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Plasma cell-free DNA (cfDNA) is a noninvasive biomarker for cell death of all organs. 
Deciphering the tissue origin of cfDNA can reveal abnormal cell death because of dis-
eases, which has great clinical potential in disease detection and monitoring. Despite 
the great promise, the sensitive and accurate quantification of tissue-derived cfDNA 
remains challenging to existing methods due to the limited characterization of tissue 
methylation and the reliance on unsupervised methods. To fully exploit the clinical 
potential of tissue-derived cfDNA, here we present one of the largest comprehensive and 
high-resolution methylation atlas based on 521 noncancer tissue samples spanning 29 
major types of human tissues. We systematically identified fragment-level tissue-specific 
methylation patterns and extensively validated them in orthogonal datasets. Based on 
the rich tissue methylation atlas, we develop the first supervised tissue deconvolution 
approach, a deep-learning-powered model, cfSort, for sensitive and accurate tissue decon-
volution in cfDNA. On the benchmarking data, cfSort showed superior sensitivity and 
accuracy compared to the existing methods. We further demonstrated the clinical util-
ities of cfSort with two potential applications: aiding disease diagnosis and monitoring 
treatment side effects. The tissue-derived cfDNA fraction estimated from cfSort reflected 
the clinical outcomes of the patients. In summary, the tissue methylation atlas and 
cfSort enhanced the performance of tissue deconvolution in cfDNA, thus facilitating 
cfDNA-based disease detection and longitudinal treatment monitoring.
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Dying cells from all tissues release their DNA into the bloodstream as cell-free DNA 
(cfDNA) (1–3). The development and treatment of many diseases, such as cancer (4–9), 
autoimmune diseases (10), and sepsis (11), can influence cell death rates, thus impacting 
the fractions of cfDNA from respective tissues in blood (11, 12). Therefore, the abnormal 
tissue-derived cfDNA fractions can reveal altered tissue homeostasis due to diseases and 
collateral tissue damage due to treatments (13). As a result, cfDNA provides a noninvasive 
and comprehensive profile of wellness across all tissues in the body. Deciphering the tissue 
origin of cfDNA, i.e., tissue deconvolution of cfDNA, holds great clinical potential in 
aiding disease diagnosis, prognosis, and treatment monitoring. Despite the great promise, 
tissue deconvolution of cfDNA faces unique challenges: 1) cfDNA from solid organs 
comprises only a minor fraction of cfDNA with an overwhelming background cfDNA 
(~85%) from blood cells (14–16). The signal from the pathologic organs is usually weak 
in cfDNA. 2) All tissues in the body can release cfDNA (3, 15), requiring the joint decon-
volution of as many tissue types as possible, not just a few tissue types, for an accurate 
tissue deconvolution.

Thanks to the tissue specificity of DNA methylation, cfDNA can be traced back to the 
tissues they originated from based on its methylation pattern (14). Several studies proposed 
methylation-based tissue deconvolution methods to estimate the proportions of 
tissue-specific cfDNA, including nonnegative least square methods (14, 15) and 
likelihood-based methods (17, 18). Although these methods have demonstrated the via-
bility of methylation-based tissue deconvolution, their sensitivity and accuracy are still 
inadequate to detect a minor fraction of tissue-derived cfDNA, due to three major limi-
tations: 1) They used unsupervised deconvolution approaches, which are known to be 
inferior to supervised approaches in terms of power, generalizability, and robustness to 
noises. 2) Only one or a few methylation profiles were available for a single tissue type, 
which cannot sufficiently represent inter-individual variances. 3) High-resolution meth-
ylation profiles were only available for limited tissue types, which cannot permit compre-
hensive characterization of tissue-specific methylation and joint deconvolution of all tissue 
types.
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the tissue origin of cfDNA can 
reveal abnormal cell death 
because of diseases, which has 
great clinical potential in disease 
detection and monitoring. To 
fully exploit this potential, we 
present one of the largest 
comprehensive and high-quality 
tissue methylation atlases, 
constructed from 521 noncancer 
tissue samples spanning 29 
major human tissues. Based on 
this rich data, we develop the 
first deep-learning-powered 
model, cfSort, for tissue 
deconvolution. We demonstrated 
that cfSort has superior sensitivity 
and accuracy compared to 
existing methods. We validated 
cfSort in patients with cirrhosis 
and cancer. Our atlas and cfSort 
shall have broad research and 
clinical applications in disease 
detection and monitoring.

Competing interest statement: W.L., W.H.W., and X.J.Z. 
are co-founders of EarlyDiagnostics Inc. X.N. and M.L.S. 
are employees at EarlyDiagnostics Inc. S.L. is a former 
employee at EarlyDiagnostics Inc. S.L., W.Z., X.N., W.L., 
M.L.S., Y.Z., W.H.W., S.M.D., and X.J.Z. own stocks of 
EarlyDiagnostics Inc.  The other authors declare no 
competing interests.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.  
This open access article is distributed under Creative 
Commons Attribution-NonCommercial-NoDerivatives 
License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: 
whwong@stanford.edu,  SDubinett@mednet.ucla.edu, 
or XJZhou@mednet.ucla.edu.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.​
2305236120/-/DCSupplemental.

Published July 3, 2023.

OPEN ACCESS

https://orcid.org/0000-0002-1960-6016
https://orcid.org/0009-0006-8727-0055
https://orcid.org/0000-0002-9781-3360
https://orcid.org/0000-0002-5029-8525
https://orcid.org/0000-0003-4432-6718
https://orcid.org/0000-0003-0130-9838
mailto:
https://orcid.org/0000-0001-7466-2339
mailto:
mailto:
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:whwong@stanford.edu
mailto:SDubinett@mednet.ucla.edu
mailto:XJZhou@mednet.ucla.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2305236120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2305236120/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2305236120&domain=pdf&date_stamp=2023-6-28


2 of 11   https://doi.org/10.1073/pnas.2305236120� pnas.org

Here, we present a comprehensive and high-resolution tissue 
methylation atlas and a deep neural network (DNN)-based model 
named cfSort for quantifying tissue composition sensitively and 
robustly in cfDNA in a supervised manner. The methylation atlas 
resolves the knowledge gap in tissue-specific methylation, and the 
cfSort addresses the technical limitations of the existing deconvo-
lution methods. Thus, they can improve the sensitivity and accu-
racy of tissue deconvolution in cfDNA, enhancing the clinical 
utility of the tissue-derived cfDNA.

