TABLE 6.
Article | Classifier | Test performance outcome metrics | ||||||
---|---|---|---|---|---|---|---|---|
Acc | Sn/Rc | Sp | PPV/Pc | NPV | AUC | Others | ||
Frakking et al. (2022) | SVM | 98 | 89 | 100 | 100 | 100 | - | F1: 0.94 |
Lee et al. (2006) ( a ) | RBF | 82.1 | 74.7 | 87.8 | - | - | - | Adj. accuracy: 81.3 |
Lee et al. (2011) ( a ) | Airway invasion: LDA Euclidean | - | 100 | 49.4 | - | - | - | Adj. accuracy: 74.7 |
Valleculae BC: LDA Mahalanobis | - | 75.5 | 91.9 | - | - | - | Adj. accuracy: 83.7 | |
Pyriform sinuses BC: LDA w/Mahalanobis | - | 81.7 | 86.8 | - | - | - | Adj. accuracy: 84.2 | |
Merey et al. (2012) | LDA w/Euclidean | 62.8 | 50.7 | 74.9 | - | - | - | - |
LDA w/Mahalanobis | 60.6 | 69.8 | 51.4 | - | - | - | - | |
SVM linear | 62.0 | 51.5 | 72.4 | - | - | - | - | |
SVM RBF | 80.6 | 80.0 | 81.2 | - | - | - | - | |
SVM RBF + B2 optimizer | 86.9 | 89.6 | 92.2 | - | - | - | - | |
Park et al. (2022) ( b ) | Logistic Regression | 68.2 | 65.7 | 70.7 | 69.3 | 67.8 | 0.69 | F1: 0.67 |
Decision Tree | 69.0 | 62.0 | 76.0 | 73.3 | 66.6 | 0.70 | F1: 0.67 | |
Random Forest | 73.7 | 70.7 | 76.7 | 75.7 | 72.5 | 0.78 | F1: 0.73 | |
SVM | 69.7 | 71.0 | 68.3 | 69.4 | 70.2 | 0.68 | F1: 0.70 | |
GMM | 66.2 | 64.7 | 67.7 | 66.3 | 67.5 | 0.64 | F1: 0.64 | |
XGBoost | 74.8 | 72.7 | 77.0 | 76.8 | 74.8 | 0.78 | F1: 0.74 | |
Sarraf Shirazi et al. (2014) | SVM | 86.0 | 91.0 | 84.0 | - | - | - | - |
Sarraf Shirazi et al. (2012) | Classify population: min distance classifier | 90.0 | - | - | - | - | - | - |
Classify swallow: fuzzy k-means | 86.4 | 86.4 | 86.4 | 61.5 | 96.2 | - | - | |
Sejdic et al. (2013) ( a ) | Bayes | 94.6 | 92.5 | 95.6 | - | - | - | - |
Shu et al. (2022) | Naïve Bayes w/AC-GAN | 66.38 | 39.03 | 74.6 | - | - | - | F1: 22.02 |
MCC: 0.0324 | ||||||||
K-means w/AC-GAN | 72.94 | 12.40 | 86.41 | - | - | - | F1: 13.24 | |
MCC: −0.0009 | ||||||||
SVM w/AC-GAN | 75.02 | 21.71 | 86.84 | - | - | - | F1: 22.83 | |
MCC: 0.0938 | ||||||||
ANN w/AC-GAN | 71.39 | 32.84 | 79.78 | - | - | - | F1: 28.75 | |
MCC: 0.1171 |
Classifier column: AC-GAN, auxiliary classifier Wasserstein generative adversarial network; BC, bolus clearance; GMM, gaussian mixture model; LDA, linear discriminant analysis; RBF, radial basis function; SVM, support vector machine; XGBoost, Extreme gradient boosting; w/, with. Outcome metrics column: Acc, accuracy; AUC, area under receiver-operating curve; NPV, negative predictive value; Pc, precision; PPV, positive predictive value; Rc, recall; Sn: sensitivity; Sp, spec-ificity.
Classifiers with feature combination of the best accuracy/adjusted accuracy are shown in this table.
Performance for classifying mild/severe dysphagia or aspirated using model trained by acoustics only (without clinical data) is shown in this table.