Skip to main content
. 2023 Jun 27;11:1205009. doi: 10.3389/fbioe.2023.1205009

TABLE 6.

Outcome metrics and test performance.

Article Classifier Test performance outcome metrics
Acc Sn/Rc Sp PPV/Pc NPV AUC Others
Frakking et al. (2022) SVM 98 89 100 100 100 - F1: 0.94
Lee et al. (2006) ( a ) RBF 82.1 74.7 87.8 - - - Adj. accuracy: 81.3
Lee et al. (2011) ( a ) Airway invasion: LDA Euclidean - 100 49.4 - - - Adj. accuracy: 74.7
Valleculae BC: LDA Mahalanobis - 75.5 91.9 - - - Adj. accuracy: 83.7
Pyriform sinuses BC: LDA w/Mahalanobis - 81.7 86.8 - - - Adj. accuracy: 84.2
Merey et al. (2012) LDA w/Euclidean 62.8 50.7 74.9 - - - -
LDA w/Mahalanobis 60.6 69.8 51.4 - - - -
SVM linear 62.0 51.5 72.4 - - - -
SVM RBF 80.6 80.0 81.2 - - - -
SVM RBF + B2 optimizer 86.9 89.6 92.2 - - - -
Park et al. (2022) ( b ) Logistic Regression 68.2 65.7 70.7 69.3 67.8 0.69 F1: 0.67
Decision Tree 69.0 62.0 76.0 73.3 66.6 0.70 F1: 0.67
Random Forest 73.7 70.7 76.7 75.7 72.5 0.78 F1: 0.73
SVM 69.7 71.0 68.3 69.4 70.2 0.68 F1: 0.70
GMM 66.2 64.7 67.7 66.3 67.5 0.64 F1: 0.64
XGBoost 74.8 72.7 77.0 76.8 74.8 0.78 F1: 0.74
Sarraf Shirazi et al. (2014) SVM 86.0 91.0 84.0 - - - -
Sarraf Shirazi et al. (2012) Classify population: min distance classifier 90.0 - - - - - -
Classify swallow: fuzzy k-means 86.4 86.4 86.4 61.5 96.2 - -
Sejdic et al. (2013) ( a ) Bayes 94.6 92.5 95.6 - - - -
Shu et al. (2022) Naïve Bayes w/AC-GAN 66.38 39.03 74.6 - - - F1: 22.02
MCC: 0.0324
K-means w/AC-GAN 72.94 12.40 86.41 - - - F1: 13.24
MCC: −0.0009
SVM w/AC-GAN 75.02 21.71 86.84 - - - F1: 22.83
MCC: 0.0938
ANN w/AC-GAN 71.39 32.84 79.78 - - - F1: 28.75
MCC: 0.1171

Classifier column: AC-GAN, auxiliary classifier Wasserstein generative adversarial network; BC, bolus clearance; GMM, gaussian mixture model; LDA, linear discriminant analysis; RBF, radial basis function; SVM, support vector machine; XGBoost, Extreme gradient boosting; w/, with. Outcome metrics column: Acc, accuracy; AUC, area under receiver-operating curve; NPV, negative predictive value; Pc, precision; PPV, positive predictive value; Rc, recall; Sn: sensitivity; Sp, spec-ificity.

a

Classifiers with feature combination of the best accuracy/adjusted accuracy are shown in this table.

b

Performance for classifying mild/severe dysphagia or aspirated using model trained by acoustics only (without clinical data) is shown in this table.