To construct the tissue methylation atlas, we systematically iden-
tified tissue-specific methylation signatures from high-resolution 
Reduced Representative Bisulfite Sequencing (RRBS) data of 521 
samples covering 29 major types of noncancerous human tissue, 
including 8 tissue types that are not covered in ref. 16. These signa-
tures and data constitute one of the largest base-resolution tissue 
methylation atlases. The traditional tissue-specific methylation sig-
natures were discovered at the population level using the average 
methylation level of all DNA fragments in genomic bins (14, 15, 17). 
However, because tissue samples usually comprise DNA from het-
erogeneous cell types, the average methylation across all DNA can 
blur the tissue-specific signals that appear in a minor cell proportion 
(15, 19). To address the tissue heterogeneity issue, here we analyze 
methylation signals at the individual DNA fragment level, in order 
to sensitively pick up signatures present even in minor cell popula-
tions (19). In addition, we carefully validated the methylation sig-
nature atlas in independent methylation datasets, orthogonal 
epigenomic markers, and transcription regulatory elements.

Here we develop the first supervised method, cfSort, to sensitively 
and accurately quantify the tissue composition in cfDNA. Taking 
advantage of the rich tissue methylation data, we generated 
large-scale diverse training samples of in silico tissue mixtures, which 
fully exploit the experimental and interindividual variance and 
ensure the robustness of cfSort. Therefore, compared to the existing 
unsupervised methods, cfSort intrinsically has advantages in accuracy 
(20). Combining the comprehensive methylation atlas and cfSort, 
we demonstrated a more sensitive and accurate estimation of tissue 
composition compared to the existing methods. In addition, we 
showed that cfSort was robust against the tissue epigenetic variability, 
interindividual difference, and experimental noise. We further 
demonstrated the clinical utilities of cfSort with two potential appli-
cations: 1) aiding disease diagnosis and 2) monitoring treatment 
side effects. For disease diagnosis, we applied the cfSort to plasma 
cfDNA from healthy individuals and diseased patients, including 
cancer patients and cirrhosis patients, where cfSort effectively iden-
tified a significantly elevated proportion of cfDNA from the affected 
tissue in those patients, even with methylation data generated by 
different platforms. For treatment monitoring, we applied cfSort to 
serial plasma samples from non-small cell lung cancer (NSCLC) 
patients who received anti-PD-1 immunotherapy. The tissue frac-
tions estimated by the cfSort consistently reflected the organ damages 
in agreement with biochemical test results. The results of these two 
clinical scenarios demonstrated the applicability of cfSort in nonin-
vasively disease diagnosis and monitoring.

Results

Building a Comprehensive Tissue Methylation Atlas. We gene
rated base-resolution methylation data (RRBS) for 521 tissue 
samples of noncancer participants from the Genotype-Tissue 
Expression (GTEx) project (21). These tissue samples covered 
29 major types of human tissues (SI Appendix, Table S1). From 
these RRBS data, we performed the analysis at the DNA fragment 
level and systematically discovered tissue-specific methylation 
markers. Briefly, we quantified methylation levels in individual 

DNA fragments, in contrast to the conventional marker discovery 
using average methylation levels of all DNA fragments within large 
genomic bins (14, 15). Using the fragment-level methylation, 
we then identified genomic regions as tissue-specific methylation 
markers if DNA fragments with tissue-specific methylation 
patterns (namely tissue-specific DNA fragments) nearly exclusively 
exist in one group of tissue types, regardless of the fraction, but 
not in another group of tissue types (Materials and Methods). 
Therefore, the fragment-level marker discovery is robust to the 
heterogeneity in the tissue samples (17).

As shown in previous studies (14, 15, 22), different marker dis-
covery strategies focus on different differential methylation patterns 
between tissues (e.g., one tissue type vs. other tissue types), which 
can lead to different types of tissue markers. To build a comprehensive 
tissue methylation atlas, we employed three marker discovery  
strategies, resulting in three marker types that can cover nearly  
all differential tissue patterns. Specifically, they include: 1) The 
one-tissue-vs.-the-rest strategy identifies the Type I markers, with 
differential methylation signatures between one tissue type and all 
the other tissue types (Fig. 1A). 2) The one-group-vs.-the-another-group 
strategy identifies the Type II markers (Fig. 1B), with differential 
methylation between two tissue groups (tissue group defined by the 
tissue phylogeny in early development (23), e.g., between the diges-
tive system and lymphatic system, Fig. 1C). 3) The one-tissue- 
vs.-another-tissue strategy identifies Type III markers, with differen-
tial methylation between two tissue types (Fig. 1D), which can help 
distinguish similar tissue types from adjacent organs, such as the 
esophagus and stomach. For each strategy, the markers were ranked 
by their consistency across tissue samples, i.e., the number of samples 
showing the tissue-specific methylation pattern (Materials and 
Methods). The top-ranked 100 Type I markers, the top-ranked 200 
Type II markers, and the top-ranked 50 Type III markers from each 
comparison were utilized in the tissue deconvolution (Fig. 2A), in 
total 51,035 markers (3,775 Type I markers, 6,660 Type II markers, 
and 40,600 Type III markers). The three types of tissue-specific meth-
ylation markers were complementary to each other. Over 70% of 
markers were unique for each marker type (90.4% for Type I, 73.5% 
for Type II, and 81.4% for Type III). Therefore, we combined these 
markers to construct the tissue marker atlas.

Validation of the Tissue Specificity of the Tissue Methylation 
Atlas. We validated the tissue marker atlas with independent data 
sources from four aspects (SI Appendix): 1) The reproducibility 
of the tissue-specific methylation. 92.9% of our tissue markers 
showed consistent tissue-specific methylation in the whole-genome 
bisulfite sequencing (WGBS) data of the Epigenome Roadmap 
projects (24) (Fig. 2B and SI Appendix, Fig. S1A). This indicated 
that the tissue-marker atlas captured real tissue-specific methylation 
patterns that were reproducible in the independent data with a 
different cfDNA methylation assay (i.e., WGBS). 2) The association 
with the tissue-specific histone modification. We focused on the 
H3K27ac modification, which has the most abundant data in the 
ENCODE project (25). We observed consistent tissue-specific 
H3K27ac modification at 93.7% of the tissue markers (Fig. 2C 
and SI Appendix, Fig. S1B). Hypomethylated regions for a tissue 
type usually correspond to a tissue-specific elevation of H3K27ac 
modification, consistent with previous studies (24, 26). 3) The 
association with the tissue-specific gene expression. In the RNA-seq 
data in the GTEx project (21), 63.0% of tissue markers had increased 
gene transcription levels when the corresponding promoter regions 
were hypomethylated in the tissue types (Fig. 2D), implying that 
tissue-specific methylation may impact the tissue-specific gene 
expression. 4) The association with tissue-specific transcription 
regulation. We performed the enrichment analysis of transcription 
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factor binding motifs at the tissue markers using HOMER (27). 
The enriched motifs mostly relate to development, differentiation, 
and tissue-specific expression (Fig. 2E and SI Appendix, Table S2). 
For example, Homeobox protein Hox-D12 plays an important role 
in morphogenesis and myocyte enhancer factor-2 also contributes 
to the development of many tissues (28, 29). These results indicated 
that the tissue markers of our atlas are indeed involved in tissue-
specific biological processes. Through these four validations using 
independent datasets, we showed that the tissue markers in our 
atlas were tissue-specific and biologically meaningful.

