
Journal of Advanced Research 49 (2023) 103–114
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
Original Article
Meta-analysis of fecal viromes demonstrates high diagnostic potential of
the gut viral signatures for colorectal cancer and adenoma risk
assessment
https://doi.org/10.1016/j.jare.2022.09.012
2090-1232/� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Cairo University.
⇑ Corresponding authors.

E-mail addresses: qiulongy1988@163.com (Q. Yan), maxc1978@163.com (X. Ma).
1 These authors contributed equally to this work as co–first authors.
Fang Chen a,b,c,1, Shenghui Li b,1, Ruochun Guo b,1, Fanghua Song d,1, Yue Zhang b, Xifan Wang e,f,
Xiaokui Huo a, Qingbo Lv b, Hayan Ullah c, Guangyang Wang c, Yufang Ma c, Qiulong Yan c,⇑, Xiaochi Ma a,⇑
a Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
b Puensum Genetech Institute, Wuhan, China
cDepartment of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
dAmbulatory Chemotherapy Center, Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
eKey Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
fDepartment of Obstetrics and Gynecology, Columbia University, New York, NY, USA
h i g h l i g h t s

� The gut virome research in colorectal
cancer and adenoma includes >1,200
samples.

� Siphoviridae and Microviridae viruses
were notably different between
controls and CRC patients.

� The viral markers of colorectal cancer
and adenoma were identified.

� For CRC patients, our model had
better predictive ability than other
bacteria-based models.

� The virome analysis achieved an
optimal AUC of 0.772 to distinct
adenoma patients and controls.
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Introduction: Viruses have been reported as inducers of tumorigenesis. Little studies have explored the
impact of the gut virome on the progression of colorectal cancer. However, there is still a problem with
the repeatability of viral signatures across multiple cohorts.
Objectives: The present study aimed to reveal the repeatable gut vial signatures of colorectal cancer and
adenoma patients and decipher the potential of viral markers in disease risk assessment for diagnosis.
Methods: 1,282 available fecal metagenomes from 9 published studies for colorectal cancer and adenoma
were collected. A gut viral catalog was constructed via a reference-independent approach. Viral signa-
tures were identified by cross-cohort meta-analysis and used to build predictive models based on
machine learning algorithms. New fecal samples were collected to validate the generalization of predic-
tive models.
Results: The gut viral composition of colorectal cancer patients was drastically altered compared with
healthy, as evidenced by changes in some Siphoviridae and Myoviridae viruses and enrichment of
Microviridae, whereas the virome variation in adenoma patients was relatively low. Cross-cohort meta-
analysis identified 405 differential viruses for colorectal cancer, including several phages of
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Porphyromonas, Fusobacterium, and Hungatella that were enriched in patients and some control-
enriched Ruminococcaceae phages. In 9 discovery cohorts, the optimal risk assessment model obtained
an average cross-cohort area under the curve of 0.830 for discriminating colorectal cancer patients from
controls. This model also showed consistently high accuracy in 2 independent validation cohorts (optimal
area under the curve, 0.906). Gut virome analysis of adenoma patients identified 88 differential viruses
and achieved an optimal area under the curve of 0.772 for discriminating patients from controls.
Conclusion: Our findings demonstrate the gut virome characteristics in colorectal cancer and adenoma
and highlight gut virus-bacterial synergy in the progression of colorectal cancer. The gut viral signatures
may be new targets for colorectal cancer treatment. In addition, high repeatability and predictive power
of the prediction models suggest the potential of gut viral biomarkers in non-invasive diagnostic tests of
colorectal cancer and adenoma.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Colorectal cancer: Global statistics and socio-economic burden

Colorectal cancer (CRC) is one of the most common cancers with
an increasing global incidence and mortality rate, especially in
many low- and middle-income countries [1]. In 2018, a worldwide
total of 1.85 million people were diagnosed with CRC [2]. Based on
population aging and population growth projections, the number
of new cases of colorectal cancer is expected to reach 3.2 million
by 2040 [3]. To date, the exact etiology of colorectal cancer remains
unclear, but genetic and environmental factors are thought to be
important. Most colorectal cancer cases are sporadic and <25 %
are inherited [4]. Although the prognosis of colorectal cancer treat-
ment is generally favorable, the increasing number of cases and the
rising incidence in the younger generation still bring a heavy finan-
cial burden and a huge public health challenge [5].

Bacteriome and virome as the disease risk factors

With the rise of next-generation sequencing technology, a large
number of studies have confirmed that the dysbiosis of gut micro-
biome is related to the development of colorectal cancer and suggest
that the gut microbiome can be used as biomarkers to build disease
predictionmodels to predict colorectal cancer [6–9]. Recent studies
showed that Fusobacterium nucleatum was enriched in the human
colon cancer tissues and stool samples of CRC patients compared to
the healthy controls [10]. F. nucleatum recruited tumor-infiltrating
myeloid cells in themousemodel, which accelerated carcinogenesis
[10]. Pathogenic mechanisms of F. nucleatum in CRC have been
widely reported, such as promoting CRC cell glucose metabolism
and inducing formatesecretion [11,12]. These resultsprovide insight
into potential pathogenicmechanisms of gut bacterial communities
in CRC. Interestingly, given that colonoscopy for CRC screening is an
invasive diagnostic tool, many studies have evaluated the potential
of bacterial CRC biomarkers as non-invasive diagnostic tests
[6,7,13]. Through themeta-analysis of cross-cohort studies, Thomas
et al. [6] and Wirbel et al. [7] identified accurate and reproducible
CRC biomarker species in human fecal metagenomes, such as F.
nucleatum, Parvimonasmicra, Gemella morbillorum, Peptostrepto-
coccus stomatis, Solobacterium moorei, and Porphyromonas asac-
charolytica. Based on these biomarkers, the prediction models
demonstrated good discrimination in distinguishing CRC patients
fromhealthycontrols.Additionally, amulti-cohort study forcolorec-
tal adenomawasalsoperformedbasedon16SrRNAgenesequencing
[14], and revealed the applicability of adenoma-specific bacteria for
diagnosing colorectal adenoma. These findings suggest a high diag-
nostic potential of gut bacterial communities in CRC and colorectal
adenoma.

