical free energy simulations in the gas phase and in aqueous solution, respectively.

†
The ideal result (in the sampling limit) result should be zero, i.e., ΔGhyd should not depend on the starting conformation.
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Table 3:

The calculated absolute hydration free energy for selected FreeSolv entries with different simulation protocols, 

along with the experimental values and the errors with respect to experimenta.

FreeSolv 
ID

compound 
name

ΔΔGhyd

FreeSolv SC2/N SC2/R SC2/R/E SC5/N ACES ACES/E Expt

2099370 ketoprofen −17.24(06) −17.35(09) −17.48(15) −14.43(37) −14.98(38) −13.09(19) −13.00(17) −10.78

1527293 flurbiprofen −13.95(05) −5.79(14) −6.26(15) −7.17(59) −9.76(15) −9.67(17) −9.51(17) −8.42

2078467 ibuprofen −10.86(05) −10.72(29) −11.05(16) −8.13(31) −8.93(16) −7.52(15) −7.60(15) −7.00

7758918 propionic acid −9.09(03) −1.95(09) −2.09(12) −2.64(21) −5.94(17) −5.72(10) −5.75(10) −6.46

3034976 acetic acid −7.28(02) −9.63(06) −9.96(13) −6.47(22) −6.62(23) −5.96(10) −5.97(09) −6.69

MAE 3.81 4.07 4.11 2.01 1.61 1.11 1.07

RMSE 4.35 4.31 4.38 2.48 2.16 1.28 1.22

a
All free energy values are in kcal/mol. The data for the ΔΔGhyd is the hydration free energy as defined by ΔΔGhyd=ΔGaq−ΔGgas, where the 

ΔGgas and ΔGaq values are obtained from alchemical free energy simulations in the gas phase and in aqueous solution, respectively. As defined 

in the text, SC2 refers to gti_add_sc=2, SC5 to gti_add_sc=5, R to HREMD, and E to REST2/gREST-like enhanced sampling. The 

entries under the heading “FreeSolv” are those reported in the FreeSolv database87,88 for version 0.51 (latest version at this time).
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Table 4:

The calculated relative binding free energies (ΔΔG) of Cdk2–1h1r to Cdk2–1h1q alchemical simulations under 

various conditions. The bold entries are for ACES (SC5 and REMD enabled) while others are without ACES. 

The results are calculated from 20 ns trajectories with the last 15 ns for analysis.

Starting w/ syn Starting w/ anti

SC2/N 0.41(27) 0.63(28)

SC5/N 0.46(32) 0.55(22)

SC2/R 0.33(20) 0.50(13)

ACES 0.50(16) 0.48(12)

SC2/N: Simulation with SC2 and without HREMD.

SC5/N: Simulation with SC5 and without HREMD.

SC2/R: Simulation with SC2 and with HREMD.

ACES: Simulation with SC5 and with HREMD.
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