Overview of cfSort. Due to the limited quantity and quality of 
available tissue methylation data, existing cfDNA deconvolution 
methods relied on unsupervised models, such as non-negative 
least squares (14, 15) and likelihood-based models (17, 18). 
Without learning from the ground truth tissue composition, these 
unsupervised models were intrinsically less powerful compared 
to the supervised models (20). The major challenge of applying 
supervised models is the lack of cfDNA data with ground-truth 
tissue compositions for training and evaluation because it is 
impossible to know the actual tissue compositions for real cfDNA 
samples. To address this challenge, we generated a large number of 
in silico cfDNA data to comprehensively cover the landscape of 
cfDNA tissue compositions. A similar framework has been proven 
successful to predict cell composition from tissue expression 
profiles (30). Using the large in silico cohort, we developed a 

DNN-based model, cfSort, for cfDNA tissue deconvolution, 
by considering the cfDNA properties in key components of the 
DNN constructions, including 1) data generation, 2) feature 
construction, 3) network architecture, and 4) model training.
Data generation. We used the RRBS data of the 521 tissue samples 
to generate in silico cfDNA methylation data with predefined 
tissue compositions and at different depths of coverage as the 
training, validation, and testing data (Fig. 3A). As the majority 
of cfDNA comes from white blood cells (WBC) (3, 14, 15), we 
required the WBC always to be the major contributor in an in 
silico cfDNA sample. Specifically, we split the original tissue 
samples into three groups (SI Appendix, Fig. S2): training (75%), 
validation (10%), and testing (15%). The in silico cfDNA data 
for the model training, validation, and testing were generated 
from the tissue samples in the corresponding group respectively. 
The data of an in silico cfDNA sample was generated in four steps 
(SI Appendix, Fig. S3 and details see Materials and Methods): 1) 
randomly select contributing tissue types; 2) randomly choose 
one original tissue sample from each tissue type selected in step 
1; 3) generate random tissue composition for the in silico cfDNA 
sample following symmetric Dirichlet distribution under the 
cfDNA-specific constraint (i.e., WBC as the major contributor); 
4) subsample DNA fragments from each tissue sample selected 
in step 2, following uniform distribution based on the tissue 
composition (generated in step 3) and mix them to generate the in 
silico cfDNA sample. A large number of our tissue samples allowed 

Fig. 1. Three strategies to select the tissue-specific methylation signatures. Illustration of the tissue comparisons in the one-tissue-vs.-the-rest strategy (A), the 
one-group-vs.-another-group strategy (B) following the tissue development phylogeny (C), and the one-tissue-vs.-another-tissue strategy (D). The fragment-level 
methylation in a genomic region was compared between the negative group and the positive group. The phylogenetic tree (C) constructed was based on early 
tissue development (23). The first layer corresponded to the three germ layers in early embryo development. The second layer corresponded to the function 
systems. The third layer contained the 29 tissue types in our deconvolution model.
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us to generate 295,484 diverse training samples and thousands 
of validation and testing samples, which fulfilled the requirement 
of the DNN training and evaluation (31). In addition, in the 
data generation, we fully exploited the combination of different 
tissue types, different samples, and different tissue compositions, 
exploring the possible noise and bias in the data. As a result, cfSort 
would learn robust tissue-specific features from these data.
Feature construction and profile generation. We constructed the 
input features of cfSort by leveraging the tissue markers in our atlas. 
Note that cfDNAs protected by nucleosomes generally have higher 
abundances than those not protected (32). Because different tissue 
types have different nucleosome positioning (33), the tissue 
composition in individual genomic regions can deviate from the 
overall tissue composition, thus resulting in locally unstable cfDNA 
methylation levels. However, such effects cannot be reflected by 
our tissue-derived in silico cfDNA data. To address this problem, 
we designed a marker clustering strategy to merge individual 
tissue markers into a marker cluster that is robust against the 
impact of nucleosome positioning. We performed the constrained  
K-means clustering (34) on the individual markers based on their 
methylation profiles across training samples, allowing four to seven 
individual markers in a cluster. This resulted in 10,183 marker 
clusters. A marker cluster (covering approximately 400 bp to 1,000 
bp) has a much larger size compared to the DNA wrapped around 
a nucleosome (~160 bp). For every marker cluster, we derived a 
numerical feature as the fraction of tissue-specific DNA fragments 

at all markers within the cluster. Therefore, for each sample, we 
derived 10,183 numerical features to form an input feature profile 
for the DNN. For details see SI Appendix, section S5.1.
DNN architecture. The basic structure of cfSort is an ensemble of 
two DNNs. The ensemble helps to reduce the prediction variance 
(31). Each DNN takes the feature profiles as input and outputs 
the predicted tissue compositions of the 29 tissue types (Fig. 3B). 
For each DNN, we constructed three dense hidden layers with a 
decreased number of nodes (1,024, 512, 128, and 256, 128, 32 
respectively) and used the rectified linear unit (ReLU) (35) as the 
activation function. The hidden nodes can automatically learn 
weights that prioritize the input features and make the DNN 
resistant to noises in the data. Considering the size and diversity of 
our training data, we added a batch normalization layer before each 
dense layer to stabilize and accelerate the training process (36). 
In addition, we apply a dropout layer after each dense layer (with 
dropout rate 0, 0.05, 0, and 0, 0, 0, respectively) to regularize the 
DNN to increase model robustness and avoid overfitting (37). We 
calculated the final predicted tissue composition as the averaged 
predictions from the two DNNs.
Model training. We applied the state-of-the-art optimizer Adam 
(38) with a learning rate of 0.001 and a batch size of 32. We used 
the mean absolute error between the estimated tissue composition 
and the ground truth as the loss function. To avoid overfitting, we 
applied two strategies in the training process: 1) Early stopping, 
i.e., to stop training the DNN when the performance drops on the 

