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Abstract

Objectives: Glioma is one of the most aggressive brain tumours with poor overall sur-

vival despite advanced technology in surgical resection, chemotherapy and radiation.

Progression and recurrence are the hinge causes of low survival. Our aim is to explain

the concrete mechanism in the proliferation and progression of tumours based on

tumour microenvironment (TME). The main purpose is to illustrate the mechanism of

proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflamma-

tory response and autophagy based on the TME to induce apoptosis and enhance

the sensitivity of chemoradiotherapy.

Findings: TME is the main medium for tumour growth and progression. Acidity, hyp-

oxia, inflammatory response, autophagy, angiogenesis and so on are the main causes

of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion,

have the advantages of fast onset, long action time and small adverse reactions.

Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting

tumour progression. However, long-term use of PPIs alone also has obvious side

effects. Therefore, till now, how to apply PPIs to promote the effect of radio-

chemotherapy and find the concrete dose and concentration of combined use are

novel challenges.

Conclusions: PPIs display the potential in enhancing the sensitivity of chemora-

diotherapy to defend against glioma based on TME. In the clinic, it is also necessary

to explore specific concentrations and dosages in synthetic applications.

1 | BACKGROUND

Glioma is one of the most aggressive brain tumours. Histologically, the

World Health Organization (WHO) classified the tumours of the cen-

tral nervous system (CNS) into astrocytomas, oligodendrogliomas and

ependymoma. In addition, gliomas are classified into four grades

according to the degree of malignancy. Types I and II are low-grade

gliomas and types III and IV are high-grade gliomas.1–3 The clinical

cure rate and 5-year survival rate of patients are all very low. The

prognosis is very dismal and the average survival period is only about

1 year. One of the main reasons for the poor prognosis of patients is

that glioma is prone to drug resistance to chemoradiation therapy

resistance.4,5 Therefore, it is urgent to explore new strategies for

glioma treatment.

Pump proton inhibitors (PPIs) are a drug of choice for inhibiting

gastric acid secretion. In clinical, they are the first-line option to treat

peptic ulcers, gastroesophageal reflux disease, zoai syndrome and

upper gastrointestinal bleeding.6,7 It has become the first-line drug for

abnormal gastric acid secretion and related diseases combined with

amoxicillin, clarithromycin and other drugs to treat Helicobacter

pylori infection.8,9 PPIs have the advantages of fast onset, strong acid

inhibition, long action time, low blood drug concentration and low
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adverse reactions.10 The first generation includes omeprazole, lanso-

prazole and pantoprazole; the second generation includes iprazole,

rabeprazole and esomeprazole. Compared with the first-generation

PPIs, in terms of drug properties, the second-generation PPIs have the

advantages of higher bioavailability, less affected by food and anti-

acid drugs, slow plasma clearance, less first-pass effect after oral

administration, higher stability, less adverse reactions and longer half-

life. In clinical, the second-generation PPIs have better effects in inhi-

biting gastric acid secretion and H. pylori. Besides, they are more

effective for relieving pain and the treatment of ulcers, especially, the

coalescence of duodenal bulb ulcers. While combined with other med-

icines, the second-generation PPIs revealed higher security and

effectiveness.11–13

Progression and invasion are the main causes of death in malig-

nant tumour patients.14 The tumour microenvironment (TME) is a

multi-complex environment regulated by various cytokines, transcrip-

tion factors and pathways.15 One major cause of the progression and

invasion is set off by the intimate relationship of glioma cells with the

microenvironment. Recent therapeutic anti-tumour approaches focus

on such critical components of TME.16,17

Thus, we searched Pubmed and Cnki conducting for this review.

Our aim is to explain the specific relationship between TME and the

progression of glioma. PPIs, the main force for treating the stomach,

were found the proficiency to promote the sensitivity of glioma to

chemoradiotherapy. Thus, associating with the mechanism of PPIs,

another crucial purpose is to make clear the mechanism of PPIs in

hypersensitization to inhibit proliferation and progression of glioma

based on TME.18

2 | EPIDEMIOLOGY OF GLIOMA

Glioma is the most common and malignant primary brain tumour in the

CNS caused by canceration of glial cells in the brain and spinal cord. Up

to the present, glioma is the most invasive and incurable cancer.19,20 In

the worldwide, about 100,000 cases of diffuse glioma are recorded

every year. The annual incidence rate is about 3–8 cases per 10,000

persons.21 However, the incidence of glioma is increasing gradually.

The peak incidence of primary glioma is between the ages of 55 and

60 years and the incidence rate is higher in men than women. Second-

ary GBMs tend to affect younger individuals about age 40 years

old.22,23 The main median survival is 15 months under treatment and

5 months without treatment, respectively.24,25 However, the patients

affected by low-grade gliomas may survive for more than 20 years.26

Up to date, the mainstay of treatment methods contains surgical

excision, chemotherapy and radiotherapy.24 According to the fifth edi-

tion of the WHO Classification of Tumours of the CNS (WHO CNS5),

the standard of care and prognosis of glioma, circumscribed gliomas

are usually benign and recommended for early complete resection,

associated with chemotherapy if necessary. Diffuse gliomas and other

high-grade gliomas according to their molecule subtype are slightly

intractable, with the necessity of chemotherapy. However, for glio-

blastoma, feasible resection followed by radiotherapy and temozolo-

mide chemotherapy is contained in the current standard of care.27,28

Glioma stem cells with the characteristics of stem cells and het-

erogeneous resident nerve cell spheres can promote the recurrence

and progression of glioma.29 In terms of progression, there are two

main methods of recurrence after surgical resection. The first is to con-

vert the apoptosis-related factor ligand (FasL) in astrocytes into the

paracrine death signal pathway of cancer cells, or effect by inhibiting

the axon Pathfinder L1 cell adhesion molecule (L1CAM) to promote the

growth of glioma. Serine protease inhibitors (serpins) in glioma progres-

sion can inhibit the production of fibrinolytic enzymes and ensure the

survival of cancer cells by protecting cancer cells from the biological

process of death and promoting the growth of vessels.30

Moreover, with the extension of treatment time, chemoresistance

occurs frequently. Also, it is inevitable for normal tissues adjacent to

cancer to be damaged.31 Due to the resistance to chemoradiotherapy

and the aggravation of glioma, local recurrence and distant progres-

sion are prone to occur.32 Moreover, because the glioma is prone to

pass across the blood–brain barrier (BBB) adhering to the surface of

capillaries and growing around capillaries, the delivery and penetration

of therapeutic drugs passed into the brain are restricted resulting in

the weakened therapeutic effects.33

As a result, the clinical therapeutic effect of glioma is deficient.

Nowadays, it is an urgent problem to explore novel drugs with better

curative effects to overcome the resistance and the physiological

barriers.

3 | THE CLINICAL APPLICATION OF PPIS

PPIs are kinds of stomach medicine with minimal side effects, generally.34

Clinically, they are used to remedy peptic ulcers, gastroesophageal reflux

disease, zoai syndrome and upper gastrointestinal bleeding having

become the first-line drugs for abnormal gastric acid secretion and related

diseases.35–38 However, different PPIs have different clinical application

tactics and blood–brain barrier penetration (Table 1).39–42

PPIs are mostly derivatives of benzimidazole compounds.43 They

are mostly weakly basic drugs with low original drug activity. After

being absorbed into the blood, it is transported to the gastric muco-

sal parietal cells and finally reaches the acidic cavity of the secretory

tube where the pH < 4.44 The technical drug is easy to be ionized

and positively charged in this environment to play a preferable

role.45 Due to the low membrane penetration, the drug is continu-

ously aggregated and converted into the form of bioactive hyposul-

fonic acid and hyposulfonamide under the catalysis of acid, and then

mixed with the sulfhydryl (sh) of vacuolar ATPase (V-ATPase) dehy-

drating and coupling to produce an irreversible covalent disulfide

bond to inhibit the H+ transport mechanism of the enzyme and acid

secretion.46

PPIs are also H+-K+ ATPase inhibitors which may act on the acid-

secreting tubules on parietal cells. The acid-secreting tubules secrete

acid in the way of H+ and K+ exchanging through H+-K+ ATPase on

the membrane to pump H+ out of the cells. PPIs cannot transfer the

hydrogen of parietal cells to the gastric cavity and inhibit the forma-

tion of gastric acid.44,47 Besides, PPIs bind to cysteine residues nearby

the nucleotide-binding domain of subunit A covalently resulting in the
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inactivation of V-ATPase to inhibit acid content secreted.48 Only as

new pump molecules are synthesized and inserted into the cell mem-

brane can gastric acid secretion restart.49 Besides the application in

gastrosia, PPIs has the potential in curing tumour such as epithelial

ovarian and breast cancer nowadays.50–53 Till now, the most used

PPIs are to treat late-stage tumours. Such as omeprazole could inhibit

the progression of early colorectal adenoma to colorectal cancer and

distal metastasis of advanced breast cancer.54,55 However, there has

been a study reporting PPIs administration could decrease the occur-

rence of the early-stage gastric cancer induced by ulcerative differen-

tiation.54 In addition to being used alone, PPIs are often used in

combination with conventional chemotherapy drugs for cancer.

