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Significance

Understanding the processes 
responsible for the striking plant 
diversity found in tropical 
forests has been a constant 
preoccupation of ecology and 
evolutionary biology. Recent 
studies have proposed a role for 
introgressive gene flow. To test 
the prevalence of introgression 
in a high-diversity clade of trees 
with a specialized pollination 
system, we built a global 
phylogenomic framework of figs 
(Ficus), a keystone species across 
tropical forests and partners in a 
celebrated pollination mutualism. 
Our results based on 1,858 
genes for 520 species of figs and 
relatives found limited 
introgression in the nuclear 
genome despite widespread 
cytoplasm transfer, consistent 
with phylogenetically stable 
lineages despite occasional 
hybridization. A well-resolved 
phylogenomic framework for figs 
provides an important tool for 
classification and comparative 
evolutionary studies.
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EVOLUTION

Echoes of ancient introgression punctuate stable genomic 
lineages in the evolution of figs
Elliot M. Gardnera,b,c,1,2 , Sam Bruun-Lundd,1 , Matti Niissaloc,1 , Bhanumas Chantarasuwane, Wendy L. Clementf, Connie Gerig, Rhett D. Harrisonh , 
Andrew L. Hippi , Maxime Holvoetd, Gillian Khewc, Finn Kjellbergj , Shuai Liaoi,k,l, Leandro Cardoso Pederneirasm, Yan-Qiong Pengn , Joan T. Pereirao, 
Quentin Phillippsp , Aida Shafreena Ahmad Puadq , Jean-Yves Rasplusr , Julia Sangs, Sverre Juul Schoud , Elango Velauthamc , 
George D. Weiblent,u , Nyree J. C. Zeregav,w , Qian Zhangx , Zhen Zhangl, Christopher Baralotoa,1, and Nina Rønstedb,d,1

Edited by Douglas Soltis, University of Florida, Gainesville, FL; received December 31, 2022; accepted May 11, 2023

Studies investigating the evolution of flowering plants have long focused on isolating 
mechanisms such as pollinator specificity. Some recent studies have proposed a role for 
introgressive hybridization between species, recognizing that isolating processes such 
as pollinator specialization may not be complete barriers to hybridization. Occasional 
hybridization may therefore lead to distinct yet reproductively connected lineages. We 
investigate the balance between introgression and reproductive isolation in a diverse 
clade using a densely sampled phylogenomic study of fig trees (Ficus, Moraceae). 
Codiversification with specialized pollinating wasps (Agaonidae) is recognized as a major 
engine of fig diversity, leading to about 850 species. Nevertheless, some studies have 
focused on the importance of hybridization in Ficus, highlighting the consequences of 
pollinator sharing. Here, we employ dense taxon sampling (520 species) throughout 
Moraceae and 1,751 loci to investigate phylogenetic relationships and the prevalence of 
introgression among species throughout the history of Ficus. We present a well-resolved 
phylogenomic backbone for Ficus, providing a solid foundation for an updated classifi-
cation. Our results paint a picture of phylogenetically stable evolution within lineages 
punctuated by occasional local introgression events likely mediated by local pollinator 
sharing, illustrated by clear cases of cytoplasmic introgression that have been nearly 
drowned out of the nuclear genome through subsequent lineage fidelity. The phyloge-
netic history of figs thus highlights that while hybridization is an important process 
in plant evolution, the mere ability of species to hybridize locally does not necessarily 
translate into ongoing introgression between distant lineages, particularly in the presence 
of obligate plant–pollinator relationships.

Ficus | hybridization | Moraceae | phylogenomics

Interrogating the processes that gave rise to and continue to maintain the splendid plant 
diversity found in tropical forests has been a constant preoccupation of natural history and 
evolutionary biology (1). Recent studies have increasingly proposed a role for introgressive 
gene flow between species, made possible by high numbers of closely related sympatric 
species, as a feature of tropical biodiversity (2, 3). Yet whether diversity facilitates or results 
from introgression is difficult to determine (4). Introgression may increase genetic diversity 
within species (3) and has the potential to move potentially adaptive alleles among them (5), 
though at the risk of genetic homogenization (6). Factors limiting interspecific hybridization 
such as pollinator specialization, temporal separation of flowering times, and pollen incom-
patibility are important balancing mechanisms allowing species coexistence. There is, how-
ever, confusion in the tropical plant literature between hybridization, which provides the 
opportunity for genetic introgression, and introgression, the incorporation of genetic material 
from one species into a lineage after the initial hybrids and first-generation backcrosses (7). 
Hybridization may in fact lead to only rare introgression in lineages with strong isolating 
mechanisms such as high pollinator specificity. Nevertheless, these rare events have the 
potential to compound, imprinting ancient introgression on global clades. Exemplary model 
systems with a robust phylogenetic and morphological framework can provide a better 
understanding of the relative importance of these processes.

The global lineage of fig trees (Ficus, Moraceae) presents a model system for dissecting 
the history of introgression in the face of strong isolating mechanisms. A keystone genus 
of tropical forests, a partner in a celebrated pollination mutualism, a shade tree to the 
Buddha during his enlightenment, the Egyptian tree of life, one of the Seven Species of 
the Hebrew Bible, and the namesake of a sura in the Qur’an, Ficus has few peers in its 
combination of ecological and cultural importance. This diverse genus of about 850 species 
consists of lineages that are largely biogeographically confined, with many sympatric 
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species in forests throughout the tropics (8, 9). Scholars have long 
recognized coevolution with specialized pollinating wasps 
(Agaonidae) as a major engine of fig diversity (10, 11), as polli-
nator specificity can serve as a powerful isolating mechanism, 
limiting hybridization (12, 13). Yet fig biologists have long rec-
ognized occasional pollinator sharing and host switching, either 
inferred from comparisons of fig and wasp phylogenetic trees or 
observed directly in some closely related species (7, 14). Some 
studies have therefore proposed that genetic introgression facili-
tated initially by incomplete pollinator specificity could play a 
major role in the evolution of Ficus (14, 15). These two processes, 
introgression via nonabsolute pollinator specificity and multiple 
species coexistence facilitated by pollinator specialization, may 
balance one another to help maintain the high diversity of figs.