Fig. 2. Construction and validation of the tissue-specific methylation atlas. (A) Heatmap of three types of tissue-specific markers used in the tissue deconvolution 
(i.e., the top-ranked tissue markers in the methylation atlas). The methylation atlas consists of the tissue markers that distinguish 29 human tissues. The tissue 
markers were identified by three strategies (Materials and Methods): Type I markers from the one-tissue-vs.-the-rest strategy (Top); Type II markers from the 
one-group-vs.-the-another-group strategy using the tissue phylogeny (Middle), and Type III markers from the one-tissue-vs.-another-tissue strategy (Bottom). 
The color in the heatmap showed the fraction of the tissue-specific fragments out of all fragments at a marker (referred to as the read fraction). (B) Validation of 
the reproducibility of the identified tissue markers in Epigenome Roadmap data. For each marker, from the RRBS data of our tissue samples, we performed the 
one-sided Wilcoxon rank-sum test between the corresponding tissues (comparing lowly with highly methylated tissues); on the WGBS data from the Epigenome 
Roadmap project, we calculated the fold change of the beta values between the corresponding tissues. Each point in the figure corresponds to a marker. The 
vertical dashed line showed a fold change of 1. The points on the right side of the vertical dashed line represented the markers with fold change <1, indicating 
a consistent methylation pattern with our RRBS data. The horizontal dashed line indicated a significant P value (<0.01). (C) Marker association with tissue-
specific H3K27ac modification. For each marker, on the H3K27ac ChIP-seq data from the ENCODE project, we calculated the fold change of the H3K27ac peak 
frequency between the corresponding tissues. Each point in the figure corresponds to a marker. The vertical dashed line indicated that the fold change was 1. 
The horizontal dashed line indicated a significant P value (<0.01). (D) Marker association with tissue-specific transcription. For each marker, on the RNA-seq data 
from the GTEx project, we performed the Wilcoxon rank-sum test between the corresponding tissues. Each point in the figure corresponds to a marker. The 
vertical and horizontal dashed lines indicated a significant P value (<0.01). (E) Marker association with tissue-specific transcription regulation. We analyzed the 
enrichment of transcription factor binding motifs at the marker regions using HOMER. The top 20 enriched motifs and their P values were shown in the figure.

http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials


PNAS  2023  Vol. 120  No. 28  e2305236120� https://doi.org/10.1073/pnas.2305236120   5 of 11

validation data, i.e., when the model starts to overfit the training 
data. This strategy has proven effective in cell-type proportion 
estimation with gene expression data (30). 2) Independent 
validation data from the training to fairly evaluate the validation 
loss during the training process. Through these two strategies, 
overfitting can be effectively avoided.

Analytical Performance of cfSort. We tested cfSort on an 
independent testing set of the in silico cfDNA samples (n = 3,660, 
see Materials and Methods). We compared its performance to two 
existing tissue deconvolution methods (SI Appendix): the non-
negative least square method (NNLS) (14–16) and the CelFiE 
(17). We evaluated the accuracy of the methods using mean 
absolute error, Lin’s concordance correlation coefficient, and 
Pearson’s correlation between the estimated tissue fraction and 
ground truth. cfSort outperformed NNLS and CelFiE on all three 
metrics (Fig.  4A). cfSort achieved a lower mean absolute error 
[0.00286, 95% CI = (90.00279, 0.00293)] than NNLS [0.02076, 
95% CI = (0.02040, 0.02112)] and CelFiE [0.00676, 95% CI = 
(0.00664, 0.00688)], and higher Pearson’s correlation and Lin’s 
concordance correlation [0.99707, 95% CI = (0.99704, 0.99711) 

and 0.99707, 95% CI = (0.99704, 0.99711), respectively] than 
NNLS [0.93323, 95% CI = (0.93245, 0.93400) and 0.90557, 
95% CI = (0.90467, 0.90645)] and CelFiE [0.99197, 95% CI = 
(0.99188, 0.99207) and 0.99038, 95% CI = (0.99028, 0.99049)]. 
These results indicated that cfSort achieved higher accuracy in 
estimating tissue compositions than the two competing methods.

Deconvolution methods need to have a high detection limit to 
detect tissue-derived cfDNA at low proportions. To assess cfSort’s 
detection limit, we utilized a widely used approach based on in 
silico dilution series (n = 20,960). For each sample in the dilution 
series, we mixed a single tissue sample with a WBC sample in the 
testing set with known tissue fractions (0%, 0.1%, 0.3%, 0.5%, 
0.7%, 1%, 3%, 5%, 7%, 10%, 13%, 15%, 17%, 20%, 23%, 
25%, 27%, and 30%) and at different depths of coverage (ranging 
from 20× to 120×, see Materials and Methods). All tissue samples 
from all tissue types in the testing group were used to generate 
the dilution series. Therefore, the evaluation of the detection limit 
shall reflect the overall performance of cfSort across all tissue types. 
We determined the detection limit for tissue-derived cfDNA at a 
specific tissue fraction � using one-sided Student t tests against 
the control samples with 0% tissue fraction (Materials and 
Methods). At 20×, cfSort detected tissue-derived cfDNA at 0.1% 
tissue fraction (P value = 0.028, Fig. 4B), while NNLS detected 
it at 5% (P value = 0.009, Fig. 4C) and CelFiE at 0.5% (P value 
= 0.010, Fig. 4D and SI Appendix, Table S3). As the depth of 
coverage increased, cfSort showed improved detection of 
tissue-derived cfDNA (SI Appendix, Fig. S4). These results demon-
strate that cfSort has a better detection limit than the two com-
peting methods.

Robustness of cfSort. As aforementioned, the nucleosome 
positioning and other factors (e.g., experimental noise) can cause 
local fluctuation of the tissue-derived cfDNA fraction. To assess 
cfSort’s robustness against this local fluctuation, we compared the 
consistency of estimated tissue composition from in silico cfDNA 
samples with the same overall tissue composition but different 
local compositions. We generated in silico cfDNA testing sample 
pairs (n = 9,023) from the same test tissue samples with different 
sampling distributions of sequencing reads (Fig. 5A). For sample 
A, tissue DNA fragments were randomly selected with a uniform 
distribution, while for sample B, fragments were sampled following a 
non-uniform tissue-specific distribution generated through random 
permutation of the average read distribution in cfDNA from 167 
healthy individuals (Materials and Methods). Different sampling 
distributions led to different probabilities of sampling a tissue DNA 
fragment in a local genomic region, mimicking the epigenetic impact 
in different tissues. Thus, samples A and B had different local tissue 
compositions despite having the same overall tissue composition.