Omeprazole has the ability to inhibit V-ATPase to change the

acidic microenvironment and enhance the sensitivity of drug-resistant

cells to taxol. Besides, omeprazole combined with paclitaxel can sig-

nificantly reduce the tumour volume in animal models with epithelial

ovarian cancer.50 V-ATPase is overexpressed in epithelial ovarian can-

cer compared with normal ovarian epithelial cells. YAP (Yes-associated

protein) is one of the major transcription activation factors playing an

important role in regulating cell proliferation and organ development.

YAP is overexpressed and is connected with the progression and

multi-drug resistance of the tumour. V-ATPase D1 also known as

ATP6V0D1, is the D subunit of the V0 domain. YAP is associated with

V-ATPase D1 to promote progression and MDA of the tumour.

Esomeprazole could inhibit the expression of YAP and V-ATPase D1,

also the combination of YAP and V-ATPase D1 to promote the sensi-

tivity of tumour cells to conventional anticancer drugs such as PTX.51

In terms of breast cancer, as the effective chemotherapeutic drugs for

breast cancer, raloxifene and doxorubicin combined with omeprazole,

lansoprazole and pantoprazole, the viability of breast cancer cells is

decreased and the apoptosis is enhanced obviously, compared with

raloxifene and doxorubicin solely.52,53

4 | TUMOUR MICROENVIRONMENT
IS THE MAIN MEDIUM FOR THE
PROLIFERATION AND PROGRESSION
OF TUMOUR

Progression is the most common phenomenon for patients with gli-

oma which may lead to death. Progression occurs when tumour cells

spread from the site of origin to another part of the brain. Progression

is a multifactorial process that depends on metabolic changes, gene

mutations and TME. Tumour cells, cancer stem cells, cancer-

associated fibroblasts (CAFs) and cytokines secreted by these cells,

extracellular matrix proteins, blood vessels and various extracellular

substances form a complex environment consisting of TME.56,57 TME

is a recognized significant key element affecting tumour occurrence,

growth and progression considered as a unit so as to generate a

dynamic communication with tumour cells.58,59 Tumour cells can

change and maintain their own survival and development conditions

through autocrine and paracrine, so as to promote the growth and

development of tumours.60 TME not only includes the structure, func-

tion and metabolism of tumour tissues but is also related to the inter-

nal (nuclear and cytoplasmic) and external environment of tumour

cells.61 The main characteristics of the tumour microenvironment are

acidification and hypoxia because of the imbalanced steady-state.62

Therefore, tumours have intracellular alkaline pH and lower extracel-

lular pH ranging from 7.2 to 7.4 and 6.5 to 7.1, respectively.63,64 The

acidic microenvironment strongly contributes to tumour progression

by stimulating invasion and progression, inhibiting the immune surveil-

lance of cancers and conferring chemoresistance.65 The acidic extra-

cellular environment is conducive to tissue damage and the activation

of destructive enzymes in the extracellular matrix (ECM) increasing

the potential for tumour progression and acquiring cell phenotype of

multidrug resistance (MDR).66 In order to maintain intracellular pH

(pHi), the tumour cells have evolved powerful mechanisms to counter-

act cytoplasmic acidification and expel accumulated protons from

cells, including Na+/H+ exchanger (NHE), carbonic anhydrase, mono-

carboxylic acid transporter (MCT) and proton pumps.67

Pump proton could keep the stability of H+ in and outside the

microenvironment, and evade the change of intracellular acidity

caused by bioenergy conversion.68 Proton pumps such as V-ATPase,

NHE and the carbonic anhydrase are upregulated in cancer cells.69 In

tumours, V-ATPase can pump protons out of cells, alkalize the intra-

cellular environment and acidify the extracellular environment, so as

to resist apoptosis and promote tumour aggressiveness.70 Increased

activity of these pH regulators protects cells from changes in cell phe-

notype caused by pHi fluctuations by squeezing H+ in the extracellu-

lar space.71

The metastatic potential of tumour cells is affected by the rela-

tionship between tumour cells and ECM. Low pH activates and

TABLE 1 Molecular weight, dose in clinic, blood–brain barrier (BBB) permeability of pump proton inhibitors (PPIs)

PPIs Omeprazole Lansoprazole Pantoprazole Rabeprazole Esomeprazole

Molecular weight 345.416 369.362 383.370 359.44 367.398

Dose in clinic 20 mg/day 15–30 mg/day 40 mg/day 10–20 mg/day 0–40 mg/day

BBB permeability Omeprazole was able to penetrate the BBB and the time to reach the maximum concentrations is about 60 min in brain.

Lansoprazole could penetrate the BBB and is similar with omeprazole. The time to reach the maximum concentrations is about

40–60 min in brain.

Pantoprazole is under trail.

Rabeprazole is under trail.

Esomeprazole is able to cross the BBB. The peak serum concentration is reached 90–180 min after oral administration.
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triggers the secretion of proteolytic enzymes including matrix

metalloproteinase-2 (MMP-2), MMP-9, a tissue serine protease,

adamalysin-related membrane protease, cysteine protease, cathepsin

and gelatinase leading to the degradation and remodelling of ECM, so

as to promote tumour invasion and progression.72

It is reported that the acidic environment after the metabolism of

tumours is not conducive to normal cells and results in the immune

escape of tumour cells.73 PPIs can directly change the quantity of

T-cell receptors (TCR) or major histocompatibility complex (MHC) so

as to improve the recognition and elimination of tumour cells by

T cells.74 Alkalizing the acidic environment of tumour cells can also

improve the activity of other effector cells such as natural killer cells

(NK) or natural killer T cells (NKT).75 Under the acidic environment,

tumour cells can use the nutrition provided by autophagy of normal

cells to meet the needs of tumour cell growth.76 PPIs can also inhibit

autophagy resulting in the lack of nutritional supply for tumour cell

proliferation and the death of the tumour.77 Compared with normal

cells, the tumour cells could be more adaptable to the imbalanced pH

environment.78 Because the V-ATPase complex is mainly located at

the edge of tumour cells which may induce the acidification of TME

and furtherly promote the growth of cancer.79 In addition, the acidic

TME provides extremely suitable living conditions for the proteolytic

activity of cathepsins especially the lysosomal cathepsins, since the

activity of most of the cathepsins could be enhanced in an acidic con-

dition.80 And they could activate growth factors and proteases or

degrade components of the extracellular matrix to promote progres-

sion. For instance, Cathepsin B (Cat B) can upregulate the function of

MMPs which leads to the detachment of cells leading to the initiation

of the cell migration.81

Akt (protein kinase B[PKB]) accumulates in mitochondria and

phosphorylates pyruvate dehydrogenase kinase 1 (PDK1) on

phospho-NDRG1 (THR346) to inactivate the pyruvate dehydrogenase

complex. And then this pathway turns tumour metabolism to glycoly-

sis to antagonize apoptosis, inhibit oxidative stress and maintain the

proliferation of tumour cells.82 Simultaneously, low pH could increase

glycolysis to inspire progression. Glycolytic metabolites are the syn-

thetic raw materials of biological macromolecules and the indispens-

able structural elements of new tumour cells. The increase of lactic

acid produced by glycolysis will decompose and destroy ECM and

promote progression.83

EMT is pivotal for wound healing, processes and its occurrence in

cancer is known to aggravate invasion, migration and drug resistance

in tumours. The occurrence of EMT causes the loss of epithelial char-

acters of tumour cells and the transformation into mesenchymal-like

cells and thus enhancing tumour cell proliferation and motility and

decreasing cell apoptosis.84 Transforming growth factor-β (TGF-β) has

played a key role in deciding EMT.85 V-ATPase may promote EMT

induced by TGF-β. What is more, low pH is more conducive for

tumour cells to produce more TGF-β and promote EMT which implies

the growth of cancer.86

Hypoxia is another major feature of TME associated with malig-

nant progression, therapy resistance and poor prognosis of glioblasto-

mas (Figure 1). Hypoxia is a pathophysiological condition that

generally arises as a consequence of the rapid proliferation of cancer

cells as they outgrow their blood supply, therefore, depleting the cells

of nutrients and available oxygen. Hypoxia always happens in late-

stage tumours. Hypoxic tumours are found to be highly aggressive

and resistant to chemoradiotherapy because hypoxic tumours require

triple the normal radiation dose to achieve the desirable cell death

effect as a normal irradiating dose which means that hypoxia is also a

key factor in determining the growth of tumour-induced by MDR.87,88

Previous studies have revealed that oxygenation in glioma is

10 mmHg compared with normal brain tissue which is 40 mmHg and

which may arise from radiation resistance.