The outsized importance of Ficus is matched by the challenges 
it has posed for classification (16), leading E.D. Merrill to question 
the sanity of taxonomists who choose to work on Ficus (8). Despite 
decades of global phylogenetic studies (10, 11, 16–18), variable 
sampling schemes, lack of phylogenetic resolution, and conflicting 
nuclear and organelle topologies (15, 19) have hindered conclusive 
resolution of major questions in the evolutionary history of Ficus. 
Based on the most complete phylogenetic study of PCR-amplified 
loci, including six gene regions for 307 species of Ficus, Clement 
et al. (16) took a major step toward reconciling molecular and 
traditional classification, establishing informal clade names and 
providing a tractable framework for future revisionary work. While 
recent studies largely agree on similar section-level clades, backbone 
relationships remain uncertain and subject to substantial disagree-
ment. For example, analyses disagree on whether the Neotropical 
sect. Pharmacosycea is sister to all other figs, whether the monoe-
cious stranglers form a clade, and whether the dioecious species 
form a clade (10, 11, 15, 16, 19, 20).

Despite the reproductive isolation expected in a group with 
high pollinator specificity, there is an emerging consensus that 
hybridization does occur between closely related Ficus species, 
further complicating the taxonomy of the genus (7, 21, 22). 
Hybridization may have played an important role in the evolution 
of Ficus, though only limited published evidence suggests that 
hybridization results in nuclear gene introgression in the genus 
(14, 15). The case for whether genetic introgression among Ficus 
species plays a prominent and ongoing role in the evolution of 
the genus, contributing to codiversification with pollinating 
wasps, is still open (10). Indeed, the extent of interspecific gene 
flow in the genus remains uncertain, and even dramatic plastome–
nuclear discordance may represent occasional localized gene flow 
rather than widespread introgression (23). This is partially because 
no phylogenomic study exploring reticulate relationships has yet 
employed dense and widespread taxon sampling comparable to 
the well-sampled studies based on few loci (16). In addition, the 
evolution and diversification of Ficus must be understood in the 
evolutionary and comparative context of the Moraceae family 
more broadly (16, 20, 24–27).

This study documents the outcome of an ancient balance 
between introgression and strong reproductive isolation in one of 
the world’s largest angiosperm genera. We provide the most 
densely sampled and data-rich phylogenomic reconstruction of 
Ficus to date, contextualized within comprehensive phylogenetic 
sampling across Moraceae. We use our phylogeny to investigate 
two alternatives: whether the phylogeny of Ficus is network-like, 
with ongoing introgression blurring boundaries between lineages; 
or more tree-like, with pulses of introgression punctuating evolu-
tion within phylogenetically stable lineages. Analyses employed 
1,751 nuclear loci for 235 species of Ficus and 285 other Moraceae, 
representing all genera, with species-level sampling within most 

of them, including divergence time estimations and ancestral-range 
reconstructions. Our analyses also provide a well-supported frame-
work for further work on the classification, origin, and dispersal 
of figs.

Results

Nonitalicized informal clade names follow the system established 
by Clement et al. (16), except that we now consider Mixtiflores 
to include the Urostigma clade as shown by Rasplus et al. (11) 
and this study. Formal taxonomic names follow Berg and Corner 
(8), as updated by Pederneiras et al. (28). Additional proposed 
changes by Zhang et al. (29) are noted when relevant but are not 
used throughout the paper as some of them are not compatible 
with our results. Synonyms appear in parentheses when the latter 
are in more common use than the legitimate names. A summary 
of relevant names appears in Table 1.

Phylogenetic Trees. We conducted phylogenetic analyses in four 
categories: 1) All-Ficus nuclear species tree: a coalescent-based species 
tree based on 1,858 gene trees for 362 samples (232 Ficus species 
and 5 outgroups, Fig. 1) from samples enriched for nuclear targets 
(30, 31); 2) Plastome: a maximum-likelihood tree based on whole-
chloroplast sequences for 180 taxa, Fig. 2 and SI Appendix, Fig. S2); 
3) Introgression: phylogenetic network analyses under maximum 

Table 1. Left: Clade names according to Clement et al. 
(16), as modified here. Middle: Corresponding formal 
taxonomic names and ranks according to Berg and Cor-
ner (8), as updated by Pederneiras et al. (28). Right: Tax-
onomic names and ranks according to Zhang et al. (29), 
to the extent they differ

Clade

Berg and Corner,  
as updated by Ped-
erneiras et al.

Zhang et al., if 
different

Pharmacosycea Subg. Pharmacosycea, 
sect. Pharmacosycea

–

Mixtiflores Subg. Spherosuke 
(=Urostigma)

–

 Urostigma  Subsect. Urostigma –

 Conosycea  �Subsect. Cordifoliae 
(=Conosycea)

–

 Malvanthera  Sect. Malvanthera –

 Madagascar 
clade

 [not recognized] [not recognized]

 Galoglychia  Sect. Platyphyllae –

 Americanae  Sect. Americanae –

Oreosycea Subg. Pharmacosycea, 
sect. Oreosycea

–

Caricae Subg. Ficus, subsect. 
Ficus

Subg. Ficus in 
total

Sycidium Subg. Terega (=Sycid-
ium)

–

Sycomorus Subg. Sycomorus –

Frutescentiae Subg. Ficus sect. 
Frutescentieae

Subg. Synoecia 
sect. Plagiostigma  
in part

Eriosycea Subg. Ficus sect. 
Eriosycea

Subg. Synoecia 
sect. Apiosycea 
in part

Synoecia Subg. Synoecia Subg. Synoecia in 
part

http://www.pnas.org/lookup/doi/10.1073/pnas.2222035120#supplementary-materials
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pseudo-likelihood and a related analysis of gene tree conflict using 
rooted triplets (Figs. 2 and 3 and SI Appendix, Figs. S2–S4) based 
on 1,223 gene trees; and 4) Moraceae: a whole-family tree, time-
calibrated under penalized likelihood, based on 528 samples and 
724 genes (including 231 Ficus species, with replicates deduplicated, 
Fig. 4). All samples with successful technical replicates (successful 
recovery of at least 1,000 loci for both replicates) were sister to one 
another in the phylogenetic analyses.