The cfSort model was trained on data generated in the same process 
as sample A and then applied to the testing sample pairs. Therefore, 
the consistency of the estimated tissue fraction from the testing sam-
ple pairs can illustrate the robustness of cfSort under the fluctuation 
of the local tissue compositions. We measured the consistency using 
the intercept, slope, and R2 of the fitted linear regression model 
between the estimated tissue fractions of samples A and B. cfSort 
demonstrated remarkable robustness, as evidenced by a regression 
equation close to a perfect diagonal line (intercept = 0.00069 and 
slope = 0.98) with R2

= 0.99 on the simulated testing sample pairs 
(Fig. 5B). This result demonstrated that cfSort can estimate tissue 
fractions with high accuracy even when faced with unexpected 
randomness not present in the training process. It showed the gen-
eral applicability of cfSort to the cfDNA samples from diverse 
individuals.

Fig. 3. Overview of in silico cfDNA data generation and the DNN of the cfSort. 
(A) Illustration of in silico cfDNA data generation. The data were generated by 
in silico mixing of the data of tissue samples (Materials and Methods). For a 
sample, we randomly selected the original tissue samples and generated a 
tissue composition where the WBC was always the major contributor. Then 
we uniformly and randomly sampled DNA fragments from the RRBS data of 
the selected tissue samples based on the corresponding tissue fraction in the 
tissue composition. The sampled DNA fragments from every tissue sample 
were pooled together as the simulated sample. The tissue composition was 
regarded as the ground truth. (B) Illustration of cfSort. cfSort is an ensemble 
of two component DNNs, which have three dense hidden layers with the 
ReLU activation. We applied a batch normalization layer before each dense 
hidden layer and a dropout layer after each hidden layer. The output layer 
of each DNN contained 29 nodes corresponding to the 29 tissue types in 
the deconvolution. We utilized the softmax activation function in the output 
layer. The final output of cfSort is the average of the output from the two 
component DNNs.

http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
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Clinical Application: Elevated Tissue Fraction in Diseased 
Patients. Diseases, including cancers, can impact cell death 
in affected tissues (3). Decomposing the tissue composition in 
cfDNA can reveal altered homeostasis in affected tissues (13). 
In this study, we applied cfSort to cfDNA methylome data [i.e., 
cfMethyl-Seq data (19) and WGBS data (39)] of healthy and 
diseased individuals to investigate if the tissue fractions in cfDNA 
can indicate the incidence of diseases (SI Appendix, Fig. S5). We 
collected the cfMethyl-Seq data of the plasma cfDNA samples 
from 100 healthy individuals, 21 cirrhosis patients, and 201 
cancer patients (98 lung, 27 liver, and 47 colorectal, 29 stomach 
cancer patients) (19). The cfMethyl-Seq technology is a revised 
RRBS technology, specifically adapted to cost-effectively profiling 
cfDNA methylome (19). Additionally, we curated the WGBS data 
of the plasma cfDNA samples from 32 healthy individuals and 24 
liver cancer patients (39) for cross-platform validation.

We compared the affected tissue fraction in diseased and healthy 
cohorts using Student’s t tests. In all comparisons, we observed a 
significantly higher affected tissue fraction in the diseased patients 
than in the healthy individuals (Fig. 6 A–E, Wilcoxon rank sum 
test P value = 1.408e-09, 3.132e-12, 1.468e-07, 1.141e-06, and 
0.0029, for liver cancer, lung cancer, colorectal cancer, stomach 
cancer, and cirrhosis respectively). In addition, the affected tissue 
fraction increased with cancer stages (SI Appendix, Fig. S6). For 
colon cancer patients, we included both the small intestine and 
the colon as the affected tissues. The colon tissues in the GTEx 
project were collected only from the middle and end parts of the 
colon, which cannot represent a full picture of the colon (21). 

Therefore, we utilized the small intestine tissues collected near the 
start of the colon to complement the incomplete profile of the 
colon (21). We also evaluated the performance of disease detection 
using the affected tissue fraction as the sole predictor (Fig. 6 A–E). 
Our results demonstrated that cfSort can detect elevated cfDNA 
originating from diseased tissues, indicating the broad clinical 
utility of cfSort in disease detection and monitoring. However, for 
a specific disease (e.g., cancer), the integration of tissue-specific 
and disease-specific (e.g., cancer-specific) methylation patterns, if 
known, shall lead to the best detection results (19). Our results 
on the cfDNA WGBS data of liver cancer and healthy individuals 
(Fig. 6F, Wilcoxon rank sum test P value = 0.0030) further vali-
dated the applicability of cfSort on methylation data from different 
platforms to reveal disease-caused tissue composition changes.

Clinical Application: Tissue Fraction Changes Reflecting 
Tissue Damage during Anti-PD-1 Immunotherapy. The rapidly 
developing cancer treatments have been improving the survival 

Fig. 5. Evaluation of robustness of the cfSort. (A) Generation of the simulated 
testing sample pairs for the evaluation of robustness. We generated a testing 
sample pair (A and B) using the same tissue composition and the same original 
tissue samples but with different sequencing read sampling distributions. 
For sample A, we randomly sampled DNA fragments from the original tissue 
samples following a uniform distribution. For sample B, we used a nonuniform 
distribution to sample DNA fragments from the original tissue samples. The 
non-uniform distribution was randomly generated for each tissue type, and 
the distribution was different for different tissue types. (B) Robustness of the 
cfSort. The robustness was evaluated by the intercept, slope, and R2 of the 
fitted linear regression model between the tissue fractions estimated from 
the testing sample pairs.