Moreover, compared with normal cells, the expression of

hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth

factor (VEGF) in adjacent tissues was significantly higher.89,90 Stably

expressed HIF-1α drives gene expression of two metabolic enzymes

lactate dehydrogenase A (LDH-A) and PDK1 which are vital in the

conversion of pyruvate into lactate and inactivating pyruvate dehy-

drogenase (PDH) and subsequently prevent pyruvate oxidation in the

mitochondria to promote glycolysis to improve the tolerance to hyp-

oxia. This process could increase glucose to glycolysis while suppres-

sing OXPHOS and mitochondrial respiration by decreasing the input

into mitochondria to avoid apoptosis.91 It is the classical Warburg

effect. The hydrogen ions removed from sugar will not be oxidized

into the water through the respiratory chain, but will accumulate in

large quantities in the cells, such as lactic acid.92 This altered glucose

metabolism not only enables tumour cells to use glucose-derived car-

bons for the synthesis of essential cellular ingredients but also rapidly

provides ATP to fuel cellular activities. In addition, this metabolic shift

contributes significantly to chemoradiotherapy resistance. Tumour

cells can promote the Warburg effect, enhance acid secretion and

increase extracellular pH (pHe) furtherly promoting the survival of

tumour cells.93 Lactate accumulation also promotes cancer cell migra-

tion by facilitating the interaction of fibroblasts and escaping immune

surveillance.94 At the same time, a large number of metabolites such

as lactic acid and pyruvate can further improve the transcription and

expression activity of HIF-1α, and finally, form a positive feedback

expression of HIF-1α in a hypoxic environment (Figure 1).95 HIF-1α

degrades extracellular matrix and upregulates collagen expression

genes promoting collagen fibre synthesis. HIF-1α promotes the recon-

struction of ECM under hypoxia based on proline 4-hydroxylase A1

(P4HA1), P4HA2 and procollagen lysine oxoglutarate dioxygenase

2 (PLOD2) to increase directional migration.96 HIF-1α regulates VEGF,

TGF-β and prospero homeobox-1 (Prox-1) to mediate the proliferation

and progression of lymphatic endothelial cells and to disrupt the cellu-

lar barrier around existing blood vessels, pulling endothelial cells away

to form new capillaries with fenestrations and fewer tight junctions.

This results in an enhanced infiltration of cellular and plasma compo-

nents into the brain, further inducing the reconstruction of TME, as

well as maintaining the stem cell phenotype of tumour cells promoting

progression and drug resistance.97,98

In addition, nitric oxide synthases (NOS), widely expressed in glio-

mas, use L-arginine to produce primary RNS type NO that interacts

with O2�, generating ONOO�. NO is more effective in quenching
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superoxide and reacts with O2 to form other nitrogen oxides such as

NO2, as a free radical, which in turn may react with NO to yield N2O3

reacting with biomolecules (lipids, proteins and DNA), potentially lead-

ing to cell death (Figure 1).18,99 NO plays a role in the activation of

NF-κB which is a major transcription factor in glioma progression. IκB

kinase-independent NF-κB activation may involve NO-induced IκB

nitration. RNS may disrupt the Keap1-Nrf2 complex which can pro-

long the activation of Nrf2 and promote the antioxidant state inducing

survival of tumour cells.100 RNS also inhibits wild-type p53 through

cysteine (Cys) oxidation and tyrosine (Tyr) nitration contributing to

glioma genesis furtherly.101

Another reason promoting progression and recurrence is MDR. A

formidable obstacle for MDR is the blood-tumour barrier (BTB) and

blood–brain barrier (BBB), filtering barriers of capillaries. They exclude

most compounds except highly lipidized small molecules of less than

400 daltons, rendering potentially powerful anti-cancer drugs impo-

tent for GBM treatment. Thus, breaking the BTB or BBB will signifi-

cantly impact GBM treatment.98 Actually, the BBB is composed of

non-fenestrated brain endothelial cells (BECs) of the capillary wall,

which is surrounded by pericytes, astrocytes, perivascular neurons, a

basal membrane and an extracellular matrix, forming the highly orga-

nized neurovascular unit.102 Besides the nitrosourea compounds car-

mustine (BCNU) and lomustine (CCNU) as well as the platinum agents

cisplatin and carboplatin, the most widely used chemotherapeutic

drug is temozolomide (TMZ), an imidazotetrazine derivative of dacar-

bazine. TMZ could penetrate into the CNS and has 96%–100% bio-

availability.103 However, the concentration of TMZ is far away

efficient. TMZ is one of the substrates of P-glycoprotein (P-gp), an

important efflux pump which locates on the apical membrane side of

endothelial cells forming BBB and serves as a maintainer of the integ-

rity and the polarity of BBB. P-gp not only hinders brain entry of a

large number of xenobiotics including potentially toxic substances and

therapeutic agents but also transports the compounds that have

crossed the BBB back into the circulation (Figure 2).104 Due to the

overexpression of P-gp at the BBB of glioma, only 20% of TMZ

regarding a systemic dose is able to enter the cerebral parenchyma.105

In addition, BBB also accounts for the limited efficacy of other chemo-

therapeutic agents in GBM, such as etoposide, irinotecan, vincristine

and cisplatin. Undeniably, BBB and BTB greatly contribute to the

MDR.106 The mechanisms of MDR in tumour cells which is in the

TME include four aspects: (1) The amplification or overexpression of

transmembrane transporter gene leads to the high expression of

encoded transmembrane transporter, so as to promote drug efflux

and the change of drug subcellular distribution, resulting in the

decrease of drug concentration in cells107 (2) the change of metabolic

transformation, such as the change of some proteases in cells, result

in the enhancement of cell detoxification (3) the change of drug action

target, such as the decrease topoisomerase (TOPO) content or the

change of property leads to the resistance to anti-tumour drugs tar-

geting TOPO (4) other mechanisms include the change of apoptosis-

related pathways, cell proliferation speed, the enhancement of dam-

age repair and the change of pharmacokinetic factors.108 Several

transmembrane transporter proteins may hinder drugs from reaching

the target by reducing the concentration of drugs in tumour cells or

changing the distribution of drugs in cells, such as drug efflux

P-glycoprotein (P-gp), multidrug resistance protein (MRP). P-gp is an

F IGURE 1 Schema depicting sources of ROS and antioxidant defences reported for glioma cells
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efflux drug transporter associated with multidrug resistance gene-1