Viruses are crucial members of the human gut microbial ecosys-
tem and are often underemphasized in previous studies. Recently,
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several human systemic diseases, such as rheumatoid arthritis,
inflammatory bowel disease, and irritable bowel syndrome [15–
19], have been associated with both gut bacteria and viruses.
Although some studies have found a link between specific viruses
and CRC [20–23], only a few of them have been implicated in the
CRC gut virome thus far. Hannigan et al. reported that alpha and
beta diversities of gut virome were not significantly different
between CRC patients and healthy controls [24]. The relative abun-
dance of multiple gut viruses had a significant difference between
CRC patients and healthy controls [24–26]. Furthermore, in three
studies [24–26], prediction models based on CRC-associated
viruses demonstrated an acceptable potential for classifiability of
controls vs patients (0.802). Among three studies, the viral markers
in Nakatsu et al.’s study failed to correctly classify CRC patients vs
health controls among an additional three independent cohorts
[25]. The reproducibility and predictive accuracy of microbial
markers cannot be validated across multiple studies. This is
because many biological confounders (e.g., host clinical parame-
ters) can lead to false positives and the heterogeneity of data gen-
eration and processing can decrease the stability and reliability of
results. To reduce the effect of biological and technical factors, pre-
vious studies performed meta-analyses on the gut bacteriome and
identified CRC-associated changes that were consistent across pop-
ulations [6,7]. However, large-scale and cross-cohort studies
focused on the CRC gut virome are still lacking. Thus, it is crucial
to perform meta-analyses across studies to avoid biased associa-
tions between the gut virome and CRC.
The workflow and objective of the study

In this study, we downloaded 1,282 fecal metagenomes from 9
published cohorts, generated a nonredundant viral catalog, and
profiled the gut viromes of each to characterize the gut viral signa-
tures in CRC. By referring to the methods of the previous studies
[6,7], we performed meta-analyses to identify accurate CRC-
associated gut viral signatures across 9 cohorts of CRC patients
and healthy controls. To figure out the diagnostic potential of these
viral biomarkers for CRC, we performed intra-dataset and cross-
dataset prediction and validation based on these 9 cohorts. We fur-
ther validated the efficiency of viral biomarkers in our newly
recruited cohort and another recently published independent
cohort.
Material and methods

Data collection

The publicly available datasets of 9 CRC studies, covering fecal
metagenomes from 554 CRC patients, 182 adenomas patients,
and 546 healthy controls, were downloaded from the NCBI SRA
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database. The following accession IDs: PRJEB6070 for Zeller_2014,
PRJEB10878 for Yu_2015, PRJEB7774 for Feng_2015, PRJEB12449
for Vogtmann_2016, PRJNA389927 for Hannigan_2018,
PRJNA447983 for Thomas_a_2019 and Thomas_b_2019,
PRJEB27928 for Wirbel_2019, and PRJDB4176 for Yachida_2019
were used to download datasets from NCBI SRA database. The
metadata of samples was obtained from the basic research studies
or extracted from the NCBI BioSample database. Fecal metagen-
omes of the recently published validation cohort, Yang_2021, were
downloaded from the NCBI SRA database with accession ID
PRJNA763023.

Recruitment of an independent cohort

To verify the accuracy of our virus marker model in other data, a
newly recruited independent cohort was adopted as the validation
cohort. Individuals were recruited at Dalian University Affiliated
Xinhua Hospital and Dalian Medical University between 2020
and 2021. A total of 27 CRC patients and 28 healthy controls were
included.

Ethics statement

Written informed consent was obtained from all participants in
this study. Ethical approval for this study was obtained from the
Ethics Committees in the Dalian University Affiliated Xinhua
Hospital [Approval no. 2022–04-01]. All procedures followed were
in accordance with the Helsinki Declaration of 1975, as revised in
2008.

Metagenomic sequencing

DNA was extracted from fecal samples using a TIANamp Stool
DNA Kit (TIANGEN, China). The quality of DNA was assessed with
Qubit 2.0. The extracted DNA samples were stored at �80℃ until
use. A sequencing library was generated using the NEB Next�

UltraTM DNA Library Prep Kit (NEB, USA) following the manufac-
turer’s recommendations, and index codes were added to each
sample. Library quality was confirmed with an Agilent 2100. The
clustering of the index-coded samples was performed on a cBot
Cluster Generation System using the Illumina PE Cluster Kit (Illu-
mina, USA) according to the manufacturer’s instructions. After
cluster generation, the DNA libraries were sequenced on the Illu-
mina NovaSeq platform and 150 bp paired-end reads were
generated.

Preprocessing and assembly

Raw reads were qualified via fastp v0.20.1 [27] with the options
‘-u 30 -q 20 -l 90 -y --trim_poly_g’, and human reads were further
removed by matching quality-filtered reads against the human
genome GRCh38 with bowtie2 v2.4.1 [28]. The remaining clean
reads of each sample were assembled into contigs using Megahit
v1.2.9 with the options ‘--k-list 21, 41, 61, 81, 101, 121, 1410[29].

Analyses of viral sequences

All assembled contigs (�5 kb) were used to identify viral
sequences in each sample. The detection, decontamination, and
clustering of viral sequences were performed as described in our
previous study[30]. Taxonomic and functional annotation of viral
sequences were also implemented based on the criteria described
in our previous study[30]. Virus-host prediction was performed
based on the Unified Human Gastrointestinal Genome (UHGG)
database[31] using two methods that included CRISPR-spacer
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matches and prophage blasts (see the methods of our previous
study for the detailed flow[30]).