Fig.  4. Analytical performance of the cfSort and comparisons with the 
existing methods. (A) The accuracy of the estimated tissue composition from 
the cfSort, NNLS, and CelFiE on the independent testing set. The accuracy 
was measured by Lin’s concordance correlation, Pearson’s correlation, and 
mean absolute error between the estimated tissue composition and the 
ground truth. The dots indicated the metric values, and the line segments 
indicated the 95% CI. (B–D) The detection limit of the cfSort (B), NNLS (C), and 
CelFiE (D) were evaluated on the testing dilution series. The detection limit 
was measured by the statistical significance of a one-sided Student’s t test 
between the estimated tissue fractions of the samples at every dilution level 
and the control samples (i.e., 0% tissue fraction). The statistical significance 
in the figures indicated the P values of the one-sided Student’s t tests at 0.1%, 
0.3%, 0.5%, and 1%: “ns” means not statistically significant (P value > 0.05); “*” 
means P value < 0.05; “**” means P value < 0.01; “***” means P value < 0.001; 
“****” means P value < 0.0001.

http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
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of cancer patients (40). However, side effects commonly arise 
from these cancer treatments, often causing tissue damage (41). 
Considering the large patient population with a history of cancer, 
the management of side effects is an essential part of their care, 
affecting the completion of treatment and quality of life (41). The 
standard evaluation of side effects is based on biochemical tests 
on tissue-specific markers (42), e.g., alanine transaminase for the 
liver. Since tissue damage can lead to abnormal cfDNA levels of 
the affected tissue, tissue-derived cfDNA levels theoretically can 
provide a novel path to monitor side effects to all tissues in the 
body.

To investigate the clinical potential of tissue-derived cfDNA 
potential in detecting side effects, we applied cfSort to cfDNA 
series from 4 NSCLC patients receiving anti-PD-1 immunother-
apy (SI Appendix, Fig. S5). Their plasma cfDNA was collected at 
0, 6, and 12 wk from the start of treatment. The side effects of 
anti-PD-1 immunotherapy often impact liver and kidney func-
tions for lung cancer patients, so we focused on the liver and 
kidney cfDNA fractions. Standard biochemical markers for the 
liver (including alkaline phosphatase, alanine transaminase, aspar-
tate aminotransferase, direct bilirubin, and total bilirubin) and 
kidney (blood urea nitrogen and creatinine) were measured along-
side the treatment to compare tissue fraction changes. We regarded 

a patient to have tissue damage if a biochemical marker had abnor-
mal values for at least two consecutive time points, or multiple 
biochemical markers had abnormal values at the same time; we 
regarded a patient to have no tissue damage if no biochemical 
markers had abnormal values at any time, and we regarded a 
patient as unanalyzable if the patient had only transient abnormal 
test results at one time point.

For liver damage, three of the four patients were analyzable, and 
their biochemical tests indicated the presence of liver damage. 
Consistent with their biochemical test results, all three patients 
showed an increased level of liver-derived cfDNA (Fig. 7A). For kid-
ney damage (Fig. 7B), one of the four patients (plasma-317) had 
kidney damage and showed an increased level of kidney-derived 
cfDNA. In contrast, the other three patients (plasma-304, 
plasma-318, and plasma-319) did not have kidney damage. Two of 
them (plasma-318 and plasma-319) have undetectable kidney-derived 
cfDNA. The other one of the three patients (plasma-304) showed 
an unstable kidney-derived cfDNA level. In addition, we observed 
a consistently strong correlation (average Pearson’s correlation = 
0.899) between the abnormal biochemical test results and the affected 
tissue fractions for the side effects on both liver and kidney 
(SI Appendix, Table S4). In general, the tissue-derived cfDNA levels 
changed consistently with the biochemical test results, indicating 

Fig. 6. The tissue-derived cfDNA fractions of the affected tissue in the diseased and normal individuals. (A) The liver-derived cfDNA fractions from the cfMethyl-
Seq data of liver cancer patients and normal individuals. (B) The lung-derived cfDNA fractions from the cfMethyl-Seq data of the lung cancer patients and 
normal individuals. (C) The intestine-derived cfDNA fractions (including colon and small intestine) from the cfMethyl-Seq data of the colon cancer patients and 
normal individuals. (D) The stomach-derived cfDNA fractions from the cfMethylSeq data of the stomach cancer patients and normal individuals. (E) The liver-
derived cfDNA fractions from the cfMethyl-Seq data of the cirrhosis patients and normal individuals. (F) The liver-derived cfDNA fractions from the WGBS data 
of the liver cancer patients and normal individuals. The difference between the diseased and normal individuals was evaluated by the Wilcoxon rank sum tests 
between the estimated fractions of affected-tissue-derived cfDNA. The statistical significance of the tests was indicated by the asterisks: “**” means P value < 
0.01; “***” means P value < 0.001; “****” means P value < 0.0001. The receiver operating characteristic (ROC) curve and the area under ROC curve (AUC) showed 
the performance of disease detection using the tissue-derived cfDNA fractions of the affected tissue as a sole predictor. The number at the top of each violin 
showed the number of samples.

http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
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potential tissue damage from cancer treatments. Although further 
validation in large patient cohorts is needed, our case study showed 
the first indication of detecting side effects on noncancer tissues of 
cancer patients using cfDNA. The results implied the potential of 
tissue-derived cfDNA in comprehensive side effect monitoring dur-
ing cancer treatments, which is especially meaningful for those organs 
without standard biochemical markers.

Discussion

We presented a comprehensive high-resolution tissue methylation 
atlas and the first supervised tissue deconvolution method for 
cfDNA, namely cfSort. They enabled sensitive and robust quan-
tification of tissue fractions in cfDNA. We validated the atlas of 
tissue markers by multiple independent datasets, and we showed 
that these markers were associated with tissue development, tissue 
differentiation, and tissue-specific transcription.

We developed the supervised tissue deconvolution method for 
cfDNA, cfSort, by using the tissue methylation atlas to simulate 
large-scale training data with ground truth, facilitating supervised 
learning. To ensure the robustness of tissue deconvolution, we 
generated diverse training samples to exploit the potential exper-
imental noise and individual variance in the population. To model 
the complicated relationship of tissue methylation and prioritize 
the tissue-specific markers, we applied the nonlinear hidden layers 
and dropouts in the DNN. We have shown that the cfSort out-
performed the existing methods in terms of accuracy and detection 
limit: making more accurate tissue fraction estimation and distin-
guishing a lower level of tissue-derived cfDNA. In addition, the 
cfSort demonstrated nearly perfect robustness toward the unseen 
local fluctuations of tissue compositions, indicating its wide appli-
cability to diverse individuals.