(MDR-1) expression in the cell membrane, which is responsible for

expelling various drugs from tumour cells to form multidrug resis-

tance.109 Weakly alkaline drugs can lead to capturing ions based on

being protonated in an acidic extracellular environment, which hinders

the effects of anti-cancer chemotherapy drugs. In general, most che-

motherapy drugs are weakly alkaline and the characteristics are prone

to ionize in an acidic environment and with high polarity, so it is not

suitable to pass through the cell membrane.110,111 Once entering

tumour cells, drugs are encapsulated in acidic organelles and the effi-

cacy will be reduced or ineffective. Even several chemotherapy drugs

induce the production of V-ATPase in tumours maintaining the acid

environment. Lysosomal vesicle or endosomes style structures in the

acid environment can further expel drugs out of cells or eliminate

drugs by activating relative secretory pathways. And then these struc-

tures can be further reused to enhance drug resistance limiting the

drug's effects on its molecular targets (mainly DNA). Therefore, the

concentration of chemotherapeutic drugs that can play a toxic and

anti-cancer role in cancer cells is still very low.112 In the hypoxia and

glucose deficient tumour microenvironment, the expression of mRNA

and protein of Topo is decreased and associated with decreased DNA

breakage leading to the decreased cytotoxicity of chemotherapy

drugs. At the same time, the content of complexes and chemotherapy

drugs-TOPO-DNA is decreased resulting in MDR.113

The immune system's response to the tumour can impact the glio-

ma's survival, proliferation and invasiveness.114 Tumour-associated

macrophages (TAMs) are formed by peripheral blood monocytes infil-

trating into solid tumour tissues accounting for a large proportion of

tumour stromal cells. TAMs are an important component of TME. It

has been reported that macrophages are related to immunosuppres-

sion and immune escape.115 In the early stages, tumour cells release

chemokines to attract macrophages and other inflammatory cells

reaching the extracellular matrix. Then TAMs can penetrate the base-

ment membrane so that tumour cells escape the bondage of the base-

ment membrane and reach the surrounding normal tissue matrix.116

At the same time, TAMs and tumour cells can promote angiogenesis

by releasing enzymes to generate angiogenesis, such as MMP2,

MMP-7, MMP-9, MMP-12 and cyclooxygenase-2 (COX-2) to improve

the invasiveness and motility of cells.117,118 Neovascularization can

provide nutrition and oxygen for tumour growth and provide a path

for tumour cell progression.119 TAMs also could release cytokines and

growth factors directly to promote growth, such as VEGF, tumour

necrosis factor-α (TNF-α) interleukin-8 (IL-8) and so on.120 Hypoxia in

TME can further induce macrophages to produce HIF-1α and promote

angiogenesis.121

CAFs exist in the stroma of tumour cells which are associated

with EMT and angiogenesis.122 Fibroblasts activate HIF-1α and NF-κB

signalling pathways to stimulate oxidative stress, autophagy and gly-

colysis. These decomposition products create nutrient support for

tumour growth.123 Besides, CAFs produce a variety of cytokines and

extracellular matrix proteins including stromal cell-derived factor

1 derived factor 1 (SDF1), hepatocyte growth factor (HGF), VEGF,

platelet-derived growth factor (PDGF) and TGF-β to provide a basis

for the progress and progression.124

Mast cells (MC) secret fibroblast growth factor 2 (FGF-2), VEGF

and TGF-β to promote the progress and progression.125 A variety of

cytokines produced by tumour cells can induce the proliferation of

myeloid-derived suppressor cells (MDSCs), such as COX-2, IL-6 and

F IGURE 2 The mechanism of
pump proton inhibitors (PPIs) for
defending multidrug resistance

6 of 23 LI ET AL.



granulocyte-macrophage colony-stimulating factor (GM-CSF) and

VEGF can further enhance the immunosuppression of myeloid sup-

pressor cells and enhance immune escape together.126,127

This kind of neuro-inflammatory TME can lead to the loss of BBB

integrity.128 The consequences of a compromised BBB are deleteri-

ously exposing the brain to potentially harmful concentrations of sub-

stances from the peripheral circulation, adversely affecting neuronal

signalling and abnormal immune cell infiltration.129 All of these can

lead to disruption of brain homeostasis.

Autophagy also displays a key role in the growth of glioma. Autop-

hagy is an important catabolic process of substances in cells.130 It

wraps the wrong proteins or damaged organelles through autophagy

vesicles with double-layer membrane structure, fuses with lysosomes

and hydrolyzes with lysosomal acid hydrolases to produce biological

molecules such as amino acids which are finally reused by cells to real-

ize the circulation of substances in cells.131 In the early stage of

tumour progression, autophagy will inhibit tumour progression. In the

middle and late stages of tumour progression, autophagy will protect

the tumour from stimulating and anoikis apoptosis so as to promote

progression.132 Anoikis is a special form of programmed cell death

induced by the loss of contact between cells and extracellular matrix

and other cells. Usually, tumour cells gather together and closely

adhere to the extracellular matrix to form a ‘home’ for self-function
and survival. When they break away from the cell adhesion matrix

and lose the connection between cells, anoikis apoptosis will gener-

ate.133 Moreover, tumours will produce extensively damaged proteins,

organelles and other harmful components after chemotherapy and

radiotherapy. At this time, the activity of autophagy is improved to

remove harmful substances in time and provide emergency and raw

materials for DNA damage repairing which may result in a poor prog-

nosis of tumour treatment.134

With the long-term administration of chemistry, autophagy could

gather the tumour cells to assemble into blocks promoting progres-

sion. Moreover, autophagy may induce the movement of damaged

proteins, mitochondria and stressors including ROS to maintain the

activation of advanced glioma.135 Chemotherapy could activate the

autophagy genes like autophagy-related protein 5 (Atg5), LC3 and

others involved in autophagic pathways inducing progression.136,137

PI3K-Akt-mTOR is a key signalling pathway that is related to

autophagy.137 mTOR acts as the main regulator of autophagy con-

taining two complexes called mammalian target of rapamycin

complex 1 (mTORC1) and mammalian target of rapamycin complex

2 (mTORC2). MAPK inhibits mTORC1 activity, which leads to

suppression of autophagy activating unc-51-like kinase 1 (ULK1).

ULK1 induces the Beclin-1 phosphorylation, which can result in

autophagy.138–140 At the same time, autophagy is an adaptable

response under the stimulation of the endoplasmic reticulum (ER).

Under ER stress, Ca2+ is released into the cytoplasm and triggers

autophagy by activating the MAPK-TOR signal pathway. In addition,

in the tumour microenvironment, cancer cells experience hypoxia

resulting in the exposure of hydrophobic regions of misfolded/

unfolded proteins and accumulation largely in the ER inducing the

upregulation of unfolded protein response (UPR) and the expression

of autophagy genes inducing invasion and progression. In addition

to canonical UPR, proteotoxicity also stimulates the selective,

autophagy-dependent, removal of discrete ER domains loaded with

misfolded proteins to further alleviate ER stress. These mechanisms

can favour the progression and long-term survival of advanced glioma

cells.141,142

It has been evidenced that autophagy could increase the expres-

sion of NF-κB to activate MMP inducing invasion and progression.143

MMP plays a key role in the invasion process by degrading many ele-

ments of ECM, including collagens, fibronectin and laminin.144 It was

reported that MMP is localized in vasculature cells and tumour cells of

malignant astrocytomas.145 MMP inhibition significantly decreases

invasion, migration and tumour progression in advanced glioma

cells.146 All of the tumour cells would upregulate glycolysis to reduce

the energy supplied by mitochondrial. Autophagy provides a source of

energy in this process to promote the survival and progression of

advanced glioma.76,147

In terms of the pathological of gliomas, some mutations will

indeed cause cells to continuously enter the cell cycle for mitosis,

escape apoptosis, contact inhibition and immunosuppression and

make cells continuously obtain energy so as to cause metabolic abnor-

malities and induce angiogenesis, hypoxia and necrosis of brain

tumours, such as IDH mutation, H3K27M mutation, TERT mutation,

MGMT mutation and so on. These mutations will activate the expres-

sion of various signal pathways and form the basis for the occurrence

and development of glioma.148

4.1 | PPIs can induce apoptosis by changing the
acidic tumour microenvironment

More and more studies have proved that the acidic environment out-

side the tumour cells plays an important role in the development, infil-

tration, dissemination and drug resistance of the tumour (Figure 3).149

PPIs inhibit the activity of V-ATPase in the acidic environment outside

the gastric cancer cells to hinder the proton transport, so as to change

the pH gradient of gastric cancer cells and cause cell inactivation

(Figure 3). The changed pH affects the structure and activity of almost

F IGURE 3 Mechanism of pump proton inhibitors (PPIs) inducing
glioma cell damage
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every enzyme, then, these active enzymes affect various signals and