Nuclear Species Trees. The All-Ficus tree (Fig. 1) was based on 
ca. 666.7 billion nuclear quartet trees, and the final normalized 
quartet score was 0.77. All subgenera recognized by Berg 
and Corner (8) were monophyletic except Pharmacosycea 
and Ficus, the latter corresponding instead to Zhang et  al.’s 
reduced circumscription (29), which comprises only the 
Caricae clade. The monoecious Neotropical Pharmacosycea 

clade (sect. Pharmacosycea) was sister to the entire rest of the 
genus, while the monoecious Paleotropical Oreosycea (sect. 
Oreosycea) was sister to a clade containing all of the dioecious 
figs: the Caricae (subsect. Ficus) + Sycidium (subg. Terega = 
subg. Sycidium), subg. Synoecia s.l. sensu Zhang [comprising 
the Eriosycea (sect. Eriosycea), Frutescentiae (sect. Frutescentiae), 
and Synoecia (subg. Synoecia s.str.) clades], and Sycomorus 
(subg. Sycomorus, which also contains a few monoecious figs) 
clades. Within the Synoecia clade, Frutescentiae was sister to 
Eriosycea and Synoecia, although with low support (LPP = 0.42) 
and without rejecting the polytomy hypothesis (P = 0.22). The 
monophyletic monoecious Mixtiflores (subg. Spherosuke = subg. 
Urostigma), containing the Urostigma (subsect. Urostigma), 
Conosycea (sect. Cordifoliae = sect. Conosycea), Malvanthera 
(sect. Malvanthera), Americanae (sect. Americanae), and 
Galoglychia (sect. Platyphyllae = sect. Galoglychia) clades, was 
sister to all of Ficus except Pharmacosycea. Notable within 
that clade was a previously unrecognized section-level clade 
of Madagascan species sister to Americanae (Neotropics) and 
Galoglychia (Africa). The backbone did not change in a more 
conservative analysis retaining only the least-saturated 50% 
of genes, those whose GC content did not differ substantially 
between Pharmacosycea and the rest of Ficus, and gene tree splits 
with at least 50% bootstrap support. A species tree based on 
16,449 genes assembled from publicly available whole-genome 
reads for 26 samples also had the same backbone, save for a 
transposition in the positions of Eriosycea and Frutescentiae and 
a single rearrangement within Conosycea (SI Appendix, Fig. S1).

Chloroplast Tree. The plastome tree (Fig.  2 and SI  Appendix, 
Fig. S2) revealed four main lineages. One of these lineages (Clade 
I) was strictly associated with Neotropical Pharmacosycea and was 
sister to the other three clades. Species belonging to Oreosycea 
appear in each of these other clades, always sister to most other 
species within each. Clade II is largely African and Neotropical, 
comprising a clade of African Oreosycea and Sycomorus, sister to 
half of Mixtiflores (Madagascar, Galoglychia, and Americanae). 
Clade III contains three Asian Oreosycea, sister to a mixed 
assemblage of several dioecious clades (Cariceae, Frutescentiae, 
and parts of Eriosycea, Sycidium, and Synoecia). Clade IV consists 
of Ficus tikoua (Sycomorus) and F. albipila (Oreosycea) in a grade, 
followed by two subclades—one containing the rest of Mixtiflores 
along with Malesian and Papuasian Synoecia and Sycomorus 
species and the other containing Australasian Oreosycea plus most 
of Eriosycea and Sycomorus.

Analyses of the nuclear and chloroplast datasets together revealed 
substantial cyto-nuclear discordance. Scoring the plastome tree 
using a pruned set of nuclear gene trees resulted in a low normalized 
quartet score of 0.61, indicating that nearly 40% of nuclear gene 
tree quartets were not reflected in the plastome tree. Similarly, 
coalescent-based simulations starting from the nuclear species tree 
revealed that the plastome tree contained dramatically more extra 
lineages (52 clades not appearing in nuclear species tree) than would 
be expected for a maternally inherited organellar genome (simulated 
plastome trees had a median of 6 clades not appearing in the nuclear 
species tree) and instead fell within the expected range of extra 
lineages present in simulated nuclear gene trees under incomplete 
lineage sorting (SI Appendix, Fig. S3).

Introgression. We investigated introgression using maximum 
pseudo-likelihood networks as well as an analysis of rooted triplet 
trees.

For network analyses based on 1,223 gene trees, two strategies 
were employed—one with 27 samples chosen to reflect cyto-nuclear 

Fig. 1. All-Ficus tree. ASTRAL species tree based on 1,751 nuclear genes. Node 
labels denote local posterior probability (LPP) and P-value for the polytomy 
test. Unlabeled nodes have LPP = 1.0 and P < 0.05. Pie charts denote the 
quartet frequency of the main topology (blue), the second-most frequent 
topology (light blue), and the third-most frequent topology (gray).
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discordance and another with 42 samples representing major 
nuclear lineages. For both schemes, the optimal networks had four 
or five reticulations, depending on whether a slope heuristic or 
BIC was used to select the model (Fig. 3 and SI Appendix, 
Table S2). All four optimal networks showed reticulation between 
Oreosycea and Mixtiflores (and Urostigma in particular), reflect-
ing competing topologies placing Oreosycea either sister to the 
dioecious clade (Fig. 3 A–C) or with the Mixtiflores stranglers 
(Fig. 3D). These reticulations reflected a substantial signal in the 
nuclear gene trees, with inheritance probabilities (the proportional 
genomic contribution to the reticulated edge) mostly above 0.28, 
and in one network (Fig. 3D) as high as 0.5, reflecting equally 
strong signals for the major tree and the reticulated edges. Another 
recurring theme (Fig. 3 A and D) was reticulation along the back-
bone of the dioecious clade reflecting conflict as to whether 
Caricae+Sycidium or Sycomorus was sister to the rest of the clade, 
again reflecting a substantial signal in the gene trees (inheritance 
probability >0.3 for the reticulated edge in both cases). In one 
case (Fig. 3C), a weak signal of reticulation (inheritance probabil-
ity 0.1) was detected between Synoecia (root climbers) and the 
sublineage of Sycomorus containing F. tikoua, the only member 
of its clade with a rampant habit. In the best network based on 
13,587 genes from whole-genome data for 24 samples (SI Appendix, 
Fig. S4), the strongest reticulation signal was between Urostigma 
and the single Oreosycea sample included in that analysis (inher-
itance probability for the minor edge of 0.383); the other inferred 
reticulations were based on comparatively weak signals, with 
inheritance probabilities all below 0.16 (i.e., above 0.84 for the 
major tree). All networks, scores, and information criteria appear 
in SI Appendix.

