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� The possible mechanisms, including
the new achievements in
microgravity, muscle-bone crosstalk
and the sympathetic nervous system,
of acute bone loss after fracture were
reviewed.

� Several key molecules and current
treatments as well as the potential
targets and promising therapies were
also briefly reviewed and compared.

� The challenges we faced and the
future directions are also summarized
and elaborated.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 28 November 2021
Revised 29 July 2022
Accepted 31 August 2022
Available online 15 September 2022

Keywords:
Bone loss
Sympathetic nervous system
YAP/TAZ
Piezo 1
a b s t r a c t

Background: Acute bone loss after fracture is associated with various effects on the complete recovery
process and a risk of secondary fractures among patients. Studies have reported similarities in patho-
physiological mechanisms involved in acute bone loss after fractures and osteoporosis. However, given
the silence nature of bone loss and bone metabolism complexities, the actual underlying pathophysiolog-
ical mechanisms have yet to be fully elucidated.
Aim of review: To elaborate the latest findings in basic research with a focus on acute bone loss after frac-
ture. To briefly highlight potential therapeutic targets and current representative drugs. To arouse
researchers’ attention and discussion on acute bone loss after fracture.
Key scientific concepts of review: Bone loss after fracture is associated with immobilization, mechanical
unloading, blood supply damage, sympathetic nerve regulation, and crosstalk between musculoskeletals
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Immobilization
Muscle-bone crosstalk
among other factors. Current treatment strategies rely on regulation of osteoblasts and osteoclasts, there-
fore, there is a need to elucidate on the underlying mechanisms of acute bone loss after fractures to
inform the development of efficacious and safe drugs. In addition, attention should be paid towards
ensuring long-term skeletal health.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Acute bone loss usually occurs between 1 and 2 years after frac-
tures, especially the first 6 to 8 weeks after acute immobilization.
At this stage, the patient’s bone mass sharply drops to the lowest
level [1,2]. Acute bone loss after fracture is a common occurrence,
especially in osteoporotic patients [3], and this clinical challenge is
closed related to osteoporosis with regards to pathogenesis and
clinical treatment. Osteoporosis is an age-related metabolic disease
[4] that is associated with loss of bone mass, destruction of bone
microstructure and increased bone fragility [5]. Therefore, studies
should aim at elucidating on the pathomechanisms of osteoporosis
and bone loss after fractures.
64
The most severe consequences of osteoporosis are fractures [6]
while the most severe outcomes of bone loss after fractures are
secondary fractures [7–10]. Multiple fractures in elderly osteo-
porotic patients are a clinical challenge. Subsequent fractures in
osteoporotic patients mostly occur in different parts [11,12] and
patients with fractures are also predisposed to varying degrees of
osteoporosis [13–15]. Bone loss after fractures is an important rea-
son for occurrence of re-fractures, however, the exact pathomech-
anisms have yet to be fully established. After fracture, bone
remodeling increases in both skeletal and systemic regions adja-
cent to the fracture site. The increase in bone turnover near the
fracture is referred to as the regional acceleratory phenomenon
(RAP), while the increase in bone turnover in other regions is

http://creativecommons.org/licenses/by-nc-nd/4.0/
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referred to as the systemic acceleratory phenomenon (SAP). Both
RAP and SAP enhance bone formation by osteoblasts and bone
resorption by osteoclasts, however, the rate of bone resorption
usually exceeds the rate of bone formation, leading to bone loss
in the fractured area and systemic regions. RAP and SAP have dif-
ferent performances in different regions and different fractures
have different characteristics, even if it is the same form of bone
loss phenomenon. For instance, bone loss of the cortex, subcortex,
and trabecular compartment exhibit different features [16]. Accel-
erated bone remodeling after fracture supports the hypothesis that
fractures cause long-term systemic osteopenia, however, etiologies
of bone loss after fractures are complex. Generally, immediate
immobilization after injury, reduction of activity, excitement of
pain-related sympathetic nerves, inflammation, destruction of
blood supply and sarcopenia are potential causes of bone loss
[17]. These factors are shown in Fig. 1.

Studies on pathogenesis are useful for guiding the development
of approaches for early prevention, precise identification and effec-
tive treatment of acute bone loss after fracture. In this review, we
comprehensively discuss the pathophysiological mechanisms of
acute bone loss after fractures to provide new ideas for clinical
treatment and further research.

The article will mainly review the following:
1). Elucidating on the physiological and pathological mecha-

nisms underlying acute bone loss after fractures.
2). Summarizing the differences in bone loss after fractures,

osteoporosis and bone remodeling.
3). Highlighting the drugs and systemic treatment strategies

used in management of bone fractures.
Fig. 1. Immediate immobilization after injury, reduction of activity, excitement of pain-r
causes of bone loss in an injured area. Reduced body exercise caused by bed rest or self-
represent the main reasons for loss of bone mass in other parts of the body.

65
Pathophysiological mechanisms underlying acute bone loss
after fractures

Immediate immobilization

It is recommended that patients should stop working and rest
for a period of time. Sometimes, fractures in central and important
parts require absolute bed rest, otherwise the healing and func-
tional recovery times of the fractures may be prolonged, especially
if these fractures occur in the spine, limbs or other load-bearing
parts [18,19]. Necessary limb immobilization is beneficial,
although unscientific immobilization can lead to disuse muscle
atrophy and acute loss of bone mass.
Cast or brace immobilization
Plaster fixation is one of the most common and primitive exter-

nal fixation methods [20]. Technological advances in orthopaedics
and industry have resulted in development of new technologies
and materials, including polymer-made plaster and 3D-printed
personality customized braces to replace plasters. Plaster fixation
has several advantages, key among them being the use of a strong
structure to support, fix, and maintain the correct bone shape as
well as mechanical curve, thereby stabilizing the injured environ-
ment, and enhancing fracture healing [21].

Advances in medical technology coupled with improvement of
perioperative management have enhanced the attitudes of patients
and doctors towards surgery. Although the time taken for plaster
fixation has significantly shortened, it is undeniable that plaster
still have a place today for its low costs and wide applicability.
elated sympathetic nerves, and destruction of blood supply are hypothesized as the
cultivation, and the related changes in the crosstalk of the musculoskeletal system,
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Nevertheless, immediate immobilization of limbs may be a poten-
tial cause for acute bone loss after fractures.

The key molecular of unloading-induce bone loss
Wolff’s law states that bone growth is affected by mechanical

stimulation to optimize their structure [22–24]. The growth direc-
tion of bones, especially trabecular ones, has strong adaptability to
the mechanical environment with the smallest mass and the lar-
gest mechanical efficiency. Generally, mechanical stress enhances
bone strength by affecting collagen arrangement. Moreover, it
upregulates the expressions of bone-derived cytokines, thereby
improving the activity of osteoblasts and promoting cell prolifera-
tion as well as differentiation. Under normal circumstances, the
human body is either in an upright state or in constant motion.
Under gravity, human bones and muscles share the body’s weight.
The musculoskeletal system bears most of the physiological grav-
ity load, which continuously stimulates the body to strengthen
the bones and muscles while promoting osteoblast mobilization
and osteoclast activation. This complex and mechanically medi-
ated bone turnover is essential for maintaining healthy bone meta-
bolism and density [25,26]. When a patient suffers from acute
immobilization or plaster fixation due to fractures, trauma, hip
replacement, knee replacement, spinal cord injury, and conserva-
tive treatment of intervertebral disc disease or orthopaedic trac-
tion, weightlessness (also known as microgravity or unloading)
will occur, and this effect is magnified with increasing immobiliza-
tion time [27].