pathways of cells.150 For example, V-ATPase is involved in the

Wnt/β-Catenin signalling pathway which promotes tumour develop-

ment and progression. Pantoprazole can inhibit V-ATPase so that this

pathway is blocked.151

The concrete mechanism of V-ATPase is to maintain the balance

of abnormal pH gradient inside and outside the cell.152 After being

acidified outside the cell, V-ATPase can activate proteolytic enzymes,

including MMPs, tissue serine proteases and bone morphogenetic

protease type 1 metalloproteinase (BMP-1), to degrade ECM. V-

ATPase can also remove various toxic molecules, such as H+ and

ROS.153–155 In addition, M-ATPase and P-ATPase play a similar role

to V-ATPase. These all exist on the cell membrane, mitochondrial

membrane, lysosomal membrane, endosomal membrane and Golgi

membrane, so as to maintain an acidic environment outside the cell

membrane and inside the organelle membrane in gastric tumours.156

Omeprazole could cause the disorder of the lysosomal function of

gastric tumour cells, further causing the activation of caspase-3.157

The activated caspase-3 cleaves the corresponding cytoplasmic and

nuclear substrates, resulting in the apoptosis of the tumour finally.158

One research report that the rate of immune cell infiltration

(M1 macrophages, neutrophils, CD103 cells and NK cells) is high, and

the antitumor effectors (iNOS, INF-γ, IL-1α) are enhanced after using

the inhibitor of V-ATPase.159 At the same time, the number of cancer

cell-positive cells and the activity of caspase are all decreased.155 The

role of PPIs is exactly similar to the inhibitor of V-ATPase in suppres-

sing the progression of the tumours. Likewise, esomeprazole, as an

inhibitor of V-ATPase, can reverse EMT by inhibiting IκB protein and

furtherly inhibiting the expression of TGF-β and thus countering

tumour.86

The balance of acidity inside and outside cells can maintain the

survival of normal cells. However, the acid–base imbalance is the main

induced element of cell canceration. The main pH value is 7.2 and 7.4

in and outside the normal cells, respectively. However, the main pH

value in and outside the tumour is 7.4 and 6.3, respectively.85 The

tumour could balance this kind of microenvironment through the

functional expression of several different molecular types of machin-

ery. The migration and growth of solid tumours rely on the supple-

ment of glucose.160 In the short term, the tumour cells could adapt to

the decreation of glucose. But the long-term reduction of glucose

would increase the apoptosis of cancer cells. In order to combat the

reduction of glucose, the change in the microenvironment may pro-

duce more lactic acid which may reduce the death of cells induced by

a shortage of glucose.161 The increase of lactic acid could downregu-

late the G1/S transition process in the cell cycle and inhibit tumour

cells in the G0 phase, so as to reduce the demand of tumour cells for

energy and nutrients. At the transcriptional level, the G2/M check-

point was also down-regulated which could further aggregate tumour

cells in the G0 phase.162 Lactic acid could also activate the autophagy

process of cells to reuse intracellular substances to maintain cell sur-

vival.163,164 At the same time, several studies illustrate that lactic acid

also inhibits the apoptosis of tumour cells by maintaining the content

of NADPH and high expression of anti-apoptotic protein.165,166 In a

word, lactic acid can be the main reason leading to tumour cells escap-

ing apoptosis. PPIs could harbour acid production to invert the prolif-

eration induced by lactic acid.167

4.2 | PPIs can induce apoptosis by changing the
anoxic tumour microenvironment

Oxidative stress is a popular research factor to recover the tumour

even the glioma. In general, the damage induced by oxidative stress is

mainly due to the imbalance between the antioxidant defence system

and the excessive formation of ROS.168 In the normal functional

states, the production and removal of ROS are in a dynamic balance.

However, if the production of ROS exceeds the removal as given an

acute stimulation, then, the excessive free radicals will cause irrevers-

ible oxidation damage to the body.169 The main resources of ROS are

mitochondria and cytoplasm.170,171 Mitochondria mainly produce

oxygen-free radicals and non-oxygen-free radicals, such as O2
� and

H2O2.
172 Of course, other cells are the secondary source of ROS in

TME. Macrophages, neutrophils and tumours are the main generated

resources of ROS. ROS generated by macrophages is considered as

defending and phagocytosing tumours.173 Studies also show that acti-

vated monocytes contacting with tumours in TME could generate a

high quantity of ROS producing more impact on DNA damage, meta-

bolic activity, membrane structure and relative protein synthesis.174 A

low level of ROS may activate cell proliferation and inhibit cell senes-

cence and death. The high quantity of ROS may lead to the oxidative

modifications of DNA, protein and lipid, finally, harming cells.175 A

large amount of nitric oxide (NO) will produce peroxynitrite with a

stronger oxidation effect with a superoxide anion. ONOO� can irre-

versibly damage mitochondria by inhibiting the mitochondrial respira-

tory function and the activity of Na+/K+ ATPase and reduce the

biological activity of NO participating in the enhancement of cell

adhesion, proliferation, vasoconstriction accelerating the injury of

arteriosclerosis.18 ROS oxidizes or peroxidases unsaturated fatty acids

of which the function is to support the fluidity of the cell membrane

damaging the permeability of cell membranes, such as membrane

receptors, membrane proteins and ion channels.176 Furthermore, the

nutrients absorbed by cells are reduced, such as vitamins, amino acids

and inorganic salts, resulting in immunopathologic injury. ROS can

break the N-glycosidic bond on nucleotides and produce base-free

sites leading to the breaking of the main chain.177 It could also pro-

mote DNA to produce pyrimidine dimer.178 In addition, modification

of base groups occurs, such as acetylation which further affects pro-

tein synthesis, cytoskeleton and DNA damage repair.179 When taking

protein into consideration, ROS can break and crosslink protein or

polypeptide chains resulting in protease inactivation and metabolic

disorder.180 Besides, due to the high expression of SOD and catalase

enzymes in glioma; there is an accelerated conversion of superoxide

to hydrogen peroxide in tumour cells which makes astrocytes particu-

larly sensitive to damage induced by ROS.181

PPIs have been used to modulate the pHi, disturb the mitochon-

drial membrane potential and produce excessive ROS leading to
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apoptosis (Figure 3).182 Several studies implied the ROS in the TME

may promote more macrophages to inhibit the progression of

tumour.183 In addition, PPIs have been applied to enhance the secre-

tion of gastrin, and then enhance the secretion of insulin by islet cells,

further inhibiting glycolysis and strengthening oxidative stress.183

Studies concluded that P-ATPase plays a crucial role in defending

against ROS.184 Glycolysislar V-ATPase is overexpressed in tumour

cells and metastatic cells to inhibit the generation of ROS in the tumour

acidic microenvironment.50 PPIs could inhibit P-ATPase and V-ATPase

to enhance the sensitivity of tumour cells to oxidative stress.185 Mild

up regulation of mammalian target of rapamycin (mTOR) pathway activ-

ity can promote the production of cellular antioxidants, in turn, while

over-activation will promote the production of ROS. PPIs, such as

esomeprazole, could reduce the over-transduction of mTOR signals

furtherly inhibiting the growth of cancer cells and prolonging lives.186

The activity of cytochrome c oxidase (COX) is associated with the

survival period of glioma. The median survival time of patients with

low tumour COX activity is short, while the median survival time of

patients with high tumour COX activity is long.187 Because COX pro-

motes the switch from glycolytic to OXPHOS metabolism. Increased

COX activity in tumours has been associated with tumour progression

after chemotherapy failure.188,189 Recently, a variety of studies have

considered the activity of COX as a prognostic indicator of gli-

oma.190,191 Pantoprazole blocked the level of COX inducing the

increased depolarized mitochondria (Δψ m) and ROS levels.149 More-

over, PPIs, as the inhibitor of pump proton, have the potential of inhi-

biting the activity of mitochondrial electron transport complex,

electron transport to reduce mitochondrial respiration and energy

supplement so that promoting tumour cell death.192

Different PPIs own different mechanisms of inducing apoptosis.

Bax and Bcl-2 genes play an important role in apoptosis.193 Pantopra-

zole can inhibit the activation of the STAT3 pathway and downregulate

its downstream cyclin D1 and Bcl-2 accordingly so as to inhibit the pro-

liferation of tumour cells and induce apoptosis.194 Omeprazole is differ-

ent from pantoprazole. Experimental research shows omeprazole

cannot induce the apoptosis of SGC-7901 (from lymph node progres-

sion from a 56-year-old female patient with gastric adenocarcinoma)

through the expression of Bax and Bcl-2 related genes, but, through

the decreased mitochondrial membrane potential after the action of

ROS and caspase pathway. Apoptosis signalling pathways related to

caspase activation include mitochondrial/cytochrome c (Cyt-c) path-

way, death receptor pathway and ER pathway. After the action of

omeprazole, the expression of caspase-3 in SGC-7901 cells increased

as time goes on indicating that omeprazole may activate caspase-3

through the mitochondrial/cyt-c pathway to induce apoptosis.195

4.3 | PPIs can enhance oxidative stress based on
NF-κB, MAPK, Keap1/NRF/ARE, PI3K/Akt signal
pathways