While preparing this manuscript, a large WGBS dataset of human 
cell types has been published (16). While our dataset is on tissue 

Fig. 7. The tissue-derived cfDNA fractions and the biochemical marker levels of four NSCLC cancer patients who received anti-PD-1 immunotherapy. (A) The 
liver-derived cfDNA fractions and the levels of biochemical markers indicating liver functions. (B) The kidney-derived cfDNA fractions and the levels of biochemical 
markers indicating kidney functions. The plasma cfDNA samples were collected at the 0 wk, 6 wk, and 12 wk, measured starting from the beginning of the 
treatment. The biochemical markers were tested during the treatment. The affected tissue fraction was estimated by cfSort; the ratio to baseline was the ratio 
between the affected tissue fraction at a certain time point and the fraction at the 0 wk.
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samples, this other dataset is on cell types. Note that a tissue may 
contain many cell types. Thus, our dataset provides more compre-
hensive coverage of tissue characteristics, while the other dataset 
provides more homogenous profiles of specific cell types. In addition, 
our atlas contains more samples for each tissue (median 15 in our 
dataset vs. 3 in the other dataset) and covers eight more tissue types. 
Although our dataset uses RRBS profiling, we showed that the RRBS 
data covered the majority of the cell-type–specific markers identified 
by WGBS in this study (SI Appendix, Table S5). Therefore, both 
datasets are complementary in covering the human tissue atlas. Note 
that this other study utilized the unsupervised NNLS for deconvo-
lution, while we proposed the supervised DNN deconvolution.

The cfSort is a general tool for quantifying tissue composition 
in cfDNA, which could be widely used in all tissue-related appli-
cations. In this study, we presented two clinical applications that 
1) identified elevated tissue fractions in cancer and cirrhotic 
patients compared to controls and 2) detected tissue fraction 
changes consistent with liver and kidney damages in NSCLC 
patients treated with anti-PD-1 immunotherapy. In addition, we 
showed that the cfSort was directly applicable to the cross-platform 
data (i.e., WGBS), although it was trained on the data of different 
platforms (e.g., enriched methylome sequencing data, such as 
RRBS and cfMethyl-Seq). With these results, we demonstrated 
the potential clinical utilities of the cfSort. We believe that the 
cfSort will facilitate and advance cfDNA-based disease detection, 
therapy prognosis, and longitudinal treatment monitoring.

Materials and Methods

Data Collection. We collected the cfMethyl-Seq data of the plasma samples from 
100 healthy individuals, 21 cirrhosis patients, and 201 cancer patients (98 lung, 
27 liver, and 47 colon, 29 stomach cancer patients) under the accession code 
EGAS00001006020 in the European Genome-Phenome Archive (19). We also 
collected the WGBS data of the plasma cfDNA samples from 32 healthy individ-
uals and 24 liver cancer patients under the accession code EGAS00001000566 
in the European Genome-Phenome Archive (39). These data were used as an 
example of applications for cfSort. We curated orthogonal validation data for the 
tissue methylation atlas from public databases (SI Appendix, Table S6), including 
the WGBS data from the Epigenome Roadmap projects (24), the RNA-seq data 
from the GTEx project (21), and the chromatin immunoprecipitation sequencing 
(ChIP-seq) data from the ENCODE project (25).

Human Subjects. We collected 12 plasma cfDNA samples from 4 NSCLC patients 
treated with anti-PD-1 immunotherapy at the University of California, Los Angeles 
for KEYNOTE-001  under clinical trial registration ClinicalTrials.gov number 
NCT01295827. All patients provided written consent before any study-related 
procedures were performed. The plasma samples were collected from each patient 
at 0 wk, 6 wk, and 12 wk, measured at the start of the treatment. We collected 521 
genomic DNA samples, including 464 non-WBC tissue samples from the GTEx 
project (21) and 57 WBC samples from UCLA hospitals. This project was approved 
by the Institutional Review Board of the University of California, Los Angeles (IRB# 
12-001891, IRB# 11-003066, IRB#19-000618, IRB#19-000230, IRB#19-001488, 
IRB#16-000659, IRB#17-000985, and IRB# 13-00394). Our research complies 
with all relevant ethical regulations. All participants gave their written informed 
consent. The RRBS libraries of the genomic DNA were constructed following the 
standard RRBS protocol (43); the cfMethyl-Seq libraries of the serial plasma cfDNA 
samples from the four NSCLC patients were constructed following the standard 
protocol (19) (SI Appendix). The preprocessing of the RRBS and cfMethyl-Seq data 
followed a standard procedure described in ref. 19 (SI Appendix).

DNA Fragment Level Discovery of Methylation Markers. To conquer the 
cell-type heterogeneity in the tissue samples (15), we employed a DNA-fragment-
level marker discovery framework to stratify tissue-specific DNA fragments from 
background DNA fragments (tissue-invariant DNA fragments) for capturing tissue 
signals sensitively and specifically (19). In this method, we utilized our previously 
proposed fragment-level methylation measurement (so-called α-value), defined 

as the fraction of methylated CpGs out of all CpGs on a DNA fragment (19). This 
fragment-level measurement has been utilized in several studies to identify 
cancer-specific methylation markers (19, 44). In brief, we identified the tissue 
markers between two groups (namely positive and negative groups) of tissue 
samples at the fragment level. We first generated the α -value distribution of the 
DNA fragments in a genomic region for the tissue samples in the positive and neg-
ative groups respectively. The α value distribution D(�) was defined as a function 
of α-value ( � ∈ [0, 1] ). For a given α, D(�) was calculated as the number of tissue 
samples containing fragments whose α-value was less than α. Then we identified 
markers as the genomic regions where the α-value distribution in the samples of 
the positive group (namely positive samples) has a well-separated component 
from those of the negative group (namely negative samples). Specifically, for a 
genomic region, we looked for a threshold �cut such that a number of positive 
samples (denoted as n+

cut
 ) contained DNA fragments with α-values <𝛼cut but 

nearly no negative samples (denoted as n−
cut

 ) contained such DNA fragments. If 
an �cut can be found for a genomic region, we treated that genomic region as a 
tissue marker for the positive group with a tissue-specific α-value-threshold �cut , 
i.e., all DNA fragments with α-value < 𝛼cut were treated as tissue-specific DNA 
fragments from the positive group. The more tissue samples with tissue-specific 
DNA fragments in the positive group (i.e., the larger n+

cut
 ), the higher quality and 

more stable the markers are. Therefore, the identified markers were ranked by 
n+
cut

 . The DNA-fragment-level marker discovery was applied to all three strategies 
of identifying tissue-specific methylation markers.