Apart from the primary osteoporosis that is caused by aging and
decreased gonadal functions, the microgravity environment has
been implicated in occurrence of disuse and secondary osteoporo-
sis. Moreover, the microgravity environment is associated with a
high rate of bone loss, relative to that on the ground. It takes
6 months to 2 years to recover a patient’s bone mass after frac-
tures, which is a long period [28–30].

Mechanoreceptors
Osteocytes comprise more than 90 % of all bone tissue cells in

adult bones. Almost all bone matrix surfaces are covered by osteo-
cytic bodies and processes. The complex pore system, comprising
bone lacunas and tubules, is extensively distributed in the cortical
bone. Interstitial fluid in bone lacuna and tubules provides nour-
ishment, facilitates excretion of metabolites as well as other mate-
rial exchange functions and plays an important role in force
perception [31]. Osteocytes are the most important mechanical
receptors. Application of an external force on bone cortex gener-
ates a slight deformation on bone matrix, causing pressure differ-
ences in tissue fluids, which triggers its flow into bone tubules
[32]. These changes in fluid mechanics are detected by the sensor
in osteocytes, which enhances its effects. This form of oscillating
fluid flow (OFF) of tissue fluids plays a role in conversion of
mechanical signals into biological signals and their amplification
[33].

Based on the above theory, the dynamic process of solute con-
vection and fluid flow in the lacunar-canalicular system (LCS) of
the bone can be understood [34] by using a new experimental
method. This method is based on fluorescence recovery after pho-
tobleaching (FRAP) as well as simultaneous mechanical loading
and imaging, and successful quantification transport of a fluores-
cent tracer in bone LCS. Under the influence of microgravity, flow
direction of the tissue fluid in bone tubules changes from the orig-
inal longitudinal to lateral or disordered direction, which is attrib-
uted to the inability to be affected by gravity [35]. At this point,
mechanical signals cannot be effectively converted into biochemi-
cal ones. Moreover, under microgravity conditions, mass transfer
cannot reach the deep voids under microgravity conditions, a phe-
nomenon that results in apoptosis of bone cells and bone loss.
66
Notably, under microgravity, there is drastic drop in mechanical
signals, and this cannot be compared with the situation under nor-
mal gravity.

During the transformation of fluid flow into cellular responses
in bone cells, the primary cilia of bone cells gets connected and
are regulated by downstream cell responses through a Ca2+ entry
and polycystin-2 independent signaling mechanism [36]. This
allows mechanical signals to alter cell activities via tissue-
specific pathways, thereby regulating homeostasis across different
tissues. Upon exposures to appropriate mechanical stimulation
conditions, osteogenic-related genes are upregulated in human
mesenchymal stem cells (hMSC), and this process requires primary
cilia [26,37]. Then, RNA-based inhibition of primary cilia downreg-
ulates bone formation-associated genes in cells, even in the pres-
ence of mechanical stimulation [27,37,38]. Under microgravity
conditions, primary cilia on surfaces of osteoblasts gradually atro-
phy, become shorter and eventually disappear, whereas cell micro-
tubules are depolymerized, and the cytoskeleton undergoes
significant changes [38]. Additional evidences have further shown
that primary cilia are closely associated with the cytoskeleton
[39,40]. These findings imply that primary cilia are potential inter-
stitial sensors of gravity (under normal or microgravity conditions)
and their disappearance results in microgravity-induced osteo-
inhibition.

Hippo-YAP/TAZ
The Hippo signaling pathway regulates cell proliferation, apop-

tosis, and controls normal volume of tissues and organs as well as
homeostasis of the internal environment [41]. Moreover, it is asso-
ciated with other processes, including embryonic development,
growth regulation, tumorigenesis as well as metastasis [42] and
also plays a regulatory role in bone transduction related to
mechanical load [43,44]. The Yes-associated protein (YAP) and its
analogue, transcriptional co-activator with PDZ binding motif
(TAZ) in its kinase chain act as response molecules during mechan-
ical signaling [45,46]. They are subjected to extracellular mechan-
ical stimulation and cytoskeleton activation under the influence of
tension, where they are transferred from the cytoplasm to the
nucleus to co-activate RUNX2 through transcription to regulate
osteogenic gene expressions [47]. In addition, YAP/TAZ regulates
the differentiation of bone marrow-derived mesenchymal stem
cells (BMSCs) [48]. Downregulated YAP/TAZ activities were found
to promote adipogenesis while their upregulation resulted in
induction of MSCs to enter osteogenesis [49,50]. Furthermore,
YAP/TAZ activity decreases under microgravity conditions, and this
is accompanied by suppressed osteogenic differentiation of MSCs
[38,47].

During the translation of mechanical signals into biochemical
ones, some cytokines are involved in growth regulation and initia-
tion of cascade reactions. This process leads to activation of nuclear
transcription factors that control gene transcription of downstream
molecules. The complex crosstalk between mechanical transduc-
tion and growth factors should be investigated further. Bone mor-
phogenetic protein 2 (BMP-2), which belongs to the transforming
growth factor b (TGF-b) superfamily, is involved in promoting
osteogenesis [51,52]. The efficiency of BMP-2-induced osteogenic
differentiation is highly dependent on cell shape, cytoskeletal ten-
sion, cell-ligand interactions and matrix stiffness [53,54]. Notably,
BMP-2 activates and induces the phosphorylation of the Smad fam-
ily signal transduction protein (Smad1/5/8), thereby forming a het-
eromeric complex [55,56]. These complexes are transferred to the
nucleus where they bind target genes. However, initiation of BMP-
2-induced Smad signaling is not associated with cytoskeletal
tension.

In contrast, YAP/TAZ is regulated by cytoskeletal tension [57].
YAP/TAZ is mainly localized in the nucleus of cells cultured on a



X.-Q. Zheng, J. Huang, Jia-liang Lin et al. Journal of Advanced Research 49 (2023) 63–80
stiff surface and in the cytoplasm of those cultured on a soft surface
[46,58]. This indicates that YAP/TAZ is an important molecular sen-
sor for cytoskeletal tension. Moreover, this shuttle to and from the
nucleus does not depend on the BMP-2 signaling pathway. Com-
plete osteogenic differentiation requires cytoskeletal tension-
induced accumulation of YAP/TAZ in the nucleus, while transloca-
tion of YAP/TAZ in the cell enhances the activation of BMP-2
induced osteogenic genes. These two signaling pathways synergis-
tically interact to enhance the expressions of osteogenic-related
genes.