ROS affects metabolism mainly based on NF-κB, mitogen-activated

protein kinases (MAPK), Keap1/NRF/ARE and PI3K/Akt signal

pathways (Figure 1).71 At first, NF-κB and MAPK pathways exert an

essential implication in oxidative stress.196 Under no stimulations, the

main components P50/65 and IκBα are active in the cytoplasm with

the limitation of an inhibitor of κB (IκB) protein.197 While accepting a

stimulation, IκB is phosphorylated by IκB kinase (IKK) and IκB

detaches from NF-κB, enabling NF-κB dimers to enter the nucleus

and express relative target genes actively, such as cytokines, COX-2

and pro-inflammatory proteins.24

The three main subfamilies of MAPKs are extracellular signal-

regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK

which may modulate gene expression of nuclear Nrf2 and antioxi-

dants enzymes mediated by ARE.198,199 Moreover, ERK could be acti-

vated in cell growth and differentiation. P38 was involved in cell

apoptosis and stress signal pathway.200,201 PPIs selectively inhibited

the phosphorylation of ERK and stimulated the phosphorylation of

p38 in a time and dose-dependent manner to sensitize apoptosis.201

When the above three enzymes are activated, they can further pro-

mote the phosphorylation of NF-κB and stimulate the release of TNF-

α and IL-6 which would promote the proliferation of tumours.202

Omeprazole has been proved to inhibit the activity of MAPK and NF-

κB and subside with the downregulation of TNF-α, IL-6 and SOD2

which may suppress the growth of tumours.195 MAPK pathways are

downstream pathways of different growth factor receptors such as

epidermal growth factor (EGF). EGF activates protein kinase C (PKC)

thereby activating the Ras/Raf/MEK/ERK pathway. It has been

reported that the Ras/Raf/MEK/ERK pathway is involved in mediating

H2O2-induced apoptosis in human glioma cells.203–205 It is well known

that KRAS mutations contribute to cell proliferation and survival in

numerous cancers, including glioma. One pathway through which

mutant KRAS acts is an inflammatory pathway that involves the

kinase IKK and activates the transcription factor NF-κB. BRAF is a

kinase that is downstream of KRAS and is predictive of poor prognosis

and therapeutic resistance.206 However, there has been evidence that

the inhibitor of V-ATPase can inhibit the mutation of B-Raf and the

subsequent MAPK–ERK pathway to promote tumour apoptosis.207

IDH (Isocitrate dehydrogenase) mutations were mainly distributed in

II, and III-grade gliomas and secondary gliomas defined by WHO. It is

closely related to methylguanine methyltransferase (MGMT) promoter

methylation and TP53 mutation.208 IDH mutations can prevent cells

from resisting γ Radiation, singlet oxygen, UVB radiation and other

emergency damage, promoting the progression of glioma. In terms of

mechanism, IDH mutations will affect the affinity of the enzyme,

resulting in the decrease of the affinity between the enzyme and sub-

strate. IDH mutants will compete with wild-type IDH for substrate,

and mutant IDH is more likely to combine with the substrate to form

a dimer, leading to the accumulation of HIF- α and activation of down-

stream target genes including VEGF so as to promote tumour progres-

sion.209 IDH mutations are often used to predict early glioma. In

classifying lower-grade gliomas with IDH mutation, the V-ATPase is

overexpressed. It is also mentioned that the use of V-ATPase inhibi-

tors can inhibit the expression of the neurodevelopmental core tran-

scription factor POU3F2, thereby reducing IDH mutations and

inhibiting tumour proliferation and anti-radiation.210 Therefore, PPIs
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have the possibility of inhibiting IDH mutation in glioma, thus reduc-

ing the occurrence of glioma. Till now, a clinical epidemiological sur-

vey has shown that esomeprazole can inhibit the methylation of

tumour suppressor gene APC and increase the expression of APC in

oesophageal cancer.211 With regard to glioma, some studies have

shown that PPIs can inhibit MGMT promoter methylation, thereby

increasing the sensitivity of glioma to radiotherapy and chemother-

apy.212 Mutations in H3.3 often occur in glioma, resulting in

decreased H3 histone methylation and increased H3 histone ace-

tylation with subsequent activation of transcription promoting

progression.213 Studies have shown that acetylation inhibitors can

inhibit the pump protons and down-regulate the effective compo-

nents of the MAPK–ERK-BRaf pathway so as to inhibit tumour pro-

liferation. However, in terms of tumours resistant to acetylation

inhibitors, the activity of related drug metabolic enzymes increases so

as to promote anti-tumour, after the administration of omeprazole,

lansoprazole and pantoprazole. These further indicate that PPIs have

the potential to inhibit tumour progression.214–216 One of the serious

risks of glioma is epilepsy. Up to 75% of LGG patients have seizures

during the course of the disease.217 Epilepsy is a transient interruption

of normal electroencephalogram activity, which significantly affects

the quality of life. The mass effect of glioma mainly refers to the exces-

sive proliferation of brain white matter, which leads to the gradual

increase of tumour volume.218 With the increased volume of tumours,

it is easy to compress the surrounding brain tissue, and it is easy to

cause the loss of stability and uncoordinated discharge of neurons dur-

ing the growth of glioma. The two main reasons are IDH mutation and

abnormal activation of the mTOR pathway.219 However, PPIs have the

potential to suppress the IDH mutation and mTOR pathway. Besides, it

has been proved by an experiment that the proportion of myelinated

axons increased after omeprazole treatment. In vitro incubation with

omeprazole significantly promoted the differentiation and maturation

of oligodendrocyte precursor cells. In vivo, Omeprazole treatment

(10 mg/kg) for 2 weeks significantly improved the motor coordination

function of demyelinated mice.220 PPIs also could prolong action

potential.221 Thus, PPIs may play a crucial role in preventing seizures.

Nrf2 is a key transcription factor regulating gene expressions of

several antioxidant enzymes, such as NAD(P)H quinone acceptor oxi-

doreductase 1 (NQO1), SOD, catalase, glutathione peroxidase (GPX),

glutathione reductase (GR) and haeme oxygenase-1 (HO-1), which

play important roles in protecting cells against oxidative damage.222

Nrf2 also plays an important role in the tumour environment to pro-

mote the proliferation of glioma and protect glioma from anti-tumour

therapies.223 Tumour cells lose the heterozygosity of gene through

Nrf2 or Keap1 mutation so that Nrf2 and Keap1 cannot be combined

normally resulting in Nrf2 accumulation in tumour cells and then acti-

vating downstream genes increasing the level of detoxifying enzymes

in tumour cells, promoting the formation and growth of tumour cells,

enhance the resistance of tumour cells to radiotherapy and chemo-

therapy. Thus, blocking-up Nrf2 could suppress glioma.224,225 The

microenvironment serves as the basis for indirect mechanisms of Nrf2

in the treatment of glioma. The mechanism of downregulating Nrf2 is

mainly about two aspects: direct and indirect ways. Indirect

mechanisms include three main aspects of the microenvironment:

perivascular, hypoxic and immune microenvironment.226 Angiogenesis

plays a key role in providing energy so as to activate the proliferation

of glioma. Nrf2 was found to significantly increase microvessel density

(MVD) and expression of small vessel marker CD31.227 Nrf2 could

also regulate angiogenesis based on HIF-1α and VEGFs.228 HIF-1α is a

downstream molecule of Nrf2 to regulate hypoxia. Activation of

HIF-1α could activate numerous perivascular compounds, such as

angiopoietin, endothelin-1, inducible nitric oxide synthase (iNOS),

adrenomedullin and erythropoietin. Furtherly, in turn, VEGF can also

activate Nrf2 according to activate ERK1/2 and induce the production

of antioxidative enzymes.229,230 The glioma is addicted to an anoxic

environment. The overexpression of Nrf2 exerts antioxidant function

and further promotes the expression of HIF-1α and HO-1(HO-1 is

a molecule to resists hypoxia) to inhibit the migration and invasion

of tumours in a hypoxic microenvironment finally.231 HO-1 also

plays a key role in fighting against inflammation via ERK/Nrf2 signal

cascade induced by oxidative stress.232

Glioma could evade immune surveillance to decrease the

response between the tumour cells and immune surveillance cells.

Nrf2/ARE pathway regulates tumour immune surveillance based on

regulating the secretion of cytokines and the function of immune

cells.233 Nrf2 regulates the secretion of a variety of cytokines, such as

INF-γ, IL-5 and IL-13.234 INF-γ induces the production of cytokines

affected by immunosuppression and growth factors, which is condu-

cive to the growth and progress of tumour cells. Besides, it may

downregulate Alpha-fetoprotein (AFP) and melanoma antigen (MAGE)

to promote antigen modulation of tumour cells so as to escape

immune surveillance.235 At the same time, Nrf2 could induce the

transformation of CD4 (+) T cells into the T helper cells 2 (Th2) to

secret IL-4 and IL-10 in order to inhibit immune protection.236 The

above indirect mechanisms all rely on vascular endothelial cells, fibro-

blasts and immune cells which are all existed in TME.19 Nrf2 may

active proteasome protective genes such as Phase II detoxification

enzyme gene, proteasome gene, ubiquitinase gene, antioxidant pro-

tein gene and multidirectional drug-resistant protein 2 (MRP2) gene

which have been proved to inactive external substances and detoxify

and be associated with MDR.237 Besides, under low oxidative stress,

overexpressed Nrf2 will reduce the sensitivity to cytotoxic chemo-

therapeutic drugs by promoting the detoxification of anti-cancer

drugs and enhancing the antioxidant capacity.238,239 Based on the

above mechanisms, PPIs have been proven to inhibit the activation of

Nrf2 and downregulate the expression of genes or enzymes regulated

by Nrf2 to suppress the growth of glioma, such as SOD, GPx, catalase

(CAT), HO-1 which may inhibit antioxidation.240

The acidic microenvironment can inhibit the production and func-

tion of CD4, CD25, factor Forkhead box P3 (FOXp3) and iT-regs

through the PI3K/Akt/mTOR signal pathway.241 IL-10 produced by

iT-regs decreased the production of ROS in the vascular wall, the

activity of NADPH and improved vascular endothelial dysfunction.242

However, it has been proven that omeprazole and pantoprazole have

the ability to reduce the iT-regs differentiation in an acidic microenvi-

ronment so as to suppress the glioma.241
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4.4 | PPIs can inhibit tumour progression by
inhibiting tumour-related inflammation