In the triplet analysis of 42 samples (SI Appendix, Fig. S5), pat-
terns of gene tree discordance followed the same themes as those 

reconstructed under maximum pseudo-likelihood, suggesting 
reticulation linking Oreosycea to Mixtiflores and the clade con-
taining all of the dioecious lineages (Caricae, Sycidium, Sycomorus, 
Frutescentiae, Eriosycea, and Synoecia). The pattern was stronger 
for Ficus assimilis (Albipilae) than for the other two samples of 
Oreosycea (Glandulosae and Pedunculata), but similar patterns 
were also observed for the other samples, so the introgression may 
be shared by all of the samples.

Family-Wide Analysis. The Moraceae tree (Fig.  4), inferred 
from 724 genes selected for clock-like behavior (determined by 
low root-to-tip variance, low site saturation, and concordance 
with the species tree topology), recovered well-supported clades 
for each of the seven tribes, sorted into two sister subfamilial 
clades. The first comprised Chlorophoreae, which was sister to 
Artocarpeae + Moreae. The second contained Parartocarpeae sister 
to Dorstenieae+Olmedieae+Ficeae, the latter two sister to one 
another. Within Olmedieae, the wind-pollinated Streblus was sister 
to the rest of Olmedieae, and the wind-pollinated Olmedia was 
sister to the entire (largely insect pollinated) Neotropical clade save 
for the morphologically distinctive Poulsenia. The Ficus backbone 
was the same as in the All-Ficus tree described above, including 
Pharmacosycea as sister to the rest of Ficus, save for a transposition 
in the positions of Eriosycea and Frutescentiae, mirroring the 
topology recovered by the whole-genome Ficus tree. The crown 
and stem ages of Ficus were 44.4 and 63.8  Ma, respectively. 
The ancestral area reconstruction on the same tree (Fig. 4 and 
SI Appendix, Fig. S10) reconstructed an ancestral stem range for 
Ficus of Asia, expanding at the crown to Asia+Neotropics. The same 
Asia+Neotropics pattern was recovered for three other tribes in the 
family: Moreae, Artocarpeae, and Chlorophoreae. The crown and 
stem range for all Ficus except for Pharmacosycea was Asia alone, 

Fig. 2. Cyto-nuclear discordance. (Left) Time-calibrated nuclear species tree (pruned from Fig. 4), nodes labeled with posterior probability (unlabeled nodes 
have LPP = 1.0). (Right) Time-calibrated chloroplast tree, nodes labeled with bootstrap support (unlabeled nodes have bootstrap = 100%). Pie charts at nodes on 
both trees represent inferred ancestral ranges. Clade colors match those in Fig. 1. Blue bars next to tip labels denote taxa pollinated by members of subfamily 
Blastophaginae.
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with subsequent dispersals to other regions. The most likely 
range for the crown node of Moraceae was also Asia+Neotropics. 
An analysis of speciation rates recovered seven rate shifts in 
Moraceae, five of them in Ficus, in Oreosycea+dioecious figs, 
Conosycea, Malvanthera, Galoglychia, and Americanae, with 
the highest rate in the latter (SI Appendix, Fig. S7).

Discussion

This study presents the most densely sampled phylogenomic 
reconstruction of Ficus to date. It is a major advance in untangling 
deep phylogenetic relationships and clarifying the contribution 
of introgression to the evolution of Ficus. While previous studies 
have pointed either to tight codiversification with wasps (10, 32) 
or to widespread hybridization (14, 15), our results show that 
both processes are at play: Ficus reflects a history of lineage stability 
punctuated by introgression events among ancestral lineages. 
These largely relate to the backbone topology and center around 
Oreosycea in both the nuclear and chloroplast analyses 
(Figs. 2 and 3 and SI Appendix, Figs. S2–S9). Traces of deep intro-
gression of Oreosycea cytoplasm into most other lineages in the 
chloroplast tree largely did not mirror conflicts relating to that 

lineage in the nuclear tree, which suggests a history of localized 
introgression in deep time followed by lineage fidelity rather than 
ongoing introgression between lineages. This finding confirms a 
basic scenario of coevolution within major fig and wasp lineages, 
with major introgression events limited to stem lineages likely 
predating the diversification of extant figs. This is consistent with 
evidence from population-level studies concluding that while figs 
can sometimes hybridize readily, species nevertheless usually 
remain distinct (7, 33).

Echoes of Introgression in Cyto-Nuclear Discordance. We 
recovered substantial cyto-nuclear discordance, supporting the 
findings of Bruun-Lund et  al. (19). The chloroplast tree was 
dramatically more different in topology than would be expected 
under simple incomplete lineage sorting (SI Appendix, Fig. S3), 
providing compelling evidence of ancient introgression among 
major lineages, largely centered around the Oreosycea clade, 
reflecting both geographic affinity and pollinator alliances (Fig. 2 
and SI Appendix, Fig. S2). Yet the particular relationships evident 
in the chloroplast tree are largely not reflected in phylogenetic 
networks based on nuclear genes. Combined with the high 
normalized quartet scores in the nuclear analyses (>0.75)—slightly 

Fig. 3. The best maximum-pseudo-likelihood networks allowing a maximum of 4 (left column) and 5 (middle column) reticulations, plus associated plots of 
network scores (right column) for sample sets 1 (top row) and 2 (bottom row) based on 1,223 nuclear gene trees. Clade colors match those in Fig. 1. Inheritance 
probabilities appear in light blue for reticulated (minor) edges and in dark blue for the corresponding branches on the major (bifurcating) tree.