Microgravity interferes with f-actin and inhibits nuclear
translocation of TAZ, thereby suppressing the osteogenic differen-
tiation ability of BMSCs [59]. However, the addition of lysophos-
phatidic acid (LPA) restores the positioning of TAZ in the nucleus
and promotes the secretion of osteogenic indicators. RNA-based
inhibition of TAZ expression does not restore osteogenic differenti-
ation of bone marrowmesenchymal stem cells under microgravity,
even after LPA addition. This indicates that LPA can restore and
retain the osteogenic differentiation ability of bone marrow mes-
enchymal stem cells in microgravity via the f-actin-TAZ signaling
pathway. LPA has been shown to effectively reverse
microgravity-induced decrease in osteogenic differentiation of
MSCs via the Rock-TAZ signaling pathway [48]. Moreover, daily
applications of low-intensity vibrations (LIV) can rescue the
microgravity-induced decrease in nuclear YAP levels [60]. In addi-
tion, LPA treatment has also been shown to increase nuclear YAP
levels, while daily applications of LIV alleviated microgravity-
induced LPA-induced YAP nuclear entry.

Piezo1
Piezo1/2 protein is a novel type of mechanically sensitive ion

channel protein that is closely associated with mechanical stress
stimulation signals [61,62]. Piezo1 is widely expressed in various
tissues and regulates the development of vital organs and impor-
tant physiological processes. Piezo2 is highly expressed in neurons
and plays an important role in regulating the mechanical transduc-
tion of central nervous system neurons and dorsal root ganglion
neurons [63,64]. This ion channel can be directly activated by
mechanical stress stimulation. The channel can also non-
selectively pass through divalent ions, namely Ca2+, Mg2+, Mn2+

and Ba2+, as well as monovalent alkaline ions, including K+, Na+,
Cs+ and Li+, among others, thereby generating local transmem-
brane ion flux currents [65,66]. Studies on orthopaedic diseases
revealed that the Piezo1 protein is not only expressed in chondro-
cytes, but is also associated with osteoarthritis and bone loss [67].
Conditional absence of piezo1 in osteoblasts and osteocytes was
associated with reduced cortical thickness and cancellous bone
volume. Conversely, applications of piezo1 agonists significantly
increased bone mass. In addition, piezo1 is associated with sub-
chondral osteogenesis [68]. For instance, piezo1 knockout mice
were found to exhibit skeletal hypoplasia and trabecular insuffi-
ciency, with adults manifesting symptoms such as osteoporosis
and multiple fractures.

Microgravity changes have been implicated in induction of
dynamic changes of calcium signal transduction in cells. The intra-
cellular calcium signaling pathway, a secondary messenger that
activates various cellular functions, is one of the earliest events
in mechanical transduction. Piezo1 transduces mechanical signals
induced by low-intensity pulsed ultrasounds into intracellular cal-
cium ions, while an influx of Ca2+ acts as a second messenger to
activate ERK1/2 phosphorylation and perinuclear f-actin filament
polymerization, thereby regulating MC3T3-E1 cell proliferations
[69]. Moreover, the Ca2+ signal plays an important role in regula-
tion of RUNX2 protein stability [56]. RUNX2 plays an essential role
in differentiation of mesenchymal cells into osteoblasts as well as
in blocking osteoblast differentiation into adipocytes and chondro-
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cytes. RUNX2 stability is regulated by precision and complexity, of
which the TMCO1–CaMKII–HDAC4 axis is regulated in a local Ca2+

signal-dependent manner [70]. Bone samples from osteoporotic
patients and mice exhibited significantly low levels of TMCO1, rel-
ative to healthy individuals. In addition, a lack of TMCO1 has been
associated with impaired endoplasmic reticulum Ca2+ homeostasis,
resulting in endoplasmic reticulum calcium overload, thereby
affecting bone formation.

Piezo1 regulates the expressions of Wnt1 and other osteogenic-
related genes in bone cells via YAP1 and TAZ [69]. Piezo1 activation
can mimic the effects of mechanical stimulation in bone cells to
increase bone mass. In response to mechanical stimulation, Piezo1
in osteoblasts can also regulate the expressions of different pro-
teins in the bone matrix, including several collagens, by regulating
the YAP signaling pathway. In turn, these collagen subtypes regu-
late osteoclast differentiation and coordinate the osteoblast-
osteoclast crosstalk in the bones for controlled bone homeostasis.
Once a limb breaks, the level of BMSCs that could be used for both
muscle and bone regeneration decreases, while their activities are
further suppressed [71,72]. These outcomes limit the sources of
osteoblasts, resulting in reduced development of new bones and
exacerbating the extent of bone loss.

Considering that the current in vivo animal experiment designs
involve unilateral or bilateral long bone fractures, the fractures
faced in clinical work are not only simple transverse fractures,
but more complex comminuted fractures or multiple fractures.
The fractures involve injuries that require the patient to stay in
bed for a longer time or to be completely non-weight-bearing.
Therefore, the current experimental results are not sufficient to
deduce acute bone loss after fractures. More radical views seem
to be biased towards the effects of microgravity.

Muscle injury

The musculoskeletal system is an important part of the locomo-
tion system and a crucial factor in many exercise-related physio-
logical and pathological processes, including assisting in
breathing, protecting important internal organs and endocrine reg-
ulation [73,74]. Apart from being involved in the body’s normal
daily physiological activities, as a whole system, bones and mus-
cles have a sophisticated and complex crosstalk [25,75]. This not
only refers to mechanical conduction [76], but also through effec-
tive growth factors. Interactions between bones and muscles regu-
late various processes, including fluid circulation, cellular and
molecular processes, as well as mechanical transmission [25,75].
This crosstalk is both bilateral and direct, that is, from muscles to
bones and vice versa. However, due to the involvement of different
physiological activities, participation of various cells and small bio-
logically active molecules as well as soft tissues, ligaments, nerves,
blood vessels and other tissues outside the musculoskeletal sys-
tem, this crosstalk is more complicated and sophisticated.

Biomechanical factors
Under physiological conditions, the skeletal muscle is always in

a state of dynamic equilibrium, thus, maintenance of its homeosta-
sis requires synergistic actions involving many aspects, key among
them being mechanical homeostasis. The bundle structure formed
by fast-contracting muscle fibers (type II fibers), slow muscle fibers
(type I fibers), collagen and motor neurons, enhances its sensitivity
to mechanical loads, including fluid shear force, pulling force, and
gravity among others. In addition, normal gravity physical exer-
cises can effectively increase the mechanical load of skeletal mus-
cles, thereby strengthening them. This phenomenon is specifically
manifested in improved quality of skeletal muscles and construc-
tion of its fiber bundles [77]. In contrast, a decreased mechanical
load causes a reduction in mass and volume of muscle fibers. In
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addition, muscle atrophy occurs before bone changes [78,79], lead-
ing to a tilt in bone balance towards enhanced bone resorption.
This occurrence is evident when analyzing bone health of astro-
naut groups and long-term bedridden patients.

