Table 6.
Performance of different prediction models for rejection and mortality.
| Prediction models | Precision | Recall | F1-score | AUROCa | AUPRCb | |||||
| Rejection | ||||||||||
|
|
At 1 year | |||||||||
|
|
|
XGBoostc | 0.688 | 0.726 | 0.691 | 0.641 | 0.576 | |||
|
|
|
LRd | 0.698 | 0.737 | 0.679 | 0.648 | 0.576 | |||
|
|
|
SVMe | 0.531 | 0.728 | 0.614 | 0.485 | 0.614 | |||
|
|
|
RFf | 0.695 | 0.735 | 0.677 | 0.664 | 0.575 | |||
|
|
|
SGDg | 0.641 | 0.611 | 0.623 | 0.547 | 0.592 | |||
|
|
|
MLPh | 0.662 | 0.712 | 0.668 | 0.627 | 0.578 | |||
|
|
|
AdaBoosti | 0.699 | 0.735 | 0.696 | 0.648 | 0.576 | |||
|
|
|
NNj | 0.610 | 0.699 | 0.629 | 0.504 | 0.604 | |||
|
|
At 3 years | |||||||||
|
|
|
XGBoost | 0.717 | 0.768 | 0.728 | 0.695 | 0.739 | |||
|
|
|
LR | 0.709 | 0.779 | 0.711 | 0.692 | 0.737 | |||
|
|
|
SVM | 0.617 | 0.785 | 0.691 | 0.480 | 0.663 | |||
|
|
|
RF | 0.724 | 0.785 | 0.707 | 0.706 | 0.738 | |||
|
|
|
SGD | 0.680 | 0.677 | 0.679 | 0.523 | 0.668 | |||
|
|
|
MLP | 0.697 | 0.766 | 0.712 | 0.675 | 0.733 | |||
|
|
|
AdaBoost | 0.717 | 0.769 | 0.728 | 0.703 | 0.734 | |||
|
|
|
NN | 0.673 | 0.780 | 0.694 | 0.491 | 0.664 | |||
|
|
At 5 years | |||||||||
|
|
|
XGBoost | 0.873 | 0.915 | 0.881 | 0.697 | 0.888 | |||
|
|
|
LR | 0.841 | 0.916 | 0.877 | 0.685 | 0.885 | |||
|
|
|
SVM | 0.841 | 0.917 | 0.877 | 0.462 | 0.841 | |||
|
|
|
RF | 0.841 | 0.917 | 0.877 | 0.676 | 0.882 | |||
|
|
|
SGD | 0.853 | 0.816 | 0.833 | 0.526 | 0.851 | |||
|
|
|
MLP | 0.847 | 0.905 | 0.873 | 0.667 | 0.882 | |||
|
|
|
AdaBoost | 0.866 | 0.911 | 0.880 | 0.705 | 0.887 | |||
|
|
|
NN | 0.853 | 0.915 | 0.877 | 0.484 | 0.847 | |||
| Mortality | ||||||||||
|
|
At 1 year | |||||||||
|
|
|
XGBoost | 0.878 | 0.926 | 0.896 | 0.663 | 0.838 | |||
|
|
|
LR | 0.899 | 0.929 | 0.895 | 0.669 | 0.835 | |||
|
|
|
SVM | 0.863 | 0.929 | 0.895 | 0.502 | 0.868 | |||
|
|
|
RF | 0.863 | 0.929 | 0.895 | 0.697 | 0.834 | |||
|
|
|
SGD | 0.875 | 0.912 | 0.891 | 0.534 | 0.859 | |||
|
|
|
MLP | 0.887 | 0.928 | 0.897 | 0.652 | 0.837 | |||
|
|
|
AdaBoost | 0.886 | 0.926 | 0.898 | 0.667 | 0.838 | |||
|
|
|
NN | 0.863 | 0.927 | 0.894 | 0.493 | 0.868 | |||
|
|
At 3 years | |||||||||
|
|
|
XGBoost | 0.725 | 0.745 | 0.729 | 0.737 | 0.567 | |||
|
|
|
LR | 0.709 | 0.739 | 0.699 | 0.719 | 0.566 | |||
|
|
|
SVM | 0.626 | 0.722 | 0.607 | 0.574 | 0.584 | |||
|
|
|
RF | 0.718 | 0.745 | 0.706 | 0.758 | 0.569 | |||
|
|
|
SGD | 0.646 | 0.596 | 0.614 | 0.564 | 0.584 | |||
|
|
|
MLP | 0.707 | 0.735 | 0.707 | 0.711 | 0.567 | |||
|
|
|
AdaBoost | 0.720 | 0.744 | 0.720 | 0.738 | 0.565 | |||
|
|
|
NN | 0.603 | 0.677 | 0.623 | 0.503 | 0.600 | |||
|
|
At 5 years | |||||||||
|
|
|
XGBoost | 0.688 | 0.690 | 0.689 | 0.748 | 0.575 | |||
|
|
|
LR | 0.668 | 0.671 | 0.669 | 0.718 | 0.559 | |||
|
|
|
SVM | 0.577 | 0.588 | 0.555 | 0.613 | 0.530 | |||
|
|
|
RF | 0.717 | 0.718 | 0.717 | 0.763 | 0.574 | |||
|
|
|
SGD | 0.599 | 0.604 | 0.600 | 0.596 | 0.521 | |||
|
|
|
MLP | 0.636 | 0.638 | 0.622 | 0.683 | 0.550 | |||
|
|
|
AdaBoost | 0.692 | 0.692 | 0.692 | 0.735 | 0.562 | |||
|
|
|
NN | 0.508 | 0.534 | 0.501 | 0.517 | 0.514 | |||
aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cXGBoost: extreme gradient boosting.
dLR: logistic regression.
eSVM: support vector machine.
fRF: random forest.
gSGD: stochastic gradient descent.
hMLP: multilayer perceptron.
iAdaBoost: adaptive boosting.
jNN: neural network.