Enhanced inflammation is a risk factor for many cancers. Immunosup-

pression caused by inflammation is one of the main reasons for poor

prognosis and the short survival of glioma patients.238 Macrophages

are natural immune cells that can be found in most TMEs.243 Research

reported that macrophages produce a small number of tumorigenic

factors in vitro, and their ability to inhibit T-cell activation and pro-

liferation is reduced and associated with the decreased of Dew

sugar receptor-1 (CD206), IL-10, TGF-β, the expression of arginase-1,

matrix metalloproteinase and vascular endothelial growth factor after

using sh-V-ATPase.244,245 Being similar to the inhibitor of V-ATPase

and sh-V-ATPase, PPIs may play a similar role in inhibiting tumour

progression.

In different microenvironments, there are different macrophage

subtypes containing pro-inflammatory and anti-inflammatory. M1

subtype could promote macrophage phenotypes to inhibit tumour.

M2 subtype could suppress macrophage phenotypes to promote

tumour.246,247 Research has proved that pantoprazole may enhance

recruitment of TAM in TME showing augmented expression of

CD11c, phagocytosis and macrophage morphology.248,249 Phagocyto-

sis and expression of CD11c are considered important signature

markers of macrophages with M1 phenotype.250 Additionally, panto-

prazole displays increased anti-tumour activity with an augmented

expression of anti-tumour molecules, such as IL-1, TNF-α, IL-2R and

NO. Experiments show that pantoprazole could counter the tumour

as exposed in vitro. Thus, PPIs may not directly enhance the anti-

tumour activity, but rely on the cytokines secreted by macrophages

indirectly.251

Inflammatory mediators can change the local environment of

tumours, and chronic inflammation can lead to DNA damage.252

Clinically, anti-inflammatory drugs can reduce the incidence of

cancer.85 Especially, PPIs have been studied to target TNF-α monoclo-

nal antibodies, anti-sensory targeting Smad7, and non-steroidal anti-

inflammatory drugs to prevent cancer based on inflammation

(Figure 3).253 Some inflammatory mediators and chemokines are

special inflammatory mediators. PPIs directly inhibit epithelial cells

and neutrophils or the production of relative chemokines playing an

anti-inflammatory role through suppressing the secretion of INF-α

and proinflammatory mediators such as IL-1 and translationally

controlled tumour protein (TCTP) so as to inhibit cancer-related

symptoms and progress.254 Besides, STAT3 plays an important role in

maintaining and promoting the tumorigenic inflammatory environ-

ment, the transformation and progression of malignant tumours

based on NF-κB and IL-6/GP130/JAK pathways.255 There has been

a research reporting that pantoprazole can inhibit the activity of the

IL-6/STAT3 pathway in gastric cancer cells.192

TNF-α and IL-6 are two kinds of cytokines that play an important

role in the process of cancerous cachexia.256,257 IL-6-like cytokines

independently mediate the excessive lipolysis and metabolism in can-

cerous cachexia.258 TNF-α downregulates the PLIN pathway by upre-

gulating the MAPK pathway so as to promote lipolysis. Abnormal

metabolism of fat has a lot to do with the progression of tumours.259

Several relative experiments showed that TNF-α and IL-6 declined

apparently in the serum of cancer cells in mice after intragastric

omeprazole which implied that PPIs inhibit the tumour progression

caused by fat metabolism.254 Besides, PPIs may decrease the quality

of IL-4 directly and furtherly stimulate the production of TNF-α.260

Omeprazole and pantoprazole have been already proved to decrease

pro-inflammatory factors such as TNF and IL-6, and increase anti-

inflammatory factors such as IL-10 implying the potential for

anti-tumour.193 As a result, PPIs may give play to anti-inflammatory

and cancer clearance. Furthermore, PPIs could transfer M2 macro-

phages to M1 macrophages to fight cancer.261 Also, PPIs have a direct

effect on neutrophils, monocytes, endothelial cells and epithelial cells,

so as to exert an anti-inflammatory effect and inhibit INF-α, secretion

of proinflammatory mediators such as IL-1 and TCTP.262 The anti-

cancer activity of PPIs is based on the fact that it can significantly

reduce the production of acid-active substances, IL-6 and nitric oxide,

especially TNF-α, expression of inducible NOS and COX-2. PPIs can

act in an acidic environment by inhibiting inflammatory factors to

further inhibit cancer.263

4.5 | PPIs display an anti-tumour effect through
autophagy

V-ATPase is the main proton pump that acidifies vesicles such as lyso-

somes. PPIs can disrupt the lysosomal localization of V-ATPase lead-

ing to lysosomal dysfunction, thus contributing to the lysosomal

storage disorders in order to counter tumours.264

The mammalian target of rapamycin (mTOR) is a highly conserva-

tive serine/threonine-protein kinase that belongs to the PI3K-related

protein kinase family.112 MTOR can phosphorylate Atg13 preventing

it from interacting with complexes containing Atg1 and Atg17, and

inhibiting autophagy assembly so as to reduce radiation resistance.265

The activation of mTOR could induce aerobic glycolysis through upre-

gulating Pyruvate kinase M2 (PKM2), as well as the activation of

OXPHO.266 MTOR can also stimulate the metabolism of lipids,

nucleotides and other components to promote tumour progression.

Moreover, mTOR can activate HIF-1α promoting the regeneration of

blood vessels.267 MTORC2 can also directly promote tumorigenesis

by activating Akt or Serum- and glucocorticoid-inducible kinases

(SGK) promoting the growth of tumours.268

Hypoxia plays a crucial role in regulating autophagy since the

absence of oxygen leads to inhibition of mTORC1 and subsequently

decreased inhibition of the unc-51 like Ulk1 complex finally resulting

in activation of autophagy.269 PPIs depolarize mitochondrial mem-

brane potential by increasing the opening of mitochondrial permeabil-

ity transition pore (MPTP), resulting in excessive production of ROS

which further stimulates lipid peroxidation and reduces glutathione

levels.270 This process could generate excessive ROS leading to lyso-

somal chamber instability which will affect mitochondrial membrane

potential and mitochondrial energy supplement to suppress hypoxia

and autophagy in advanced glioma promoting the anti-glioma.270 In
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addition, more ROS will promote the release of pro-apoptotic mole-

cules into the cytoplasm and further promote autophagy.271 It has

been reported that PPIs can induce autophagy by activating ERK and

JNK and inhibit mTOR signalling by activating MAPK.201,272 There is

also evidence showing that PPIs mediate the strong upregulation of

Beclin-1 by activating NF-κB which is responsible for the ROS-

induced autophagy making the foundation for anti-tumour.273,274

Besides, PPIs could moderate the acidic microenvironment to

inhibit the activation of lysosomal cathepsins to suppress MMP increas-

ing sensitivity to TMZ. Finally, the progression of the tumour was inhib-

ited.275 PPIs may activate MAPK kinase, reduce blood glucose levels

and block glycolysis induced by TNF-α so as to invert the Warburg

effect which could activate the autophagy promoting progression.276

5 | PPIS SENSITIZE
CHEMORADIOTHERAPY PROMOTING
APOPTOSIS

Chemoradiotherapy resistance is an important element to early recur-

rence, treatment failure and dismal prognosis of glioblastoma.277 With

growing amounts of evidence that chemoradiotherapy may induce

the more normal cells to glioma leading to recurrence and progres-

sion.278,279 Even if the concentration of drugs entering plasma and

cerebrospinal fluid is enough to inhibit the progression of the tumour,

the drug resistance and progression of glioma also happen from time

to time.280 Thus, hoping to make use of PPIs and chemoradiotherapy

together to play a good effect.