Long-term bed rest or lack of activity is associated with the loss
of body proteins, which is mainly attributed to reduced synthesis
in skeletal muscles and the whole body [80,81]. The muscle is
attached to the muscle insert in the bone. Mechanical stimuli,
including compression, stretching, bending, torsion and shear gen-
erated by muscle movements directly transmit the mechanical
load onto the bones, thereby affecting bone tissue microstructure
and mass. When acting on the strain generated by the bone, these
forces have important stimulating effects on osteoblasts, thereby
promoting the continuous formation of osteoblasts in situ to
increase bone mass. When skeletal muscle contraction forces
decreases, the mechanical force or the load exerted on the bones
also decreases, and once this stimulation is weakened, it can
reduce bone formation, accelerate bone resorption and lead to
bone loss or osteoporosis. The muscle contraction strength is
affected by many factors, including myogenic, neurogenic, and hor-
monal effects. An increase in age or occurrence of disuse muscle
atrophy due to limb fixation markedly reduces the diameter and
number of muscle fibers. These muscle fibers are replaced by fat
and collagen, a phenomenon that results in reduced muscle elastic-
ity and volume [82,83]. In addition, a decrease in activities of
enzymes that regulate muscle contraction, coupled with a reduc-
tion in the number of motor neurons, eventually reduces muscle
strength and activity speed [84,85]. These factors are shown in
Fig. 2.
Biochemical factors
Various bone-derived factors and myogenic factors are involved

in the crosstalk between muscles and the bone, including
interleukin-6 (IL-6), irisin, pro-prostaglandin E2 (PGE2), insulin-
like growth factor-1 (IGF-1), mechanical growth factors (MGF),
vascular endothelial growth factors (VEGF), hepatocyte growth fac-
tors (HGF), and transformation growth factors (TGF-b). There are
many comparable effects associated with these cytokines, as well
as their own specific effects, which are mainly reflected in muscle
cell proliferation and differentiation, muscle cell repair, bone bal-
Fig. 2. YAP/TAZ is an important molecular sensor for cytoskeletal tension. Mechanorecept
genes through YAP1 and TAZ. And the translocation of YAP/TAZ in the cell enhance
synergistically interact to enhance expression of osteogenic-related genes. Besides, BM
transduction protein Smad1/5/8, thereby forming a heteromeric complex, which will be
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ance, and fracture repairs. The functions of specific cytokines are
summarized in Table 1.

Blood supply

The bone is a highly vascularized tissue [86–88]. Blood circula-
tion and regeneration of blood vessels in the bone are essential for
bone development, growth, remodeling, and repair. Blood circula-
tion provides a steady stream of oxygen and nutrients to the bones
as well as calcium and phosphate for bone mineralization [89].
Moreover, blood is the medium in paracrine circulation between
bones and muscles. The damage to the perforator vessel is inevita-
ble during the injury. However, due to network distribution of cap-
illaries, which has a sufficient compensatory capacity, the impact
of vascular damage on fracture healing is limited. Besides, when
severe open injury occurs, especially with large blood vessel dam-
age or large segmental bone defects [90], bone regeneration will be
affected [91,92]. The negative consequence of poor local blood cir-
culation is that it cannot meet the material needs for repair and
healing of injured parts. Therefore, non-union of fractures or tissue
necrosis may occur in severe cases.

In summary, blood vessel formation and bone formation affect
each other, be it in maintenance of bone homeostasis or in the pro-
cess of fracture healing. Angiogenesis indicates the possibility of
bone regeneration, and blood vessel formation disorders lead to
bone regeneration disorders.

VEGF is the most important growth factor in promotion of blood
vessel growth [93]. It is also a bone metabolism regulator that is
mainly involved in bone formation by promoting endothelial cell
proliferation and blood vessel formation. In the skeletal microenvi-
ronment, VEGF is regulated by ATF4 and it affects bone angiogen-
esis via endothelial sprouting from embryonic metatarsals [94].
When the bone is unloaded, VEGF secretion in osteoblasts signifi-
cantly increases to promote angiogenesis and resist the negative
effects of bone unloading [95]. The crosstalk between osteoblasts
and endothelial cells is an important pathophysiological mecha-
nism during osteoporosis. However, excess VEGF enhances the
recruitment of TRAP and cathepsin K-positive osteoclasts [96],
which may involve VEGF-C, a lymphatic growth factor, as an auto-
crine factor that regulates osteoclast activities [97,98]. A lack of
VEGF reduces bone mass [99,100]. Osteoblast-secreted VEGF levels
ion protein piezo1 may control the expression of Wnt1 and other osteogenic-related
s activation of BMP-2 induced osteogenic genes. These two signaling pathways
P-2 was found to activate and induce phosphorylation of the Smad family signal
transferred to the nucleus where they bind to target genes.



Table 1
The role of myogenic cytokines in bone-muscle crosstalk.

Growth
factors

Introduction Origin Function Ref.

BDNF A protein with neurotrophic effects, and it has the highest
content in the central nervous system.

muscle 1. It plays an important role in the growth and
development, survival, differentiation, and differentiation
of neurons.
2. As a paracrine factor, BDNF could regulate the
differentiation of satellite cells into slow vs fast myofibers.
3. Affect the synaptic connections between neurons and
muscles.

[209]

CXCL-1 A small molecular weight cytokine that belongs to the CXC
chemokine family. CXCL-1 is expressed by macrophages,
neutrophils and epithelial cells, and has neutrophil
chemotactic activity.

muscle CXCL-1 overexpression increases muscular fatty acid
oxidation with concomitant attenuation of diet-induced fat
accumulation in the adipose tissue

[210,211]

FAM5C It was originally identified in mouse brain as a gene that is
induced by BMP and retinoic acid signaling

muscle FAM5C enhances osteoblast differentiation [212]

FGF-2 a secreted protein and belongs to the heparin-binding
growth factors family.

muscle FGF-2 not only stimulates muscle growth but also promotes
intramuscular adipogenesis.

[213]

IGF-1 A peptide material necessary for the physiological effects
of growth hormone, and is also called somatomedins.

muscle 1. Improve the ability of muscle cell proliferation and
increase muscle abundance
2. Improve protein synthesis efficiency
3. Improve the regeneration of nerve

[214,215]

IL-5 inflammatory cytokines muscle IL-5 induces local accumulation of eosinophils and their
release of major basic protein. The secreted proteins adhere
to the muscle fiber membrane, resulting in muscle damage.

[216]

IL-6 inflammatory cytokines muscle IL-6 must signal in osteoblasts to favor osteoclast
differentiation and the release of bioactive osteocalcin in
the general circulation to increase exercise capacity.

[217]

IL-7 inflammatory cytokines muscle IL-7 is a novel myokine regulated both in vitro and in vivo,
and it may play a role in the regulation of muscle cell
development.

[218]

IL-15 inflammatory cytokines muscle IL-15Ra has a role in defining the phenotype of fast skeletal
muscles in vivo

[219]

Irisin A protein produced by muscles after exercise. muscle 1.Irisin induces the expression of pro-myogenic and
exercise response genes in myotubes.
2. Irisin increases myogenic differentiation and myoblast
fusion by activating IL6 signaling.
3. Irisin rescues the loss of skeletal muscle mass after
denervation through the activation of satellite cells and the
enhancement of protein synthesis and reduction of protein
degradation.

[220]

LIF A cytokine with multiple functions, but its most important
application is to maintain the undifferentiated state of
mouse embryonic stem cells

muscle LIF exerts its effect locally, stimulating the proliferation of
muscle satellite cells and participating in muscle
hypertrophy and regeneration to promote muscle
adaptation to exercise.

[221]

Myostatin TGF-b family muscle A key negative regulator of muscle repair and growth. [222]
NT-3 Neurotrophin-3 (NT-3) is a member of the NGF family of

neurotrophic factors.
muscle NT-3 enhances axon regeneration and has potential clinical

effects in preventing muscle atrophy after nerve injury.
[223]

PGE2 inflammatory cytokine muscle 1. PGE2 directly targets muscle-specific stem cells (MuSC)
through the EP4 receptor, leading to the expansion of
MuSC.
2. PGE2 can enhance muscle regeneration and accelerate
the repair of damaged muscles.