http://www.pnas.org/lookup/doi/10.1073/pnas.2222035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2222035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2222035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2222035120#supplementary-materials
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higher than those previously calculated for Artocarpus (34)—these 
dynamics suggest occasional rather than sustained introgression 
through evolutionary time, with the chloroplast tree preserving 
echoes of events that have largely been drowned out by the 
intralineage fidelity characterizing the nuclear genome. The 
Oreosycea clade appears in three out of four chloroplast lineages, 
usually sister to geographically proximate taxa. This likely 
represents local gene flow mediated by pollinator host shifting 

or sharing, perhaps (as discussed below) driven by isolation of 
individual fig trees in climatically unstable areas. Some African 
Sycomorus species belong to the same highly supported chloroplast 
lineage (SI Appendix, Fig. S2, Clade 2) as some African species of 
Oreosycea; however, this affinity is not supported by the nuclear 
gene trees, which support an unambiguously monophyletic 
Sycomorus (LPP = 1.0, P < 0.05). In two chloroplast lineages, 
the transfer of Oreosycea plastome was probably mediated by 
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Fig. 4. Time-calibrated Moraceae tree, showing inferred ancestral ranges at the nodes. Textual node labels indicate node ages and 95% HPD, in Ma.
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members of the Blastophaginae (35), which pollinate both 
Oreosycea and some of the species associated by their chloroplast 
lineages (SI  Appendix, Fig.  S2, Clades 3 and 4 in particular). 
The Blastophagineae also link Oreosycea and Pharmacosycea—
the two lineages that traditionally comprise the (paraphyletic) 
subgenus Pharmacosycea. Another member of Moraceae, the 
broad Streblus as defined by Corner, forms a morphological but 
nonmonophyletic alliance dispersed throughout the phylogeny 
that may be described as morphological relics of an ancestral taxon 
(27, 36). The same might be said of the two sections of subg. 
Pharmacosycea, preserving ancestral characters and occupying sister 
positions either to the entire genus or to subclades in both the 
nuclear and chloroplast trees.

The ancient introgressions inferred here are consistent with pat-
terns observed in extant figs. Deep introgression events appear to 
be limited to certain lineages (primarily Mixtiflores and Oreosycea), 
and hybridization among extant figs is also apparently unevenly 
distributed among clades, with many reports focusing on the 
Neotropical and Afrotropical monoecious figs (10, 14, 33, 37), 
although hybridization between closely related dioecious figs has 
also been reported (38–40). This variation in effective gene flow 
could reflect variation in pollinator specialization (39) or genetic 
distance among species within clades. Two processes may facilitate 
the breakdown in pollinator exclusivity necessary for hybridization 
to occur. Biogeographic processes may lead to secondary contact 
between recently diverged species or even bring together previously 
separated species that had never evolved barriers to hybridization. 
Current hybridization in Panamanian figs (14, 33) might involve 
this dynamic, facilitated by the recent rise of the Isthmus of 
Panama. A recent study found ongoing hybridization and historical 
introgression between two closely related fig species, which never-
theless remain essentially distinct (33), mirroring on a small scale 
the broader dynamic observed in deep time in this study: stability 
of lineages despite occasional hybridization. A second kind of 
breakdown of pollinator exclusivity has been documented when a 
fig species is isolated and the normal pollinator is absent (13, 41). 
Historical introgressions may result from the same processes, with 
isolation perhaps caused by climatic or environmental changes; 
indeed, many extant Oreosycea and Urostigma species display 
intermittent growth, a helpful adaptation to environmental fluc-
tuations in seasonally dry forests where some of these species are 
native. Yet even in isolation, figs often maintain fidelity to their 
usual pollinators (12, 13), contributing to the episodic nature of 
introgression in figs. This second pattern mirrors recent findings 
in the oak family (Fagaceae) in which hybridization at the base of 
the tree involved lineages that no longer hybridize but that exhib-
ited historical sympatry (at continental levels), while introgression 
among extant species may reflect adaptive introgression or simply 
porous barriers between recently diverged species (42, 43). Ficus, 
like oaks, may be a syngameon reflecting an equilibrium between 
adaptive introgression and the maintenance of genomically distinct 
species (5), and occasional introgression involving stress-adapted 
species (like certain Oreosycea) may contribute to the survival and 
evolution of other species. This idea might be tested in the future 
by combining our phylogenetic results with current and past cli-
matic data.

Classification of Figs. We highlight two noteworthy taxonomic 
findings. The first is the existence of a section-level clade that is 
endemic to Madagascar, containing at least three species. The 
persistence of this lineage fits into a pattern of unique lineages 
diversifying in Madagascar, highlighting the geographic and 
evolutionary isolation of the island (44–46). Further study of 
these taxa may provide insights into the origins of the African 

and Neotropical stranglers (Galoglychia and Americanae), which 
have high rates of speciation (SI Appendix, Fig.  S7) (47). This 
finding also highlights the importance of dense taxon sampling, 
as we had no a priori expectation that these species would form a 
distinct clade. Second, we note the monophyly of subg. Spherosuke 
(=Urostigma, the Mixtiflores clade), a subject of conflicting past 
studies (11, 16). While its monophyly is highly supported in the 
nuclear tree (LPP = 1.0, P < 0.05), substantial gene tree conflict 
exists (evidenced by the quartet score of less than 0.5), and all 
inferred networks showed introgression involving at least part of 
the subgenus, which appears as two distinct chloroplast lineages.

The well-resolved phylogenetic tree presented here provides a 
basis for establishing an updated higher classification of Ficus. 
While the backbone topology here differs in some ways from that 
recovered by other phylogenomic studies (11, 15), those studies 
(and for the most part Clement et al. (16) as well) agree on the 
major clades (Fig. 1). The informal clade names proposed by 
Clement et al. (16), with the addition of Urostigma to the 
Mixtiflores clade, already provide a framework for fig classification. 
Building upon that framework as well as the emerging consensus 
as to the major clades, the formal taxa could easily be updated 
with a few mere changes in rank (e.g., elevating sect. Oreosycea to 
subgenus level) and circumscription (perhaps expanding the cir-
cumscription of subg. Ficus).