The radiation may lead to the mutation of mitochondrion respira-

tory chain complex I and II and DNA which will lead to more ROS in

glioma.281 Excessive ROS could damage DNA containing mitochon-

drion DNA leading to respiratory chain dysfunction, even higher levels

of free radicals in the cells, and the disbalance of O2
� in and outside

the cells, and, further, block oxygen supplement.282 In addition, ioniz-

ing radiation (IR) will produce more free radicals which combine with

oxygen and further lead to permanent DNA damage.283 Thus, radio-

therapy can irreversibly damage DNA through reactive oxygen spe-

cies. However, the tolerance of normal cells to radiation dose is

limited, and the radiation dose cannot be increased continuously.284

Hypoxic tumour cells continue to exist after radiation and transform

into a more invasive phenotype.19 PPIs such as esomeprazole could

generate more ROS persistently to make up for the deficiency of oxi-

dative stress caused by limited radiation.285 The inhibitory effect of

many chemotherapeutic drugs depends on the oxygen partial pressure

of the TME. In general, the sensitivity of chemotherapy was the stron-

gest at the peak of oxygen partial pressure.286,287 Because of the abil-

ity to enhance oxygen partial pressure through enhancing oxidative

stress, PPIs could increase the sensitivity to chemotherapy. However,

we need to explore the dose and concentration of different PPIs with

the maximum oxygen partial pressure in TME.

The inverted pH gradient of cell membrane inside and outside

tumour is an important mechanism leading to drug resistance.288 The

acidic extracellular microenvironment makes a chemical and physical

shelter for the anti-tumour effect of weakly alkaline chemotherapeutic

drugs. Once the chemotherapeutic drugs are protonated and alkalized,

they cannot pass through the plasma membrane.241,272 Chemothera-

peutic drugs in tumour cells enter lysosomes, acidic organelles, and

acidic vesicles through protonation and neutralization, and are further

discharged out of cells.289 PPIs changing cell microenvironment can

inhibit the intracellular P13K/Akt/mTOR signal pathway and bypass

the TSCL/2-Rheb signal pathway to inhibit its downstream mTOR

molecules, and then inhibit the expression of HIF-1α, MDR protein

and P-gp.290,291 In glioma, MDR protein and P-gp gene are

overexpressed.292 P-gp could combine with chemotherapeutic drugs to

pump the substrate out of the cell by hydrolyzing ATP, so as to inhibit

the effect of chemotherapeutic drugs. Being similar to P-gp, overex-

pressed multidrug resistant-associate protein-1(MRP1) pumps the drug

out of cells.293 Research implied that PPIs may inhibit the expression of

MRP1 and P-gp to reverse chemoresistance. The excessive PPIs could

be cultured in vitro by the alkalizate microenvironment of cancer cells

so that increasing chemosensitivity.294 PPIs can reverse the Warburg

effect of tumours by inhibiting pyruvate dehydrogenase kinases and

subsequently activating mitochondrial OXPHO or changing anaerobic

digestion and ATP binding box (ABC) transcription factors, so as to

increase the sensitivity of cancer cells to chemoradiotherapy inducing

apoptosis.86,295

PPIs can prevent the occurrence of EMT by interfering with the

expression of the TGF-β/Smad signal pathway and NF-κB in the acidic

microenvironment.296–299 It also has been proved that rabeprazole

administration induced cell death and reduced cell migration together

with EMT by inhibiting Akt and Gsk-3β phosphorylation, which in turn

suppressed the EMT. In addition to molecular aberrations and hyp-

oxia, pump protons may facilitate epithelial to mesenchymal transition

by modulating the pH of the TME. We found rabeprazole could play a

better role in the unbuffered acidic environment to inhibit EMT.300

What is more, pantoprazole inhibits breast cancer resistance protein

(BCRP) and has a chemo-sensitizing activity, thereby contributing to

improved delivery of imatinib (a kind of drug for treating leukaemia)

into the CNS.299 It has been proved that treatment of the cancer cells

with the PPIs resulted in order of magnitude reduction in the half-

maximal inhibitory concentration (IC50) values.301 Esomeprazole

enhances radiosensitivity in radiation-resistant squamous cell carci-

noma of the head and neck.285 PPIs could also increase chemothera-

peutic drug uptake by the tumour cells.302 PPIs, as the small

molecules, could pass through BBB and BTB (Table 1).

In the clinic, PPIs have been proven the ability to overcome the

resistance of conventional chemotherapeutic drugs for breast cancer

and radiation. The use of PPIs in 6754 patients suffering from breast

cancer significantly not only improved the overall survival rate of

these patients and reduced the disease recurrence rate but overcome

the resistance of conventional chemotherapy drugs and radiation.303

Besides, based on clinical epidemiological comparative trials, PPIs can

assist radiotherapy and chemotherapy to delay the overall survival of

206 patients with rectal cancer.56 What is more, Omeprazole not only

improved the effect of radiotherapy and chemotherapy but also

delayed the recurrence and complications of 125 rectal cancer
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patients.304 The combined use of PPIs in the treatment of laryngeal

cancer can reduce the incidence of pharyngeal reflux and mucosi-

tis.305 Although there has been no relative research studying the syn-

ergistic effect of chemoradiotherapy and PPIs in glioma, based on the

above-mentioned relevant clinical epidemiological study about the

administration of PPIs in other cancers and preclinical pharmacologic

or toxicologic metabolism and mechanism analysis. Of course,

improper dosage selection of PPIs and chemoradiotherapy will also

lead to the aggravation of adverse reactions. A clinical study showed

that the inappropriate dose of PPIs led to the further aggravation of

radiation pneumonia after radiotherapy for lung cancer.306

In general, PPIs may be a potential valuable anti-cancer drug to

promote chemoradiotherapy sensitivity so as to block the growth of

glioma.

6 | THE ACUTE SIDE EFFECT OF PPIS AND
THE NECESSITY OF COMBINING PPIS WITH
CHEMORADIOTHERAPY

The basic side effects of PPIs contain nausea,307 diarrhoea or

headache,308 and even more serious side effects such as subacute cuta-

neous lupus erythematosus,309 and interstitial nephritis and pneumo-

nia.310 After a long period of the epidemiological follow-up survey,

patients with long-term use of PPIs may get complications of suppurative

liver abscess, pulmonary tuberculosis and inflammatory bowel disease.311

Inflammatory mediators can cause metabolic disorders as being with PPIs

for a long time, such as IL-1, IL-6, TNF-α, INF-γ and prostaglandin E2

(PGE2) which may induce an increase in muscle decomposition and a

decrease of muscle synthesis lead to the decrease of muscle mass and

muscle strength, even furtherly subside with decreased physical function,

polymyositis and rhabdomyolysis.312 Besides, mitochondrial would be

impaired and intestinal microbial would change based on the proximal pH

of the intestine increases.313 It has been proved that PPIs elevate the pH

of the stomach and upper gut causing more bacteria, even pathogenic

bacteria, to survive in the gastrointestinal tract and enter the gut gradu-

ally.314 Vitamin B12, vitamin C, vitamin D, magnesium, calcium, iron,

β-carotene and zinc will be reduced due to the decreased relative quality

of food release and body absorption.315–319 Suppressing magnesium may

inhibit the absorption of Vitamin D implying the release of adipocytokine

which is involved in the regulation of glucose levels and fatty acid break-

down inducing insulin resistance so that the appearance of obesity and

contribute to an increase of the inflammatory state.315 Based on a

reported real case, PPIs may be associated with several mental

diseases.320 Thus, it is urgent to design specific and efficient combined

medication or united anti-glioma therapies to treat glioma.

7 | CONCLUSIONS AND FUTURE
DIRECTIONS

The tumour microenvironment is the main medium for proliferation,

progression and multidrug resistance of tumours. Acidity and hypoxia,

as well as the relative inflammatory response and autophagy, are the

main influencing factors for tumour progression and progression in

TME. PPIs could promote apoptosis and sensitize chemoradiotherapy

through altering the release of inflammatory factors and cytokines of

inflammatory cells, autophagy and promoting oxidative stress based on

NF-κB, MAPK, Keap1/NRF/ARE, PI3K/Akt signal pathways in TME.

PPIs could be considered as an adjuvant treatment strategy to be com-

bined with medication to fight glioma. In order to better predict the

therapeutic effect, COX can be considered a prognostic indicator.

In terms of the practical application scope of PPIs nowadays,

many kinds of PPIs have been used for different cancer, such as liver,

and breast cancer. Nowadays, there is little known about its possible

glioma protective effects and relatively few studies on practical appli-

cation in glioma. Therefore, it is necessary to put PPIs into practice to

determine the real advantages and disadvantages of PPIs.
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