[224]

TGF-b1 TGFb belongs to the TGF-b superfamily and works by
binding to the type 2 TGF-b receptor (TGFBR2).

muscle 1. Participate in embryogenesis and cell differentiation and
apoptosis.
2. TGFb1 is recognized as critical negative regulator of
skeletal muscle repair.

[225]

BMP-2 BMP2 belongs to the transforming growth factor-b family. bone BMP-2 plays an important role in the progress of bone
development, bone diseases, and the repair of bone and
joint injury.

[52]

DMP-1 A non-collagenous matrix protein found in dentine and
bone.

bone An acidic non-collagen protein necessary for the
biomineralization of bone, cartilage, enamel, cementum
and dentin.

[226]

DKK-1 DKK is a group of secreted glycoproteins, which are
inhibitory molecules of Wnt pathway.

Chondrocytes,
bone

Dkk-1 blocks osteoblast differentiation, induces sclerostin
expression and leads to osteocyte death.

[227]

FGF-23 A kind of fibroblast growth factor. bone FGF-23 participate in the homeostasis of vitamin D and
phosphate.

[228]

HGF hepatocyte growth factor bone HGF promotes the differentiation of MSCs into osteoblasts,
and plays a role in bone development, health and repair.

[229]

IGF-1 An active protein peptide substance bone IGF-1 promotes bone anabolism and maintains its normal
structure and function.

[230]

MEPE A non-collagenous phosphorylated glycoprotein of
extracellular matrix, mainly expressed in bone tissue,
dental tissue and renal proximal tubules

bone Regulate phosphate metabolism and bone mineralization. [231]

MGF a splicing variant of insulin-like growth factor 1 bone mechanical stimuli influence the physiological responses of
osteoblasts by increasing the expression of MGF, which is
regulated by splicing factors.

[232]

(continued on next page)
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Table 1 (continued)

Growth
factors

Introduction Origin Function Ref.

NO A colorless, odorless gas that is hardly soluble in water bone Bone cells can promote the production of NO after being
stimulated by inflammatory cytokines and mechanical
stress. NO directly facilitates osteoblastic differentiation.

[233]

OCN It belongs to non-collagen acid glycoprotein and is a
vitamin K-dependent calcium binding protein.

Bone,
osteoblast

1. Osteocalcin (OCN) secreted by osteoblasts regulates
systemic glucose and energy metabolism, reproduction,
and cognition.
2. Promote bone formation and regulate bone metabolism.

[234]

OPG A member of the tumor necrosis factor receptor family Bone,
osteoblast

1. Markers of bone turnover.
2. Promote bone formation.

[235]

PGE2 inflammatory cytokine Bone,
osteoblast

PGE2 mediates sensory nerve to control bone homeostasis
and promote regeneration.

[236]

RANKL RANKL belongs to the tumor necrosis factor family. Bone,
osteoblast

The functions of RANKL-RANK forward and reverse
signaling in the regulation of osteoblast differentiation and
bone formation.

[237]

SOST A secreted protein Bone,
osteoblast

A negative regulator of bone formation. [238]

TGF-b A number of TGF-b superfamily that regulate cell growth
and differentiation

bone Promote cartilage and bone repair [239]

VEGF A highly specific vascular endothelial cell growth factor Bone,
osteoblast

VEGF is important for bone development, postnatal bone
homeostasis and bone repair and regeneration.

[240]

Wnt3a wnt3a is the main ligand of the canonical wnt signaling
pathway

Bone,
osteoblast

1. Canonical Wnt signaling is central to central to normal
bone homeostasis.
2. Wnt3a can stimulate bone regeneration and inhibit the
growth of multiple myeloma.

[241]

Abbreviation
Brain-derived neurotrophic factor，BDNF

Bone morphogenetic protein 2, BMP-2
Bone gammacarboxyglutamate protein, BGLAP
Dentin Matrix Acidic Phosphoprotein 1, DMP-1
Dickkopf-1, DKK-1
Family with sequence similarity 5, member C, FAM5C
Fibroblast Growth Factor-2, FGF2
Fibroblast growth factor-23, FGF23
Hepatocyte growth factor, HGF
Interleukin-6, IL-6
Interleukin-7, IL-7
Interleukin-15, IL-15
Insulin-like growth factor-1, IGF-1
Leukemia Inhibitory Factor, LIF
Mechano growth factor, MGF
Matrix extracellular phosphoglycoprotein, MEPE
Osteocalcin, OCN
Osteoprotegerin，OPG
Prostaglandin E2, PGE2
Receptor activator of nuclear factor-j B ligand, RANKL
Sclerostin, SOST
Transforming growth factor b, TGF-b
Vascular endothelial growth factor, VEGF
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among the elderly are low, and are associated with aging-related
osteoporosis [101].

During fracture healing, VEGF is at the center of vascularization
at the fracture site. VEGF-A from early osteoblasts (Osx+) is essen-
tial for rapid formation of periosteal blood vessels and formation of
woven bones after bone injury [102]. VEGF-A from other cells is
necessary for intramedullary angiogenesis in largest cortical
defects at the time of injury. In chondrocytes, FOXO1 directly binds
the VEGF-A promoter and stimulates the transcriptional activities
of VEGF-A [103]. This suggests that it is involved in regulation of
angiogenesis in the cartilage during bone fracture healing. The
SDF1/CXCR4 related pathways regulate the recruitment of
endothelial progenitor cells (EPC) in tissues, which is an important
prerequisite for angiogenesis at fracture sites [104].

During fracture healing, there is enhanced crosstalk between
important signaling pathways, including those involving VEGF
and BMP2 [105]. For instance, biglycan is significantly involved
in regulation of bone homeostasis. Biglycan regulates bone cell
functions by directly binding BMP2 and regulating its ability to
70
stimulate downstream signal transduction, thereby promoting
bone cell differentiation [106]. Besides, it can bind VEGF and stim-
ulate its expressions via the TLR pathway [107]. However, specific
mechanisms through which it regulates downstream of the VEGF
pathway have not yet been elucidated. VEGF was found to be
markedly suppressed in the callus when compared between bigly-
can conditionally knocked out mice with the control group seven
days after the fracture [108]. At 14 days after fracture, the newly
formed cartilage and braided bone in the biglycan-KO group were
compared. There was less collagen formation while the degree of
vascularization was low, which means the injured bone repair
capacity. Expressions of NTs and their receptors were upregulated
during the bone repair process. Additional treatment with recom-
binant NT-3 increased the mRNA levels of BMP-2, VEGF, and
expressions of the endothelial cell marker (CD31) at the injury site,
which promoted injury repair [109]. Tissue vascularization pro-
motes bone repair. Therefore, vascularization is vital in fracture
healing, and is affected by many signaling pathways as well as
biomolecules.
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Special mechanical changes

In physics, stress is defined as the internal force that interacts
with various parts of an object when an object deforms due to
external factors. This internal force is aimed at restoring the object
from its deformed position to its pre-deformed position [110,111].
During fracture treatment, stress is involved in repair of fracture
trauma and a reasonable use of stress can promote fracture heal-
ing. Inappropriate mechanical forces can delay fracture healing.