Taxonomic profiling and diversity

Clean reads in each sample were mapped to the non-redundant
viral catalog of 37,030 vOTUs using bowtie2 with the options ‘--
end-to-end --fast -–no-head -–no-unal -–no-sq. The abundance
profile of vOTUs in each sample was generated by aggregating
the number of reads mapped to each vOTU. Random subsampling
of each sample was implemented to achieve a parity number of
reads that equals the minimum number of mapped reads among
all samples. After subsampling, the relative abundance of vOTUs
was its abundance divided by the number of total mapped reads
in each sample. The relative abundance profile at the family level
was generated by aggregating the relative abundance of vOTUs
assigned to the same family. Alpha diversity indexes were assessed
based on the relative abundance profiles at the vOTU level. The
Shannon index was calculated using the function diversity with
option ‘index = shannon’ in the R platform. The number of observed
vOTUs was the count of unique vOTUs in each sample. In addition,
the taxonomic profiling of the bacteriome was performed based on
4,644 prokaryotic genomes from UHGG [31] by the aforemen-
tioned methods. The alpha diversity indexes of the bacteriome
were calculated based on the relative abundance profiles at the
species level.

Identification of the biomarkers

Based on vOTUs profile, the statistically different vOTUs among
the groups were selected from each of the nine public fecal shot-
gun CRC datasets by a Wilcoxon rank-sum test. Among these, we
retained 516 vOTUs that existed in more than four datasets with
consistent trends between patients and controls and had a P value
of < 0.05 for Wilcoxon rank-sum test. To overcome the limitations
of single research, these vOTUs were further filtered by meta-
analysis. First, the relative abundances of 516 vOTUs were trans-
formed using the arcsine-square root-transformation method.
Then we compared the transformed abundances of each vOTU
between healthy controls and patients based on Hedges’ g effect
sizes using the escalc function with the parameter ‘measure=SMD’
in R platform. Heterogeneity across studies was defined based on
Cochran’s Q test and I2 statistics using the rma function in R plat-
form. P values were adjusted by Benjamini–Hochberg procedure.
We observed 407 vOTUs with adjusted P values of < 0.01.

To avoid confounding due to intra-individual variation (i.e.,
gender, age, and BMI), the associations between 407 vOTUs and
CRC were tested further by linear regression analysis. In short,
the vOTUs profiles were log10 transformed after adding a pseudo-
count of 1 � 10-10, and then used to fit linear models with adjust-
ment for gender, age, and BMI via the lmFit function in R platform.
After getting the coefficient and corresponding standard error, the
meta-analysis was performed to calculate the pooled coefficient
and their 95 % confidence interval. Finally, 405 vOTUs were kept
as final CRC biomarkers with the pooled coefficients with 95 % CI
that did not contain zero after adjusting for confounders.

Correlation network analysis

We used three methods to evaluate whether there is a relation-
ship between CRC-associated vOTUs and prokaryotes. 1) The afore-
mentioned host assignment. 2) Based on the SparCC algorithm[32],
co-abundance relationships were established on the read count
profiles of vOTUs and prokaryotes using fastspar v0.0.10 [33] with
the option ‘--iterations 200, while fastspar_pvalues v0.0.10 was
used to calculate p-value by 1,000 bootstrap datasets derived from
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fastspar_bootstrap v0.0.10. The co-abundance relationships with
the threshold of the correlation coefficient > 0.35 and q-
value < 0.01 (p-value adjusted by the function p.adjust with the
option ‘‘method = BH”) were retained. 3) To identify co-
occurrence relationships, the presence and absence of each vOTU
and prokaryote were treated as binary traits in each sample, and
then compiled into a contingency table that displayed the numbers
of microbial populations. The pairwise co-occurrence relationship
was assessed based on the contingency table using Fisher’s exact
test by the function fisher.test in R platform, while p-value was
adjusted by the function p.adjust with the option ‘‘method = BH”
in the R platform. If the odds ratio of co-occurrence pair was>100
and the q-value was<0.0001, the two microbial populations were
considered to be a co-occurrence. Finally, these relationships
between CRC-associated vOTUs and prokaryotes were visualized
using Cytoscape v3.8.2[34].

Prediction modeling

The Random forest model (randomForest package in the R plat-
form, ntree = 2,000) and the L1-regularized (LASSO) logistic regres-
sion model (SIAMCAT[35] in the R platform, the same parameter
setting derived from Wirbel’s study [7]) were used to build the
classifier based on the vOTUs abundance profile. In LASSO model,
the relative abundance of vOTUs were log10-transformed after
adding a pseudocount of 1 � 10-10, and then standardized into
z-scores. In random forest model, the profile was used without
any pretreatment process.

The performances of prediction models were quantified by cal-
culating AUC scores using the pROC package in R platform. In short,
the data were divided into training and testing sets for five times
repeated, fivefold stratified cross-validation. For each split, a
machine learning model was trained on the training set, which
was then used to predict the test set. In cross-cohort prediction,
a model built from one dataset is used to respectively predict the
other eight datasets. In the LOCO setting, one cohort serves as
the test set and the remaining eight datasets serve as the training
set by using five times-repeated fivefold stratified cross-
validations.

Data and code availability

The raw metagenomic sequencing data from the independent
cohorts has been submitted to the China Nucleotide Sequence
Archive with the accession code CNP0002641. The authors declare
that all other data supporting the findings of the study are avail-
able in the paper and supplementary materials, or from the corre-
sponding authors upon request.
Results

Collection of datasets

In this meta-analysis study, we included 9 published datasets
that used whole-metagenome shotgun sequencing to characterize
the fecal microbial communities of patients with colorectal cancer
or adenoma (Table 1; Table S1). Participants from all studies were
diagnosed by colonoscopy or alternative methods, and the controls
were confirmed after the absence of disease. Healthy subjects with
a history of colorectal surgery in Yachida et al.’s study were
excluded.