Biogeography. Our time-calibrated Moraceae tree reconstructed 
a Paleocene stem (63.8 Ma, 95% HPD 60.3 to 69.4) and Eocene 
crown for Ficus (44.4 Ma, 95% HPD 40.9 to 50.1), close to the 
ages in the study by Zhang et al. (20) (Fig. 4 and SI Appendix, 
Fig.  S6). Given the paucity of verifiable Ficus fossils and the 
possibility of deep coalescence in gene trees, these dates might 
best be treated as minimum ages. The biogeographic analysis 
recovered an Asian stem node with two subsequent dispersals to 
the Neotropics, consistent with previous studies finding an Asian 
origin for Ficus (10, 48). The Asia-to-Asia+Neotropics pattern 
appears at the root of four out of seven tribes in Moraceae, 
reflecting a recurring phylogenetic pattern within Moraceae of 
largely Asian clades sister to largely Neotropical clades.

Moraceae were present in boreotropical North America during 
the Eocene (49), and while Ficus itself has not yet been recorded, 
the presence of the family raises the possibility that the habitat 
might have been suitable for the genus. Dispersal from Eurasia 
via North America to the Neotropics, previously proposed for 
Artocarpeae (50), is therefore plausible. An alternative possibility 
is dispersal via Africa, as Moraceae were also present in the late 
Cretaceous of Egypt (51), or even via subtropical Antarctica dur-
ing the Eocene. Any of these scenarios would likely have involved 
substantial extinction of stem lineages due to glaciation in North 
America or Antarctica, or due to desertification in Africa. Other 
dynamics observed in our analyses hint at a role for extinct or 
unknown lineages. For example, the chloroplast affinity between 
some Australasian Oreosycea (ser. Glandulosae) and Eriosycea 
likely originated in a hybridization event between an extinct ances-
tor of both either in Asia or on a drifting India. Likewise, the 
Madagascar clade, sister to African and Neotropical stranglers, 
may represent a link between Asian and Neotropical+African 
Mixtiflores. Long-distance dispersal also cannot be discounted, 
particularly as both bats and birds are major dispersers of figs (52). 
The long Ficus stem coupled with the long distance between Asia 
and the Neotropics strongly suggests the involvement of extinct 
stem taxa (sometimes called “ghost lineages”) (53) in the evolution 
of Ficus. The older ages of internal nodes in the chloroplast tree 
(Fig. 2) as well as the generally older node ages in the most recent 
phylogenetic study of fig wasps provide additional circumstantial 

http://www.pnas.org/lookup/doi/10.1073/pnas.2222035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2222035120#supplementary-materials
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evidence of ghost lineages. The biogeographic interplay between 
the fig and wasp phylogenies will be a major area of study as 
detailed and well-supported phylogenetic reconstructions for both 
figs and wasps come into focus.

The analyses here paint a picture of more or less isolated evo-
lution within phylogenetically stable lineages punctuated by occa-
sional local introgression events likely mediated by local pollinator 
sharing. While the obligate mutualism between figs and fig wasps 
promotes lineage fidelity, it is not ironclad. Local gene flow—both 
within extant clades and among stem lineages predating extant 
diversity—plays a recurring role in the evolution of figs, perhaps 
allowing transfer of beneficial genes between species. By the same 
token, the fig–wasp mutualism appears to play a role in limiting 
introgression, resulting in a fundamentally tree-like pattern of 
evolution despite occasional introgression and promoting diver-
gence of species by preventing genetic homogenization. The phy-
logenetic history of figs thus highlights that while hybridization 
is an important process in plant evolution, the mere ability of 
species to hybridize locally does not necessarily translate into ongo-
ing introgression between lineages, particularly in the presence of 
obligate plant–pollinator relationships. As patterns in the evolu-
tion of tropical biodiversity continue to come into focus, research-
ers must continue to consider the balance between hybridization 
and the processes that limit it.

Materials and Methods

Taxon Sampling. The complete study included a total of 627 samples, 245 spe-
cies of Ficus (330 samples), 284 other Moraceae, and 13 outgroups (in Urticaceae 
and Cannabaceae) (SI Appendix, Table S1). In Ficus, sampling represented all 
major lineages and about 30% of the recognized species. In the rest of Moraceae, 
sampling represented all genera, mostly with species-level sampling (exceptions 
include Dorstenia, with ca. 50% sampling, and the tribe Olmedieae, with ca. 60% 
sampling). Data sources included 330 samples newly sequenced for this study 
and 256 samples from previous studies by the authors (27, 34, 54, 55), supple-
mented with samples from the NCBI Sequence Read Archive, and outgroups from 
the Plant and Fungal Tree of Life project (PAFTOL). New samples were collected 
during fieldwork in Australia, Brunei, Cameroon, Madagascar, Papua New Guinea, 
Philippines, Reunion, Sabah and Sarawak in Malaysia, Thailand, Yunnan, South 
China, Ryukyu Islands, from curated living collections of botanic gardens (Bergen 
Botanical Garden, Fairchild Tropical Botanical Garden, National Tropical Botanical 
Garden, US Department of Agriculture Subtropical Horticulture Research Station, 
Xishuangbanna Tropical Botanical Garden), and from herbarium specimens  
(C, F, K, L, MO, SING).

Sample Preparation and Sequencing. Approximately 1 cm2 of leaf tissue was 
ground using a FastPrep-24 (MP Biomedicals, Santa Ana, CA, USA), and DNA 
was extracted using either the Qiagen DNeasy Plant Mini kit (Qiagen, Hilden, 
German) or a modified CTAB protocol (56), with the incubation periods for lysis 
and precipitation in the latter sometimes extended to overnight or longer for 
herbarium specimens. DNA was quantified using a Qubit fluorometer and frag-
mented to a target mean size of 550 bp. Due to the scope of this collaboration, 
library preparation took place in more than one laboratory. Therefore, for some 
samples, Illumina TruSeq–compatible libraries were prepared using the NEB DNA 
Ultra 2 kit (New England Biolabs, Ipswich, MA, USA) following the manufacturer’s 
protocol, except that most pre-PCR steps were carried out in half-volumes to save 
reagent costs. For other samples, similar libraries were prepared using the blunt-
end single-tube protocol “BEST” (57) with an additional column-cleaning step 
(58). All newly prepared libraries were enriched for 1,315 single-copy nuclear 
genes (“Ficus1315”) identified by Bruun-Lund (31), and a majority were also 
enriched for the 333 Moraceae loci (“Moraceae333”) identified by Gardner 
et al. (30). Enrichment was carried out using a custom myBaits kit (Daicel Arbor 
Biosciences, Ann Arbor, MI, USA) following the manufacturer’s protocol, except 
that the RNA baits were diluted 1:1 with nuclease-free water. A subset of samples 
were subjected to technical replicates to verify the reliability and repeatability of 
laboratory processes.