Stress shielding effects
The stress shielding effect suggests that the load and redistribu-

tion of stress as well as strain will occur when two or more compo-
nents with elastic modulus form a loading system [112,113]. The
component with higher elastic modulus will bear more load,
whereas the material with a low elastic modulus bears less load,
thus, there is less deformation. In fracture healing, this phe-
nomenon is reflected in stress shunt of the fixing material to the
bone. A very strong internal plate fixation will compress the blood
supply under the plate, compress the periosteum, and reduce the
force pressed on the bone, resulting in thinning of the cortical
bone, decreased bone density, bone structure disorders, and local
osteoporosis on the fixed side [114,115]. Comparable challenges
have received attention in strong external fixation, artificial pros-
thesis implantation, and spinal pedicle screw internal fixation.
Although the stress shielding effect directly hinders callus forma-
tion [116–118], its biological effects and its effects on fracture
healing have yet to be fully established.

Improvement of the internal fixation material [119,120], geo-
metric appearance of the steel plate [121], distribution and angle
of the nail hole [122], and steel plate elasticity [123] are used to
reduce stress shielding effects during steel plate fixation. More-
over, finite element simulation analysis and simulation experi-
ments of in vitro specimens on multi-dimensional biomechanical
machines significantly increased the application potential of vir-
tual technologies in assessing changes in biomechanics [88,124].

Special vertebral multiple fractures
Osteoporotic vertebral fractures have different characteristics.

Incidences of re-fractures after surgery are extremely high in
patients with osteoporotic vertebral fractures (OVF) [125]. The
most important factor is the progress of osteoporosis [126], and
the direct factor is the poor rigidity and strength of the vertebral
body and adjacent vertebrae. Spinal fractures are often accompa-
nied by varying degrees of kyphosis and changes in physiological
curvatures of the spine, which makes the body’s center of gravity
to move forward. In addition, when stress of the anterior and mid-
dle columns of the vertebral body increases, vertebral fractures are
more likely to occur [127].

The thoracolumbar spine is a segment that migrates from the
thoracic vertebra with less mobility to the lumbar vertebra with
greater mobility [128], thus, biomechanics stress is relatively con-
centrated in thoracolumbar spine. Spinal fractures often occur at
the thoracolumbar vertebra, especially at T11 to L2 segments.
The injured vertebrae became extremely hard after surgery, lead-
ing to changes in spine biomechanics. This change is also consid-
ered to involve natural progression of degenerative lumbar spine
disease, thereby accelerating intervertebral disc degeneration,
intervertebral space stenosis, and vertebral body instability. This
leads to changes in physiological curvatures and biomechanics of
the spine, and ultimately affects the spine and fracture [129].

Neuromodulation

The central and peripheral nervous systems are jointly involved
in regulation of bone development, bone metabolism, bone repair,
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and bone regeneration via peripheral nerve synapses and secretion
of neurotransmitters. The relationship between the sympathetic
nervous system and the skeleton has been studied. The sensory
nervous system is associated with pain perception. A limited num-
ber of studies have reported on the association between the
parasympathetic nervous system and bone metabolism. Nerve
fibers in the bone tissue contain a large number of neuropeptides,
including calcitonin gene-related peptide (CGRP), neuropeptide Y
(NPY), substance P (SP), vasoactive and intestinal peptides (VIP).
Among them, SP and CGRP exist in the sensory nervous system,
whereas VIP and NPY exist in the sympathetic nervous system.
Various neuropeptide receptors are distributed on human osteo-
blasts and osteoclasts [130]. The peripheral nervous system binds
specific receptors on osteocytes and acts on specific signaling path-
ways to regulate osteoblasts and osteoclasts, including their prolif-
eration, differentiation, calcification, and reabsorption pathways to
achieve a balance between bone resorption and reconstruction
[131–133].

Nervous system distribution
Regulation of bone mass may depend on nerve fibers that are

distributed in the periosteum and bone tissue. Periosteum struc-
tures differ depending on anatomy and age. Traditionally, the
periosteum is often divided into a superficial fibrous layer and a
deep cambium layer, with no clear boundaries between the layers.
In addition to thick collagen fiber bundles that fix the periosteum
and ligaments, the periosteum is rich in blood vessels and cells,
including osteoprogenitor cells, osteoblasts, osteoclasts, and vascu-
lar endothelial cells. The periosteum is also rich in innervation,
including myelinated and unmyelinated sensory nerve fibers,
mainly unmyelinated nerve fibers. Sympathetic nerves in the bone,
especially noradrenergic nerves, are mainly distributed at the loca-
tion near blood vessels, and the most abundant are in areas with
high osteogenic activities, such as near the epiphyseal growth
plate. Mature osteoblasts and osteoclasts can form synapses with
appropriate axons. The extension of sympathetic nerve axons to
osteoblasts and osteoclasts is subject to dynamic neuroregulation
of local bone metabolism [134].

The effects of sympathetic nervous system
Under physiological and pathological conditions, the sympa-

thetic nervous system can directly or indirectly affect bone remod-
eling, and its functional disorders can also affect bone metabolism
to result in various bone diseases. When the sympathetic nervous
system is excited, the adrenal medulla secretes epinephrine (EP)
and norepinephrine (NE). NE is the most common transmitter
released by the sympathetic postganglionic fibers. There are vari-
ous adrenergic receptors on membranes of human osteoblasts
and osteoclasts. These receptors are divided into two: a-
adrenergic receptors (a-ARs) and b-adrenergic receptors (b-ARs).
The b-ARs are closely associated with calcaneal metabolism. When
the sympathetic nerve is excited, plasma norepinephrine levels
increase, osteogenesis is inhibited, and bone resorption is pro-
moted through b-adrenergic receptors in the bone to reduce bone
mass. The effect of sympathetic nervous system on bone metabo-
lism are briefly outlined in Fig. 3.

A previous study found that sympathetic excitability of an
astronauts’ muscles was higher after a flight test than before the
flight, and serum NE levels were also higher after the flight test
than before [135]. In addition, the peripheral sympathetic nervous
system in bed nucleus of stria terminalis -ventromedial hypothala-
mus (BNST-VMH) neural circuitry is involved in regulation of
stress-induced bone loss [136]. The bone marrow adipose tissue
is a fat depot and an endocrine tissue, and is also regulated by sym-
pathetic nerves for orderly energy metabolism and endocrine reg-
ulation [137,138]. Bone and bone marrow adipose tissues may also



Fig. 3. As the target organ of the nervous system, the bone is innervated by the sympathetic nervous system. Specifically, the brainstem and hypothalamus integrate internal
and external signals, and noradrenergic fibers are present in the periosteum, bone, and bone marrow. The extension of sympathetic nerve axons to osteoblasts and osteoclasts
is the anatomical basis for the dynamic neuroregulation of bone metabolism. After fracture, the enhancement of sympathetic tone, caused by fracture pain, increases the level
of norepinephrine, which will bind to specific receptors (such as b2R) on osteoblasts or pre-osteoclast. The osteoblasts differentiation and osteoclasts maturation were
regulated though specific signaling pathways to achieve the balance between bone resorption and bone reconstruction.
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modulate bone metabolism under precise regulation of the sympa-
thetic nervous system. The crosstalk between the two has been
elucidated [139]. The central nervous system, especially the sym-
pathetic nervous system (SNS), regulates bone mass [140,141],
however, the specific signaling pathways or key molecules have
not yet been clearly determined.