To ensure consistency, the metagenomic data from these stud-
ies were processed using a consistent protocol, and fecal metagen-
omes were excluded if the proportion of human DNA sequences
exceeded 10 % or the number of high-quality reads was<4 million.
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A total of 1,282 samples, including 554 colorectal cancer (CRC)
patients, 182 adenoma patients, and 546 healthy controls, contain-
ing nearly 5.9 Tbp of data, were retained for further analysis
(Table 1).

Diversity and overall structure of gut viral community in rela-
tion to CRC and adenoma.

To characterize the gut viral communities, we performed de
novo assembly of the fecal metagenomes (generating a total of
5.5 million contigs at a minimum length of 5,000 bp; Table S1)
and identified 208,048 viruses from the assembled contigs based
on the homolog-based and machine learning-based methods (see
Methods). A nonredundant viral catalog of 37,030 viral operational
taxonomic units (vOTUs; average length of 30,111 bp; N50 length
of 44,627 ranging from 5,000 bp to 410,947 bp; Fig. S1A) was then
generated under the species-level nucleotide similarity threshold
of 95 %[40,41]. The quality levels of these vOTU sequences were
estimated by CheckV[42], which resulted in 6.7 % complete,
21.1 % high-quality, 19.3 % medium-quality, and 52.8 % low-
quality viral genomes, and 0.2 % quality-undetermined sequences
(Fig. S1B). Taxonomically, 45.9 % of these vOTUs were assigned to
a known viral family, the majority of them consisted of Siphoviri-
dae, Myoviridae, Podoviridae, Quimbyviridae, and crAss-like
viruses (Fig. S1C). The currently available collections of human
gut virome, including the Gut Virome Database[40] (covering
13.97 % vOTUs in this study), Gut Phage Database[41] (covering
35.72 % vOTUs in this study), and Metagenomic Gut Virus catalog
[43] (covering 25.93 % vOTUs), identified 43.86 percent of 37,030
vOTUs (Fig. S1D).

Two parameters, the observed number of vOTUs and the Shan-
non index, were used to estimate the within-sample (alpha) diver-
sity of the gut viral community of 9 analyzed datasets. The
observed number of vOTUs in the virome of CRC patients was sig-
nificantly higher in two datasets (Wilcoxon rank-sum test,
p < 0.001 in Feng_2015, p = 0.006 in Thomas_b_2019), but showed
no consistent trend in other studies; while the Shannon index
showed no significant difference between two groups in all data-
sets. (Fig. S2A). Likewise, both diversity parameters were approxi-
mately equal in the viromes of adenoma patients and healthy
controls (Fig. S2B). Furthermore, we found that the viral diversity
parameters of samples were highly consistent with their bacterial
diversities (Fig. S2C-D), suggesting an extensive connection
between the virome and the bacterial microbiome.

Principal coordinates analysis (PCoA) showed a substantial dif-
ference in viral composition among the nine study populations
(permutational multivariate analysis of variance [PERMANOVA]
R2 = 11.9 %, p < 0.001; Fig. 1A). Despite that, the disease status of
subjects still had a significant impact on the overall viral composi-
tion (PERMANOVA R2 = 0.8 %, p < 0.001). We then quantified the
effect size of disease status on gut virome within each study and
discovered that, with the exception of Hannigan et al.’s study,
CRC status was significantly associated with viral composition in
almost all cohorts (Fig. 1B). However, the adenoma status had no
significant effect on viral composition in all cohorts (Fig. 1C). Fur-
thermore, because individual heterogeneity has been shown to clo-
sely correlate with viral taxon variants, we assessed the effect sizes
of host characteristics such as age, gender, and body mass index
(BMI) on gut virome based on all data. BMI showed a considerable
impact on the overall viral composition (PERMANOVA R2 = 1.1 %,
p < 0.001), whereas the effect sizes of age and gender were rela-
tively lower (R2 = 0.4 % and 0.3 %, respectively; Table S2). Moreover,
adjusting the host’s age, gender, and BMI didn’t visibly change the
size of the effect of disease status on the gut virome, suggesting
that there was little interaction between them.

Finally, we did a compositional analysis of CRC and adenoma
patients and healthy controls at the viral family level and excluded
the unclassified vOTUs at the family level, which accounted for



Table 1
Summary of sample characteristics of data sets included in this study.

Dataset Country Number of samples Data per sample (Gbp) Total data amount (Gbp) NCBI accession ID

CRC Adenoma Control

Zeller_2014[36] France 33 33 35 1.5 ± 1.2 152.8 PRJEB6070
Yu_2015[37] China 74 – 54 4.6 ± 1.0 581.9 PRJEB10878
Feng_2015[38] Austria 46 47 63 4.2 ± 0.7 654.4 PRJEB7774
Vogtmann_2016[39] USA 23 – 16 1.1 ± 0.3 43.2 PRJEB12449
Hannigan_2018[24] USA, Canada 16 8 16 0.8 ± 0.3 30.0 PRJNA389927
Thomas_a_2019[6] Italy 29 27 24 4.6 ± 2.7 365.5 PRJNA447983
Thomas_b_2019[6] Italy 32 – 28 3.9 ± 1.7 235.0 PRJNA447983
Wirbel_2019[7] Germany 43 – 60 2.5 ± 1.3 259.5 PRJEB27928
Yachida_2019[8] Japan 258 67 250 6.3 ± 1.6 3,535.3 PRJDB4176
Overall 554 182 546 4.6 ± 2.3 5,857.5

