Skip to main content
. 2023 Jun 20;7:e45352. doi: 10.2196/45352

Table 6.

Performance of different prediction models for rejection and mortality.

Prediction models Precision Recall F1-score AUROCa AUPRCb
Rejection

At 1 year


XGBoostc 0.688 0.726 0.691 0.641 0.576


LRd 0.698 0.737 0.679 0.648 0.576


SVMe 0.531 0.728 0.614 0.485 0.614


RFf 0.695 0.735 0.677 0.664 0.575


SGDg 0.641 0.611 0.623 0.547 0.592


MLPh 0.662 0.712 0.668 0.627 0.578


AdaBoosti 0.699 0.735 0.696 0.648 0.576


NNj 0.610 0.699 0.629 0.504 0.604

At 3 years


XGBoost 0.717 0.768 0.728 0.695 0.739


LR 0.709 0.779 0.711 0.692 0.737


SVM 0.617 0.785 0.691 0.480 0.663


RF 0.724 0.785 0.707 0.706 0.738


SGD 0.680 0.677 0.679 0.523 0.668


MLP 0.697 0.766 0.712 0.675 0.733


AdaBoost 0.717 0.769 0.728 0.703 0.734


NN 0.673 0.780 0.694 0.491 0.664

At 5 years


XGBoost 0.873 0.915 0.881 0.697 0.888


LR 0.841 0.916 0.877 0.685 0.885


SVM 0.841 0.917 0.877 0.462 0.841


RF 0.841 0.917 0.877 0.676 0.882


SGD 0.853 0.816 0.833 0.526 0.851


MLP 0.847 0.905 0.873 0.667 0.882


AdaBoost 0.866 0.911 0.880 0.705 0.887


NN 0.853 0.915 0.877 0.484 0.847
Mortality

At 1 year


XGBoost 0.878 0.926 0.896 0.663 0.838


LR 0.899 0.929 0.895 0.669 0.835


SVM 0.863 0.929 0.895 0.502 0.868


RF 0.863 0.929 0.895 0.697 0.834


SGD 0.875 0.912 0.891 0.534 0.859


MLP 0.887 0.928 0.897 0.652 0.837


AdaBoost 0.886 0.926 0.898 0.667 0.838


NN 0.863 0.927 0.894 0.493 0.868

At 3 years


XGBoost 0.725 0.745 0.729 0.737 0.567


LR 0.709 0.739 0.699 0.719 0.566


SVM 0.626 0.722 0.607 0.574 0.584


RF 0.718 0.745 0.706 0.758 0.569


SGD 0.646 0.596 0.614 0.564 0.584


MLP 0.707 0.735 0.707 0.711 0.567


AdaBoost 0.720 0.744 0.720 0.738 0.565


NN 0.603 0.677 0.623 0.503 0.600

At 5 years


XGBoost 0.688 0.690 0.689 0.748 0.575


LR 0.668 0.671 0.669 0.718 0.559


SVM 0.577 0.588 0.555 0.613 0.530


RF 0.717 0.718 0.717 0.763 0.574


SGD 0.599 0.604 0.600 0.596 0.521


MLP 0.636 0.638 0.622 0.683 0.550


AdaBoost 0.692 0.692 0.692 0.735 0.562


NN 0.508 0.534 0.501 0.517 0.514

aAUROC: area under the receiver operating characteristic curve.

bAUPRC: area under the precision-recall curve.

cXGBoost: extreme gradient boosting.

dLR: logistic regression.

eSVM: support vector machine.

fRF: random forest.

gSGD: stochastic gradient descent.

hMLP: multilayer perceptron.

iAdaBoost: adaptive boosting.

jNN: neural network.