A crosstalk between the sympathetic nervous system and leptin
has also been found in bone metabolism [142]. Leptin acts on neu-
rons in the ventral midline of the hypothalamus and stimulates NE
sympathetic nerve fibers to release NE [136]. The released NE
specifically interacts with b2-AR on the osteoblasts [143], thereby
inhibiting the activities of osteoblasts and bone formation. There-
fore, leptin regulates bone remodeling via at least two different
antagonistic pathways. On one hand, the sympathetic nerve signal
of Adrb2 promotes osteoclast differentiation [144] while on the
other hand, realization of this sympathetic nerve function is con-
trolled by phosphorylation of ATF4 [141].

Administration of low doses of leptin in ovariectomized osteo-
porotic female rats effectively reduced estrogen deficiency-
associated trabecular bone loss and structural changes [140]. Thus,
leptinmay play an important protective role in bonemetabolism by
inhibiting bone resorption. This could be because leptin is a poten-
tial inhibitor of bone formation via the central nervous system and
also enhances bone metabolism via peripheral mechanisms.

Given that the sympathetic nerve system is plastic [145], pain
will result in sympathetic nerve excitement, whose hyperactivity
may amplify pain signals [146]. In ovariectomized mice, destruc-
tion of sympathetic nerve fibers was associated with a reduction
in their movements after the fracture, which affected bone tissue
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remodeling in the latter stages of fracture repair. However, the
destruction had no effect on pain-related processes [147]. Our cur-
rent research shows that fracture pain may contribute to systemic
bone loss by activating sympathetic nerves through the central
nervous system (Unpublished data).

Pain and sensory nervous system
Pain is a central feature in tissue damage. The pain after fracture

is very severe [148], and orthopaedic surgery is considered to be
the most painful operation [149]. Fracture-associated pain may
be caused by a combination of local inflammation, cytokine
release, neurotrophic factor release, sympathetic axon sprouting,
abnormal activation of DRGs, and glial cell activation [150].

NGF-TrkA
The combination of NGF and its receptor (TrkA) is one of the

main molecular signals that produce bone pain. Most of the sen-
sory nerve fibers innervating the bone express TrkA+ [151,152].
TrkA can guide sensory nerve axons to the initial ossification site.
In addition, NGF produced by osteochondral progenitor cells acti-
vate TrkA to act as a skeletal neurotrophic factor [153]. Therefore,
NGF-related signaling pathways play an important role in coordi-
nating sensory innervation, vascularization, and ossification of long
bone development, which is essential for normal primary and sec-
ondary ossification.

Under physiological conditions, mechanical signals upregulate
NGF expressions in osteoblasts, which in turn activate TrkA sen-
sory nerves, leading to regulation of Wnt/b-catenin signal trans-
duction and enhanced bone formation [154]. Piezo2, a
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mechanically gated ion channel, aids the sensitivity and respon-
siveness of bone afferent neurons to harmful/normal mechanical
stimuli [52,63]. Piezo2 knockout animals exhibited reduced firing
frequencies and inhibited NGF-induced sensitization of bone affer-
ent neurons [155]. The combination of NGF and its receptor (TrkA)
forms the main molecular signal that produces bone pain. Under
pathological conditions, soft tissue trauma leads to high expres-
sions of NGF and NGF-responsive axon invasion occurs before
osteoclast differentiation. Cartilage and bone formation were sig-
nificantly delayed when the sciatic nerve was surgical removed
[156]. Single-cell sequencing showed that the signal of prechondral
cells shifted from TGF-b to FGF activation after denervation. There-
fore, activation of the FGF signal may indicate inhibition of bone
and cartilage differentiation of MSCs.

The use of opioids or NSAID drugs during fracture healing can
effectively relieve pain, however, there is the potential harm of
impeded fracture healing. Autophosphorylation of TrkA receptors
can be prevented by using specific neutralizing antibodies to block
NGF/TrkA signaling, thus, the subsequent signaling cascade is not
activated, which eliminates pain transmission without delaying
fracture healing [157]. This was also confirmed by Lilian et al.
[158], who found that blocking NGF activities by inhibiting TrkA
reduced pain in an osteoarthritis rat model. The possible reasons
are the asymmetry of weight-bearing caused by the irregular wear
of articular cartilage in patients with osteoarthritis, and the stand-
ing pain caused by the combination of pain and allergies. In this
process, NGF/TrkA plays a crucial role in establishment and ampli-
fication of pain sensations. However, there are different points of
view with regards to the fact that the use of the TrkA agonist (gam-
bogic amide (GA)) can increase NGF-TrkA signaling in the bone,
thereby enhancing bone adaptation to mechanical forces [159].
This results in increased load-induced bone formation and anabolic
signaling without inducing significant thermal pain or mechanical
hyperalgesia. Skeletal sensory nerves play a role in pain and frac-
ture healing, therefore, any pharmacological method that changes
sensory nerve functions may affect bone anabolism.

Pge2-EP4
Prostaglandin E2 (PGE2) is an inflammatory factor [160,161]

and a neuromodulator that alters neuronal excitability [162,163].
Excess PGE2 activates sensory neurons and mediates pain hyper-
sensitivity by binding PGE2/PGE2 receptor 4 (EP4) receptors. More-
over, PGE2 is a multifunctional regulator of bone metabolism and
the intra-skeletal sensory regulates bone homeostasis via the con-
centration of PGE2 in the bone [164].

The processes by which PGE2 regulates bone homeostasis
include regulation of bone resorption and bone formation, that is,
by up-regulating the expressions of NFjB ligand receptor activator
(RANKL) to promote osteoclast differentiation and bone resorption
[165]. When bone density decreases, the PGE2 secreted by osteo-
blasts increases, thereby inhibiting sympathetic nerve activities
via the central nervous system and promoting bone formation
[161,166,167]. The use of bone-targeted prostaglandin E2 receptor
4 agonists also increased the therapeutic effects of bisphospho-
nates in a mouse model of severe osteogenesis imperfect [168].

PGE2 is also involved in pain processes in diseases such as
osteoarthritis and rheumatoid arthritis [166]. For patients with
low back pain, the increase in PGE2 in the porous endplate stimu-
lates sensory nerves, leading to spinal cord pain [167,169]. The use
of low-dose celecoxib can inhibit endplate porosity, sensory inner-
vation, as well as spinal pain and allergies [170].

Inflammation

Fractures, like any other trauma or injury, are accompanied by
inflammatory responses that play important roles in repair pro-
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cesses. An association between chronic/systemic inflammation
and bone loss has been reported. However, the impact of the
inflammatory state on bone fracture has not been fully elucidated.

At 1 day after injury, the secretion of inflammatory factors sig-
nificantly increases, remain high for 2 weeks, and begin to decline
at 3 to 4 weeks after injury. Mice with multiple fractures [171],
older mice [14], and male mice [172] tend to exhibit high levels
of inflammation and corresponding bone loss. TNF-a, IL-1, and
IL-6 are common pro-inflammatory cytokines that directly activate
osteoclasts or increase osteoclast differentiation by inducing osteo-
blasts and osteoblasts to produce RANKL. In addition, pro-
inflammatory cytokines suppress the production of bone matrix
by enhancing the secretion of sclerostin (SOST) [173] or
Dickkopf-related protein 1 (DKK1) [174]. Among them, IL-6 affects
bone metabolism by regulating osteoclast and osteoblast develop-
ment as well as function. IL-6 stimulates the differentiation of
osteoclast precursor cells into active and mature osteoclasts with
concomitant bone loss following OVX [175] or unloading [176] or
upon aging [177]. The use of IL-6-neutralizing antibodies [176] or
IL-6 gene knockout [178] reduced the generation of osteoclasts
and alleviated bone loss.