Fig. 1. Viral community variation among the nine study populations. (A) Principal coordinates analysis (PCoA) based on the Bray-Curtis distance at the vOTU level. CTR,
healthy controls; ADE, adenoma patients; CRC, colorectal carcinoma patients. Effect size (R2) and statistical significance were obtained by PERMANOVA (adonis). (B to C),
Effect size (adjusted R2) of CRC status (B) and adenoma status (C) versus healthy controls on gut viral composition in each dataset. (D) The family-level composition of gut
virome in each dataset. (E to F), Comparison of relative abundance of Siphoviridae (E) and Myoviridae (F) between healthy controls and CRC patients in each dataset. Absolute
z-score above 2 was considered as statistically significant. Z-score above 0 was considered CRC-enriched, while Z-score below 0 was considered control-enriched.
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Fig. 2. The CRC-associated viral signatures. (A) The family-level taxonomy and host assignment of CRC-associated vOTUs. The vOTUs are grouped at the family level, and their
hosts are shown at the family level. The numbers of vOTUs that had more than one predicted host are colored in blue (multiple families). (B) The interaction network between
CRC-associated viruses and bacteria. The network was constructed based on host-phage pairs and statistical co-abundance (SparCC r > 0.35 and q < 0.01) or co-occurrence
(Fisher’s exact test, odd ratio > 100 and q < 0.01) correlations between viruses and bacteria. (C) The comparison of the occurrence rate of KOs detected in no<10 CRC-
associated vOTUs between CRC-enriched and control-enriched vOTUs. Statistical test was performed using Fisher’s exact test, and adjusted using the FDR method. * q < 0.05,
** q < 0.01, *** q < 0.001.
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nearly 67 % of total sequences. For all datasets, the gut virome was
dominated by Siphoviridae, Myoviridae, Podoviridae, and Quim-
byviridae (Fig. 1D). Compared with the healthy controls, Siphoviri-
dae was significantly depleted in CRC patients in study Feng_2015
(q = 0.015) and approached significant level in study Wirbel_2019
(q = 0.087), and with meta-analysis coefficient estimate (l) = -0.14
(q = 0.26; Fig. 1E; Fig. S3A). Microviridae, a family of small ssDNA
viruses, were significantly enriched in the CRC patients compared
with healthy controls in 5 of 9 studies, with a meta-analysis
l = 0.34 (q = 0.02; Fig. 1F; Fig. S3A). Autographiviridae and Grati-
aviridae, were also considerably enriched in the CRC patients
(meta-analysis q < 0.05; Fig. S3A). In addition, the differential fam-
ilies between adenoma patients and healthy controls were few,
108
except for two clades, Podoviridae and unclassified_Caudovirales,
which showed nearly significant differences between them (meta-
analysis q < 0.10; Fig. S3B).
Identification of CRC-associated viral signatures

Given the large effect of study heterogeneity on viral shifts, we
performed a more accurate meta-analysis approach to identify
CRC-associated viral biomarkers across nine datasets. For each
study, a Wilcoxon rank-sum test was performed on the vOTUs rel-
ative abundance profile between patients and controls. In most
studies, a substantial enrichment of a set of vOTUs with very small
P values was observed as compared to the expected distribution



Fig. 3. The prediction model of CRC status based on relative abundances of 405 CRC-associated vOTUs. (A to B) Performance assessment as AUC scores of intra-dataset and
cross-dataset predictions using least absolute shrinkage and selection operator (A) and random forest models (B) in predicting CRC status. The model of intra-dataset
prediction (diagonal) was validated using five repeats of fivefold cross-validations. The model of cross-dataset prediction (off-diagonal) was built on the dataset
corresponding to each row and validated on the dataset corresponding to each column. The LOCO row refers to leave-one-cohort-out (LOCO) analysis in which models were
built on eight datasets combined and validated on the remaining one corresponding to each column. (C) Average AUC values for different numbers of CRC-associated vOTUs
using random forest models. (D) Heatmap showing the 60 most important ranking vOTUs in the random forest model. The global importance rank refers to the mean rank of
each vOTU for all studies. The feature importance was calculated by the ‘‘mean decrease accuracy” method.
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under the null hypothesis (Fig. S4A-B), indicating that some of
these vOTUs are actual CRC-associated viral signatures. Based on
this, we selected 516 vOTUs that had a significant abundance dif-
ference (p < 0.05 in the Wilcoxon rank-sum test) and a consistent
trend between patients and controls in at least 4 of 9 studies. Then,
we pooled evidence of differential abundance across datasets by
random effects meta-analysis and further identified 407 vOTUs at
a false discovery rate (FDR) < 0.01. Finally, 405 CRC-associated
vOTUs were identified after adjusting for confounding variables
including age, BMI, and gender (Fig. S4C; Table S3).

Over 85 %, 77 %, and 74.8 % of the 405 CRC-associated vOTUs
were independently significant in Yu_2015, Wirbel_2019, and
Yachida_2019 datasets, respectively (Fig. S4D), indicating that
these three studies are the primary contributors to CRC viral signa-
tures. Inversely, only<20 % of the CRC-associated vOTUs were inde-
pendently significant within datasets Hannigan_2018 and
Thomas_b_2019.