Datasets. We assembled four datasets:

1.	 All-Ficus: 1,751 genes for 330 Ficus samples (not including 29 technical 
replicates) plus five outgroups in the sister tribe, rooted with Broussonetia 
papyrifera.

2.	 WGS-Ficus: 16,449 genes for 26 Ficus samples, plus two outgroups.
3.	 Plastome: Whole chloroplasts for 219 Ficus samples.
4.	 Dated-Moraceae: 1,751 genes for 528 samples spanning the whole 

Moraceae, including one sample per species in Ficus.

Sequence Assembly and Alignment. For the All-Ficus samples, we trimmed 
reads using Trimmomatic (ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 HEADCROP:3 
LEADING:30 TRAILING:25 SLIDINGWINDOW:4:25 MINLEN:20) (59). The trimmed 
reads were assembled using HybPiper 1.2, which produces gene-by-gene, de 
novo assemblies guided by a set of reference CDS sequences (60). Assemblies 
were carried out using default parameters; the reference file consisted of the pre-
dicted CDS for each target gene in the Moraceae333 and Ficus1315 sets as well as 
sequences for the Angiosperms353 genes (61), some of which were recoverable 
from off-target reads, for a total of 1,751 genes. Subsequent analyses used the 
default HybPiper output, which is the predicted CDS for each gene. For each gene, 
sequences were filtered to remove those whose length was less than 100 bp or 
25% of the average length of that gene, and samples with less than 50 genes 
remaining after filtering were discarded. The filtered sequences were aligned 
with MAFFT 7.450 (62), and sites with over 75% gaps were removed using TrimAl 
(63). An initial set of gene trees was estimated using FastTree 2.1.10 (64), and 
sequences corresponding to outlier branches were removed from the alignments 
using TreeShrink in “all-genes” mode. These cleaned alignments were used for 
all subsequent sequence analyses.

Phylogenomic Analyses. Gene trees were generated using IQTree 2.0.3 (65) 
under the best-fit model for each gene as determined by Bayesian Information 
Criterion, and node support was calculated using 1,000 ultrafast bootstrap rep-
licates. After collapsing nodes with less than 30% support using TreeCollapseCL 
3.0 (66), the gene trees were used to estimate a species tree using ASTRAL-III 
5.7.1 (67). Node support was estimated using LPP, a metric based on quartet 
scores that represents gene tree concordance. We also carried out a polytomy 
test in ASTRAL (−t 10) to investigate whether the polytomy hypothesis could be 
rejected for each node.

Because questions have been raised in previous studies about long branch 
attraction caused by site saturation affecting the rooting of Ficus (11), we reran 
ASTRAL on a conservative selection of genes filtered for saturation and GC-content 
heterogeneity using genesortR (68). First, we sorted genes by saturation level (69) 
and discarded the highest 50%; we then calculated GC content for Pharmacosycea 
and for the rest of Ficus and retained only those loci for which GC in both groups 
was within one SD of the mean GC in Ficus. We also applied a stricter filter to 
the gene trees, retaining only those splits with at least 50% bootstrap support.

Whole-Genome Phylogenetic Analysis. This analysis contained 30 species, 
including the 15 analyzed by Wang et  al. (15). Samples were trimmed and 
assembled as described above and then assembled with HybPiper 1.2 under 
default parameters, using the complete set of predicted CDS from the Ficus 
microcarpa genome (70) as a reference. We discarded all sequences for any gene 
that triggered a paralog warning in HybPiper for any sample. Within each locus, 
sequences less than 50% of the average length or 500 bp were discarded, and loci 
with an average length of less than 750 bp or containing fewer than 10 samples 
were also discarded. Alignment and tree inference for the 16,449 genes passing 
these filters then proceeded as outlined above.

Chloroplast Phylogeny. For each sample, reads were mapped to the Ficus carica 
chloroplast genome (GenBank accession number KY635880.1) using BWA (71). 
Variants were called using SAMtools, and a consensus sequence was generated 
using the mpileup command (72). To ensure the reliability of the alignments, 
indels were not included in consensus sequences, as we found that these intro-
duced errors into alignments, particularly in areas with lower depth. Samples with 
more than 50% undetermined bases across the entire plastome were discarded, 
and the remaining were concatenated into an alignment (no separate aligning 
step was necessary as the consensus sequences did not contain indels), which 
was visually inspected for artifacts in AliView. A sequence for Ficus albipila from 
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Bruun-Lund et al. (19) was added to the alignment. A maximum-likelihood tree 
based on the unpartitioned alignment was inferred with RAxML-ng under the 
“GTRCAT” model, with 1,000 bootstrap replicates. We also scored nodes with quar-
tet scores based on the nuclear gene trees using the “−t 1” option in ASTRAL. The 
chloroplast tree was time calibrated and biogeographic areas were reconstructed 
following the methods outlined for the Moraceae tree below. The chloroplast tree 
was compared to the nuclear tree using the cophylo command in Phytools (73) 
in R after pruning F. albipila, which was not present in the nuclear dataset. To test 
whether the differences between the nuclear and chloroplast trees were consistent 
with incomplete lineage sorting or would be better explained by introgression, 
1,000 chloroplast trees were simulated as described in ref. 42. The ASTRAL tree, 
with branches scaled by a factor of 4 to reflect the maternal inheritance of the chlo-
roplast, was used as a starting point. The number of extra lineages in the actual 
chloroplast tree as well as in the simulated trees compared to the ASTRAL tree (i.e., 
the number of splits occurring in the chloroplast trees but not in the ASTRAL tree) 
was counted using the “DeepCoalCount_tree” command in PhyloNet 3.8.0 (74).