The current research focuses on the detection of the concentra-
tion of inflammatory factors. There is no definite evidence to iden-
tify the relationship between inflammation and bone loss after
fractures, but existing research results suggest that increased con-
centrations of pro-inflammatory cytokines may trigger increase
the bone loss. There is a need to investigate the dynamic changes
in inflammatory factor concentrations to identify the inflammatory
factors that have the greatest impact on bone remodeling, and to
inform the development of appropriate therapeutic approaches.
Therapy

Active drug interventions

The pathological mechanism of acute bone loss after fracture is
mainly associated with osteoporosis. Therefore, standard anti-
osteoporosis drugs should be actively used after fractures. These
drugs alleviate pain, inhibit acute bone loss, reduce progressive
bone loss, and restore the bone mass to the level before the injury,
thereby reducing re-fracture incidences. Drug interventions are
mainly divided into basic drug therapy and anti-osteoporosis drug
therapy.
Calcium and vitamin D
The bone is a calcium-rich tissue [179], accounting for 99 % of

the body’s calcium. Calcium is necessary for fracture callus miner-
alization, thus, during the fracture healing process, the demand for
calcium is more than usual. When dietary calcium supply does not
meet the calcium requirements for callus mineralization, more cal-
cium is mobilized from distal bones to ensure adequate bone repair
[180]. Therefore, it is important to timely replenish calcium to
enhance its absorption.

Calcium and vitamin D [181,182], as the basic treatment drugs
for osteoporosis, are routinely used in the treatment of osteoporo-
sis patients, with the purpose of promote bone formation, mineral-
ization and reduce the risk of fractures. The drugs can also be used
in combination with other anti-osteoporosis drugs during fracture
treatment. The recommended calcium supplement dose should not
be less than 1000 mg/d for adults [183], and it should be taken con-
tinuously for at least half a year, with vitamin D (800–1200 IU/d)
supplementation [183–185]. Although other types of vitamins
have also been studied [186–188], we will not discuss them here
because of inconclusive findings regarding them.
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Anti-osteoporosis drugs
Anti-osteoporosis drugs are divided into anti-bone resorption

drugs (bisphosphonate drugs, estrogen, selective estrogen receptor
modulators, and RANKL inhibitors) and bone formation drugs (thy-
roid parathyroid hormone analogs).

Estrogen and SERMs
Estrogen has a wide range of physiological effects, including

skeletal system maturation and bone mass maintenance
[189,190]. Postmenopausal osteoporosis is significantly associated
with declining estrogen levels. Estrogen replacement therapy (ERT)
can inhibit bone turnover, prevent bone loss, and increase bone
density of the vertebral body and hip [191]. Notably, ERT or
estrogen-progesterone hormone replacement therapy (HRT) are
usually prescribed for postmenopausal osteoporotic fracture
patients. Selective estrogen receptor modulators (SERMs) can
selectively act on target organs of estrogen, combine with different
forms of estrogen receptors, reduce bone resorption, and prevent
bone loss. However, SERMs and estrogen drugs are not recom-
mended for acute phases of fractures.

Calcitonin
Calcitonins inhibit the biological activities of osteoclasts, reduce

the number of osteoclasts, and have good therapeutic effects on
acute bone loss and pain after osteoporotic fractures [192,193].
Some commonly used drugs include salmon calcitonin and eel
calcitonin.

Bisphosphonates
Bisphosphonates can specifically bind hydroxyphosphatidite in

the bone and inhibit bone resorption by suppressing osteoclast
activities [194,195]. This increases bone density of the lumbar
spine and hip while reducing re-fracture incidences. Currently, bis-
phosphonates are the most successful and commonly used drugs
for osteoporosis treatment, especially osteoporosis that is charac-
terized by bone loss and bone structure destruction. Some com-
monly used drugs include alendronate sodium, risedronate
sodium, zoledronic acid, and ibandronate sodium.

RANKL inhibitors
RANKL inhibitors, such as denosumab, inhibit the activation of

the osteoclast RANK signaling pathway by combining with RANKL,
thereby suppressing ostoclasst activation and maturation, and
reducing bone loss [196,197].

Parathyroid hormone analogue
Parathyroid hormone analogues (PTHa), mainly teriparatide

[198] and abaloparatide [199], stimulate osteoblast activities,
increase osteoblast secretion of collagen, enhance bone matrix for-
mation as well as mineralization, promote bone formation, and
improve bone remodeling [200].

There are differences between the healing process of fractures
and the pathophysiological mechanisms of bone reconstruction.
The factors influencing bone reconstruction do not necessarily
affect fracture healing. It has been reported that bisphosphonates
have no effects on intrachondral osteogenesis but have an effect
on intramembranous osteogenesis [201]. Therefore, when deciding
on a treatment plan, various considerations are required.

Furthermore, drugs that affect bone regeneration, including
hormones, diuretics, psychiatric drugs, and chemotherapeutic
drugs should be adjusted according to the condition. Importantly,
applications of anti-osteoporosis drugs should strictly follow the
indications and contraindications because excess use will cause
overcorrection, leading to gastrointestinal reactions, allergies,
headaches, urinary tract stones, and other side effects.
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Combined therapy
The degrees of bone loss among patients after fractures differ,

and personalized treatment is needed. Combined treatment may
achieve better results with the most minimal side effects [201–
203]. However, not every fracture patient requires anti-
osteoporosis medications. Therefore, clinicians should formulate
an individualized treatment plan based on the degree of osteoporo-
sis, the severity of injury, and the overall state of the patient, com-
bined with indications, contraindications, and drug safety.

Integrated management

Effective immobilization is necessary, whether surgical treat-
ment or conservative treatment. Scientific management and edu-
cation during the immobilization period are needed [21,204,205].
Identifying high-risk patients and commencing active interven-
tion as early as possible can significantly eliminate the influence
of unfavorable factors. High-risk factors include aging, women,
diabetes, high blood pressure, severe fractures, multiple frac-
tures, long-term use of corticosteroids or other drugs, and a his-
tory of previous fractures [11,12,206]. In the perioperative period
of fracture patients, it is suitable to apply an effective combina-
tion of a personalized treatment plan and modular multidisci-
plinary cooperation, as well as active early rehabilitation
training [207,208].

Conclusion and future directions

Rapid bone loss after fracture is increasingly being studied. Its
pathophysiological mechanisms are complicated and involves
multiple tissues, organs and systems. In addition, the complexity
of bone loss after fracture is not only due to the complex crosstalk
between key molecules or signaling pathways, but is also closely
associated with pathological changes caused by the fracture itself
and osteoporosis progression. Fracture patients with acute bone
loss require special attention because of increased risk of sec-
ondary fractures. The advantages and disadvantages of the existing
drug therapy regimens suggest that there is a need to proceed with
caution during treatment, implying the need for further research
on bone loss.
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