In the CRC patients, 220 of the 405 biomarkers were more abun-
dant, while 185 of them were enriched in healthy controls. The
CRC-enriched vOTUs included 76 members of Siphoviridae, 20
Myoviridae, 3 Quimbyviridae, and 1 Microviridae, and 120 unclas-
sified viruses, while the control-descending vOTUs were composed
of 64 Siphoviridae, 25 Myoviridae, and 96 unclassified viruses
(Fig. 2A; Table S3). We performed a host assignment of the vOTUs
based on their homology or CRISPR spacers to the 4,644 prokary-
otic genomes from the Unified Human Gastrointestinal Genome
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(UHGG) collections[31]. The analysis assigned 54.3 % of the CRC-
associated vOTUs to one or more prokaryotic hosts. The control-
enriched vOTUs had a large proportion (23.2 %) of Ruminococ-
caceae phages, whereas only 4.5 % of the CRC-enriched vOTUs were
those (Fisher’s exact test q < 0.001; Fig. 2A; Table S3). Inversely, the
CRC-enriched vOTUs contained significantly higher proportions of
Bacteroidaceae, Oscillospiraceae, and Peptostreptococcaceae
phages than the control-enriched viruses (Fisher’s exact test
q < 0.05). At the genus level, 37 control-enriched vOTUs were Fae-
calibacterium phages and 6 were Roseburia phages (Table S3).
These two taxa are well-known SCFA-producers and have shown
beneficial effects on multiple common disorders[44,45], though
they are not usually deficient in the gut microbiome of CRC
patients. Several other viruses that were predicted to infect species
of Porphyromonas (5 vOTUs), Fusobacterium (4 vOTUs), and Hun-
gatella (3 vOTUs) were enriched in the CRC virome, in agreement
with previous studies showing that these taxa are overgrown in
the CRC bacteriome[6,7].

To further investigate the interactions between CRC-associated
viruses and bacteria, we identified 83 CRC-associated bacterial spe-
cies from the datasets using the same approach as with virome
(meta-analysis q < 0.01; Table S4) and performed correlation anal-
ysis with 405 vOTU biomarkers. We revealed a large virus-
bacterium interaction network (Fig. 2B), consisting of a total of
1,331 interactions that included 62 host-phage pairs and 1,269 sta-
tistical co-abundance or co-occurrence correlations. Diverse



Fig. 4. Validation of 405 CRC-associated vOTUs in independent cohorts. (A and C) Volcano plots showing fold change and statistical significance in CRC-associated vOTUs
abundance between CRC patients and healthy controls recruited in this study (A) and Yang’s study (C). (B and D) Performance assessment as AUC scores for CRC-associated
vOTUs using random forest models in the cohort from this study (B) and Yang’s study (D), respectively. The model was built by combining nine published datasets and was
validated by independent cohorts. Blue curve, the model based on all CRC-associated vOTUs abundances. Red curve, the model based on 60 most important ranking vOTUs
abundances.
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groups of bacteria, including the CRC-enriched Fusobacterium spp.,
Porphyromonas spp., Peptoniphilus spp., Hungatella hathewayi,
Bacteroides fragilis, and Desulfovibrio desulfuricans and the
control-enriched Faecalibacterium prausnitzii, Roseburia spp.,
and Agathobacter spp., drove the major correlations in the network
(Table S4), suggesting that they may play keystone roles in the CRC
gut ecosystem. The network spanned 310 vOTUs, which are poten-
tial bacterium-dependent viruses that may impact host CRC status
in cooperating with the corresponding bacteria. In addition, the
remaining 85 out of 95 vOTUs might independently act on disease,
as they were enriched in CRC patients (Table S3). To characterize
the functional potential of the CRC-associated viruses, we anno-
tated the proteins of 405 vOTUs using the KEGG (Kyoto Encyclope-
dia of Genes and Genomes) database[46]. The KEGG orthology (KO)
approach was used to analyze 19.6 % (4,398/22,410) of the viral
proteins that covered a total of 1,225 KOs for analysis. Statisti-
cally,14 KOs had significantly differed in frequency between the
CRC-enriched and control-enriched vOTUs (Fisher’s exact test,
q < 0.05; Table S5). Several enzymes, including K08640 (zinc D-
Ala-D-Ala carboxypeptidase), K14060 (DNA-invertase from lamb-
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doid prophage), K03465 (thymidylate synthase), K06400 (site-
specific DNA recombinase), K04485 (DNA repair protein), and
K03700 (recombination protein), were more frequently encoded
in the control group-enriched viruses, whereas K01447 (N-
acetylmuramoyl-L-alanine amidase) was more abundant in the
CRC-enriched viruses (Fig. 2C).
Constructing the CRC predictive model using viral signatures

To detect the diagnostic ability of gut viral signatures in CRC, we
performed intra-dataset and cross-dataset prediction and valida-
tion on the overall set of 554 CRC and 546 control samples based
on their relative abundances of 405 vOTUs. Two machine learning
algorithms-least absolute shrinkage and selection operator
(LASSO) and random forest (RF) were used for modeling and test-
ing (see Methods). In intra-dataset, we observed performances
ranging in the area under the receiver operating characteristic
curve (AUC) score from 0.582 to 0.900 (average 0.779) for the
LASSO algorithm and from 0.631 to 0.870 (average 0.752) for the
RF algorithm (Fig. 3A-B). The Hannigan_2018 study obtained the
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lowest AUCs in both algorithms, which could potentially be
explained by its small sample size. In cross-dataset prediction
and validation, we obtained pairwise AUCs ranging from 0.539 to
0.926 (average 0.753) for the LASSO algorithm and from 0.539 to
0.890 (average 0.737) for the RF algorithm.

To overcome the sample size limitations on single studies, we
performed a leave-one-cohort-out (LOCO) analysis, in which mod-
els were built on eight datasets combined and validated on the left-
out dataset, for each dataset in turn. The LOCO AUCs ranged from
0.594 to 0.859 (average 0.779) and from 0.644 to 0.918 (average
0.810) for nine studies using the LASSO and RF models, respectively
(Fig. 3A-B). In addition, adding the host properties (i.e., age, BMI,
and gender) didn’t improve the predicting performance for both
algorithms (Fig. S5). Taken together, our intra-dataset, cross-
dataset, and combined-dataset analyses suggest that the gut viral
signatures are efficient for distinguishing CRC patients from
healthy controls.