Analyses of Hybridization. We inferred phylogenetic networks based on two 
sample sets assembled from the 1,751 nuclear gene trees: 1) 41 Ficus samples 
representing the major lineages observed in the nuclear species tree, and 2) 27 
Ficus samples representing the major-lineage discordance between the nuclear 
and chloroplast trees. We also inferred a network based on ca. 13,586 trees for 26 
samples assembled from whole-genome sequences. Using the Phyx package, all 
gene trees were rooted using Antiaris toxicaria, and those lacking the outgroup 
were discarded. We inferred networks under maximum-pseudo-likelihood using 
PhyloNet (74), ignoring splits with less than 30% bootstrap support and other-
wise using default settings, returning the best five inferred networks. We ran the 
analyses seven times, allowing 0 to 6 reticulations, and chose the best network 
using a slope heuristic (75) and BIC.

We also examined localized gene tree conflict directly by testing whether 
any sample had a conflicting position in the gene trees. To do this, we reduced 
all rooted gene trees to sample triplets. For each triplet, we counted the number 
of times that each of the three possible topologies [A, (B, C); B, (A, C); C, (A, B)] 
occurred. Topologies with bootstrap support lower than 30% were ignored. When 
there are two topologies that are more common than the third, this could indicate 
topological conflict caused by hybridization. The direction of the gene flow can be 
estimated by counting which topology was underrepresented. Using this method, 
introgression events can only be detected if both parent lineages and their hybrid 
are included in the sampling. If only one topology is present in more than a third 
of gene trees, there is likely a single strongly supported phylogenetic pattern 
with little conflicting data. If all topologies are equally common, it could be due 
to poor resolution at the node observed, for instance due to short time between 
divergence events or due to continuous gene flow (for instance, due to conspec-
ificity). We ran 100 bootstrap replicates of all topology frequencies to derive a 
SD for them. We then calculated the occurrence of the second-most common 
topology for each triplet (minus the SD from the bootstrap replicates). If these 
were more than 1/3rd of the total number of trees, we considered that result as 
support that the sample being tested might be of hybrid origin. The values were 
visually observed in a heat map generated for each of the samples and each of the 
possible parent pairs, arranged in the order of a consensus phylogeny. All possible 
introgression events were then mapped to a phylogeny, showing the most likely 
direction of gene flow. Finally, the output was critically assessed to estimate the 
nodes at which the introgression events took place. In the case of more complex 
reticulation events, the introgression events could not be placed unambiguously.

Divergence Times and Biogeography. For reconstruction of historical biogeog-
raphy, we first inferred a time-calibrated tree on an expanded set of taxa including 
species-level sampling for most of Moraceae plus select outgroups in Urticaceae, 
rooted with Trema orientale. Outgroups and other Moraceae were drawn from 
previous studies focusing on various clades in the family (27, 34, 54, 55, 76), 
supplemented by 30 samples newly sequenced for this study, mostly from 
Olmedieae, and publicly available reads from the NCBI Sequence Read Archive 
(SI Appendix, Table S1). For Moraceae samples outside Ficeae and Olmedieae, 
sequences mostly consisted of the Moraceae333 loci, with some Angiosperms353 
loci assembled from off-target reads, whereas Urticaceae samples were based on 
the Angiosperms353 loci.

Sequences were aligned and trimmed by tribe within Moraceae, and out-
group sequences were aligned and trimmed together. These alignments were 

merged with MAFFT using the “--merge” option and further pruned using the 
FastTree/TreeShrink method described above. Gene trees and an ASTRAL spe-
cies tree were inferred as described above. We also used genesortR (68) to sort 
genes by clock-like behavior, determined by low root-to-tip variance, low site 
saturation, and concordance with the species tree topology. To generate branch 
lengths proportional to substitutions, we selected 724 genes from this sorted list 
and generated a partitioned supermatrix, which was used in RAxML-ng (under 
GTRCAT) to infer branch lengths on the ASTRAL tree. We accounted for uncertainty 
in branch lengths by repeating the branch-length calculation on a set of 100 
jackknife replicates. For each replicate, 50% of loci were dropped, but to prevent 
taxa from dropping out, we sampled the three overlapping sets of loci separately: 
Angiosperms 353, Moraceae333, and Ficus1315. Resampling of locus names 
was carried out in R, and assembly of the jackknife supermatrices was carried 
out using fasta_merge.py from HybPiper. Before time calibration, the furthest 
outgroup, Trema orientale, was pruned from the trees.

The main tree and the jackknife trees were time-calibrated under penalized 
likelihood using treePL (77), with eight fossil constraints (SI Appendix, Table S3) 
following the workflow described by Maurin (78). The Eocene fossil achene of 
Ficus lucidus was used to constrain the stem node of Ficus to a minimum of 56 Ma 
(79), and a fossil fig wasp (80, 81) was used to constrain the stem of Galoglychia 
to a minimum age of 34 Ma. Finally, the stem nodes of sections Pharmacosycea 
and Americanae were constrained to a minimum of 16 Ma based on fossil agaonid 
wasps (82). The ages of the Moraceae crown and stem were bounded by the 95% 
HPD interval from Zhang et al. (20).

Four biogeographic areas were coded following previous studies (10, 83): 1)  
Neotropics (Southern and Central America), 2) Afrotropics (Africa and Madagascar), 
3) Australasia (including Australia, New Caledonia, New Guinea, and islands east 
of Lydekker’s line and the Moluccas), and 4) Asia (Asia including three spe-
cies which are also present in the Palearctic) (SI Appendix, Table S1). Ancestral 
area reconstruction was carried out under the DEC model as implemented in 
BioGeoBears (84). We allowed up to two simultaneous areas per node, as several 
extant taxa occur in two areas. Allowing simultaneous areas on such a large 
tree was made computationally feasible by parallelizing the DEC analysis on 
32 threads.

Finally, we reconstructed diversification rates using BAMM (85, 86) on the 
time-calibrated tree. Priors were optimized using BAMMtools (86), and less-than-
complete sampling of certain lineages was specified using a sample probability 
table. The analysis was run for 100,000,000 generations, and the first 10% were 
discarded as burn-in based on a visual inspection of a graphical output of the 
results.

Data, Materials, and Software Availability. Raw reads have been deposited 
in the NCBI Sequence Read Archive under BioProject PRJNA956524 (87). Bait 
sequences, alignments, trees, and analysis scripts have been deposited in the 
Dryad Data Repository at https://doi.org/10.5061/dryad.x0k6djhqq (88).
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