Table 3.
Classification 3 performance (C-3) (Patients with NGT vs. Patients with prediabetes vs. Patients with T2D).
| ML algorithms | Accuracy | Cohen Kappa | Mean Accuracy (SD, CV=10) |
Mean Cohen Kappa (SD, CV=10) |
|---|---|---|---|---|
| Logistic Regression | 0.77 | 0.61 | 0.76 (0.06) | 0.65 (0.11) |
| Naive Bayes | 0.71 | 0.5 | 0.68 (0.07) | 0.49 (0.12) |
| Decision Tree | 0.6 | 0.29 | 0.65 (0.08) | 0.35 (0.17) |
| Random Forest | 0.98 | 0.63 | 0.95 (0.03) | 0.9 (0.03) |
| XGBoost | 0.92 | 0.87 | 0.96 (0.02) | 0.93 (0.05) |
| Multilayer Perceptron (MLP) | 0.93 | 0.87 | 0.9 (0.06) | 0.88 (0.07) |
We compared the performance of six ML algorithms using the Precision and Cohen Kappa score values. We use the stratified cross-validation (CV) technique to obtain our results’ median and standard deviation (SD) (K Fold = 10).