Finally, to generate a minimal set of vOTU signatures, we calcu-
lated the global importance ranks of 405 vOTUs from the RF mod-
els of all studies. Using the RF algorithm, CRC was accurately
identified with an average cross-dataset AUC 0.798 and LOCO
AUC 0.830 when using a subset of 60 top importance vOTUs
(Fig. 3C; Fig. S6). Notably, 56 of the top importance vOTUs were
CRC-enriched biomarkers, which included 4 Peptostreptococcus,
3 Fusobacterium, and 3 Porphyromonas phages (Fig. 3D; Table S3).

Validation of CRC viral markers in independent cohorts

To validate the efficiency of CRC viral signatures in the indepen-
dent cohort, we recruited 27 CRC patients having matched age,
BMI, and gender and healthy controls and performed whole-
metagenome shotgun sequencing of their fecal samples
(Table S6). In this new cohort, 207 out of the 405 CRC-associated
vOTUs, including 46 CRC-enriched and 161 control-enriched
vOTUs, were significantly different in relative abundance between
patients and controls, with a consistent trend with the meta-
analysis of nine studies (p < 0.05 in Wilcoxon rank-sum test;
Fig. 4A; Table S3). Compared with the control-enriched vOTUs,
the lower rate of CRC-enriched vOTUs might be contributed by
their lower occurrence rate in fecal samples of the new cohort as
well as in samples of the above nine studies (Fig. S7). Using the
RF algorithm, we trained two models based on the abundances of
405 vOTUs and 60 top importance vOTUs in the original nine
cohorts. These models obtained the AUC of 0.906 and 0.877,
respectively, in distinguishing between CRC and controls in the
independent new cohort (Fig. 4B). We also validated the efficiency
of CRC viral signatures in the recently published cohort of 100
onset CRC patients and 100 healthy controls (Yang_2021)[13].
The models obtained an acceptable diagnostic efficacy in distin-
guishing onset CRC patients and controls (Fig. 4D). These findings
suggest high repeatability and predictive power of CRC viral mark-
ers in independent cohorts.

Gut viral signatures in adenoma

Lastly, we profiled the gut viral profiles of adenoma patients
(n = 182) from five studies and compared them with those of cor-
responding healthy controls (n = 388; Table 1) to explore adenoma
viral signatures. A meta-analysis based on the aforementioned
approach identified 88 significant adenoma-associated vOTUs
(meta-analysis q < 0.05; Table S7). In adenoma patients, 47 of these
vOTUs were more abundant, including 20 Siphoviridae, 3 Myoviri-
dae, a Quimbyviridae, and a crAss-like viruses; while 41 vOTUs
were enriched in controls, including 20 Siphoviridae, 3 Myoviridae,
and 1 Flandersviridae viruses. Host assignment showed that the
adenoma-enriched vOTUs included 4 Enterobacteriaceae, 3 Bac-
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teroidaceae, and 3 Oscillospiraceae phages, whereas 3 of control-
enriched vOTUs were Bifidobacteriaceae phages (Table S7). Addi-
tionally, adenoma and CRC shared 4 differential viral markers,
including 2 unclassified adenoma/CRC-enriched and 2 control-
enriched vOTUs that belonged to Siphoviridae.

We performed machine learning for adenoma prediction and
observed the intra-dataset, cross-dataset, and LOCO average AUCs
of 0.700, 0.686, and 0.772, respectively. In five adenoma studies
using the LASSO algorithm (Fig. 5a), average AUCs of 0.690,
0.698, and 0.760 using the RF algorithm (Fig. 5b), suggesting the
validity of adenoma-specific viral markers.
Discussion

Virus genomic database

Although a series of studies indicated intestinal dysbacteriosis
in CRC patients, most of them focused on the characterization of
the gut bacteriome [6–8,13,14], and only a few studies explored
a limited number of known viruses [24,25]. In this study, we intro-
duced a more comprehensive database of viral genomes that con-
tained 37,030 non-redundant viral genomes derived from the de
novo assembly of 1,282 fecal metagenomes from 9 published
cohorts. Over half of the genomes in this database were undetected
by the current available viral databases, which supported that our
database was necessary to gain insight into the alteration of gut
viral communities in CRC patients. On the basis of this database,
we found that the gut virome diversities of CRC patients were com-
parable to those of healthy controls in most of the cohorts collected
in this study, consistent with the findings of previous studies
[24,26]. The viral diversity parameters of samples were highly con-
sistent with their bacterial diversities, which might be explained
by the fact that most of the viruses in this study resided within
bacterial cells.
Identification of CRC-associated markers and their potential
mechanisms

We identified 405 reproducible vOTUs associated with CRC
using meta-analysis based on 9 independent cohorts. The majority
of these vOTUs are classified as viral dark matter because of the
absence of referral genomes. We found that most of these vOTUs
(310/405) were closely connected with bacterial biomarkers for
CRC, and they aggregated into a multi-centric virus-bacteria inter-
action network (Fig. 2B). The bacterial biomarkers were central
members within the network, which suggested that these viruses
might indirectly influence CRC development by altering bacterial
biomarkers. Among this network, the central members of two hubs
were mainly the butyrate-producing bacteria from the genera Fae-
calibacterium, Roseburia, and Agathobacter. Some studies implied
that butyrate producers, Faecalibacterium prausnitzii in particular,
were potential probiotics with anti-tumorigenic properties and
might contribute to preventing CRC development [13,47]. Our
results showed that a group of viruses, reduced in CRC patients,
were mainly connected with butyrate-producing bacteria, which
suggested that these viruses may contribute to tumorigenesis by
modulating the butyrate-producing bacteria in the human gut.
Another hub in this network involved a variety of common oral
bacteria from the genera Anaerococcus, Fusobacterium, Pep-
tostreptococcus, Parvimonas, and Solobacterium. Many studies
have reported that these bacteria are significantly enriched in fecal
samples from CRC patients [6,8]. In particular, Fusobacterium
nucleatum contains a highly conserved virulence factor FadA that
binds to the extracellular domain of epithelial cadherin to promote
cancer cell proliferation through the Wnt signaling pathway [48].



Fig. 5. The adenoma-associated viral signatures. (A) The family-level taxonomy and host assignment of adenoma-associated vOTUs. The vOTUs were grouped at the family
level, and their hosts are shown at the family level. The number of vOTUs that has more than one predicted hosts are colored in blue (multiple families). (B to C) Performance
assessment as AUC scores of intra-dataset and cross-dataset predictions using LASSO (B) and random forest (C) model in predicting adenoma status. The model of intra-cohort
prediction (diagonal) was validated using five repeats of 5-fold cross-validations. The model of cross-cohort prediction (off-diagonal) was built on the dataset corresponding
to each row and validated on the dataset corresponding to each column. The LOCO row refers to leave-one-cohort-out (LOCO) analysis in which models were built on eight
datasets combined and validated on the remaining one corresponding to each column.
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Translocation of oral microbes to the gut caused an increased
abundance of them in cancer patients. In this study, we observed
that one N-acetylmuramoyl-L-alanine amidase (K01447) was more
abundant in the CRC-enriched viruses than in the CON-enriched
viruses. This enzyme can digest the peptidoglycan of the bacterial
cell wall and disrupt the biofilms [49,50]. CRC-enriched viruses,
coexisting with bacterial biomarkers commonly present in the oral
cavity, might affect CRC development by disrupting bacterial bio-
films to promote dispersal of these bacteria. Overall, our results
partly explained and put a spotlight on how CRC-associated viruses
can influence cancer progression. However, our findings are data-
driven, and further studies will be necessary to uncover the linkage
between viruses, bacteria, and carcinogenesis by in vitro and
in vivo experimental validation.
Accuracy and repeatability of predictive models based on viral
signatures

Furthermore, gut bacteria-based CRC prediction models have
demonstrated high diagnostic potential; however, the models are
not available in all cohorts [6,7], implying that the identification
of new potential predictors was required. Although gut viruses
have not been regarded as effective CRC predictors for a long time
[24,25], a recent study reported the potential of gut viruses for the
classifiability of controls versus patients with CRC [6]. In this study,
we performed viral biomarker-based random forest models with
LOCO validation and were able to distinguish CRC patients from
healthy controls with an average performance of 0.81 AUC which
was comparable to the performance of models based on bacterial
biomarkers (Fig. 3B). Importantly, we also validated the efficiency
of CRC viral signatures in two independent cohorts. For the newly-
recruited cohort in this study, CRC viral signatures displayed excel-
lent potential for classifiability of controls versus patients (Fig. 4B).
For other independent cohorts, the models only obtained accept-
able diagnostic efficacy in distinguishing onset CRC patients and
controls (Fig. 4D). Alteration of certain CRC viral signatures is
induced by therapeutic approaches. Among CRC viral signatures,
a phage (v4488) infecting Bacteroides xylanisolvens was ranked
as the top contributor to CRC prediction models (Fig. 3D). But Bac-
teroides xylanisolvens has not been reported as the CRC biomarker
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so far, which suggests that certain gut phages play an irreplaceable
role in CRC prediction. In addition, several top-ranking important
biomarkers infected the CRC-associated species of the genera,
including Peptostreptococcus, Fusobacterium, and Porphyromonas
(Fig. 3D), suggesting that these viruses might be the CRC predictors
with similar performances as their hosts. Taken together, our find-
ings showed that viral biomarkers would be the new efficient pre-
dictors for CRC diagnosis.
Viral signatures for adenomas are also predictive

Moreover, colorectal adenomas are regarded as precursor
lesions of CRC. The detection of colorectal adenomas could reduce
the risk of CRC and improve survival rates. Therefore, we also iden-
tified a series of adenomas-associated viruses and assessed the
performance of prediction models for adenoma status. Both LASSO
and RF algorithms with LOCO approaches demonstrated that ade-
nomas patients and healthy controls could be distinguished with
acceptable accuracy (average AUC > 0.75). Similar results were
observed in the bacteria-based prediction models for adenoma sta-
tus [14]. These findings indicate the dysbiosis of intestinal viral
communities in patients with colorectal adenomas, highlighting
the potential role of viral biomarkers in the diagnosis of colorectal
adenomas.
Conclusions

We comprehensively observed shifts in intestinal viral compo-
sition in CRC patients and also described interactions between viral
biomarkers and bacteria. Although the precise mechanisms of how
these viruses cause tumorigenesis are still unclear, our works pro-
vide several potential explanations. Furthermore, the present find-
ings indicate that gut viromes could be used to improve
microbiome-based CRC diagnostics. Our analysis strongly suggests
that more research is needed to determine the precise role of the
omitted gut virome in CRC development.

Phages are recognized as cancer diagnostic and therapeutic
tools [51,52] and have a strong potential in the treatment of CRC.
Several gut bacteria, especially the members of Fusobacterium,
were associated with CRC tumorigenesis. A series of gut viruses
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in this study were closely connected with CRC-associated bacteria
and may be potential targets to eliminate harmful bacteria via
phage therapy [53]. In addition, a study has tried to use fecal vir-
ome transplantation (FVT) as a therapeutic strategy for type 2 dia-
betes and obesity [54]. Identification of CRC-associated viral
markers serves as a guide for future studies involving FVT for the
treatment of CRC. On the other hand, prediction models exhibited
high repeatability and predictive power of gut viral markers in col-
orectal cancer and colorectal adenoma. Compared with colono-
scopy, fecal metagenome-based model predictions are more
patient-friendly and easier to accept, which improves the diagnosis
of colorectal cancer in the absence of clinical symptoms.
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