Construction of the Tissue Marker Atlas. We constructed the tissue meth-
ylation atlas by using three strategies for identifying tissue-specific methylation 
markers: one-tissue-vs.-the-rest comparisons (Type I markers), one-group-vs.-
another-group comparisons (Type II markers), and one-tissue-vs.-another-tissue 
comparisons (Type III markers). The three strategies complementarily identified 
different types of tissue-specific methylation markers. In the one-tissue-vs.-the-
rest comparisons, we used the samples from one tissue type as the positive group 
and all samples from other tissue types as the negative group (Fig. 1A) and then 
applied the DNA-fragment-level marker discovery framework to identify markers. 
Therefore, we discovered the unique methylation patterns for each tissue type 
by this strategy. Because the negative group contained hundreds of samples, 
we required n−

cut
 of the selected markers to be less than 20. In the one-group-vs.-

another-group comparisons, we discovered markers following the tissue phylog-
eny (Fig. 1B) in early human development. We constructed this phylogeny based 
on the literature (23). The comparison was conducted at every tree level, and every 
node was compared against its siblings (Fig. 1C). In other words, when all samples 
under a node were regarded as the positive group, all samples under its sibling 
nodes were regarded as the negative group in the comparison. In this way, we 
discovered markers following the tissue differentiation trajectory by employing 
the DNA-fragment-level marker discovery framework on the defined negative and 
positive groups. We required n−

cut
 of the selected markers to be less than 10. In the 

one-tissue-vs.-another-tissue comparisons, we only considered two tissue types 
at a time. We used the samples from one tissue type as the positive group and 
the samples from the other tissue type as the negative group (Fig. 1D). Using this 
strategy together with the DNA-fragment-level marker discovery framework, we 
can identify differential methylation patterns that distinguish two similar tissue 
types, e.g., vagina and uterus. Considering the size of the negative group, we 
required n−

cut
 of the selected markers to be less than 2. In the tissue deconvolu-

tion, we used the top 100 Type I markers (29 comparisons), the top 200 Type II 
markers (38 comparisons), and the top 50 Type III markers per comparison (812 
comparisons). Ties were included. In total, 51,035 individual tissue markers were 
used in the tissue deconvolution.

Simulation of Tissue Mixtures from the RRBS Data of Tissue Samples. 
Because cfMethyl-Seq and RRBS profile the exact same genomic regions (19), we 
can directly utilize the RRBS data of tissues to generate the simulated cfMethyl-
Seq data of plasma cfDNA with known tissue compositions. Specifically, the 
simulated cfMethyl-Seq data of an in silico cfDNA sample was generated in four 
steps (SI Appendix, Fig. S3). In step 1, we chose a number of tissue types that 
contributed to the simulated sample with positive fractions. In addition to WBC, 
we randomly selected a certain number (ranging from 1 to 9) of non-WBC tissue 
types. Note that we did not use 29 tissue types altogether, because the number 
of combinations went up exponentially as the number of tissue types increased. 

http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305236120#supplementary-materials
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In addition, the tissue fraction of most tissue types can be quite low if we mix 
29 tissue types altogether. Therefore, it will be computationally impractical to 
obtain enough samples with tissue fractions spanning a desirable range. In 
step 2, we randomly chose a real tissue sample for each selected tissue type 
and WBC. Note that we pooled multiple real WBC samples together, if a single 
real WBC sample contained inadequate reads to generate the simulated data. 
The corresponding RRBS datasets of these selected tissue samples were to be 
used as the data sampling source for the simulated tissue mixture. In step 3, we 
created random tissue composition for the simulated sample. Briefly, a random 
positive integer was chosen for each selected tissue type and WBC, and then this 
number was divided by the sum of all random numbers to ensure the tissue 
fractions added up to 1. The tissue fraction of a tissue type t  was calculated 

as ft =
rt
∑

i ri
 , where ri was the random number generated for the tissue i  . We 

specifically required the WBC to always have a large fraction (on average 75%) 
in the tissue composition. This ensured that the WBC was the main contributor, 
consistent with the characteristics of real cfDNA samples. We assigned zero as the 
tissue fraction if a tissue type was not selected in step 1. Therefore, we generated 
the ground truth composition for the simulated sample. In step 4, we randomly 
sampled sequencing reads from the selected tissue samples (from Step 2) based 
on the tissue composition (generated in Step 3). We generated the simulated 
cfMethyl-Seq data at 20x, 40x, 60x, 90x, and 120x coverage, equivalent to 
approximately 20, 40, 60, 90, and 120 million paired-end sequencing reads. 
Therefore, for a tissue type t  , we randomly sampled Nt = N ⋅ ft read pairs from 
the RRBS dataset of the selected tissue sample, where N is the total number of 
reads to be sampled. Finally, we mixed the sampled read pairs from all tissue 
types as the in silico cfMethyl-Seq data to represent a simulated cfDNA sample. 
Due to the limited depth of the original WBC data, we pooled multiple WBC 
samples together to generate in silico cfDNA samples at high depths (>20x).

We split the original tissue samples into three groups (SI Appendix, Fig. S2): 
training (75%), validation (10%), and testing (15%). Then we applied the above 
simulation procedure to each of the three groups and generated the correspond-
ing simulated training, validation, and testing cfDNA data with known tissue 
compositions.

Evaluation of Robustness Toward Nonrandom Fragmentation. To evaluate 
the robustness of cfSort, we created the simulated testing sample pairs (n = 
9,023) with different tissue-specific read distributions, but with the same tissue 
composition and the same source of tissue fragments (Fig. 5A). We generated a 
pair of testing samples (samples A and B) following Steps 1 to 3 described above. 
For sample A, we followed Step 4 described above. For sample B, we used the 
same selected tissue samples and the same tissue composition. Instead of sam-
pling reads using a uniform distribution, we enforced the sampled tissue-specific 
reads to follow a tissue-specific read distribution. To generate the tissue-specific 
read distribution, we calculated the average read count per million (RCPM) at each 
region in the cfMethylSeq data of 167 healthy plasma samples. We directly used 
the average RCPM as the read distribution for WBC; while for each non-WBC tissue 
type, we permutated the average RCPM in the regions as the read distribution. 
Then for a region, the number of reads sampled from the original tissue sample 
was proportional to the respective tissue-specific read distribution in the region. 
The robustness of cfSort was evaluated as the consistency of the estimated tissue 

compositions between the testing sample pairs, i.e., the intercept, slope, and R2 
of the fitted linear regression model.

Data, Materials, and Software Availability. cfSort is implemented in Python 
and is freely available for academic and research usage through the GitHub repos-
itory, https://github.com/jasminezhoulab/cfSort (45). The raw sequencing data of 
the tissue samples and the plasma samples is deposited at the European Genome-
phenome Archive (EGA) under the accession number EGAS00001007213 (46). 
DNA methylation data of 521 tissue samples are available in bed format (meth-
ylation level at individual CpG sites) and in pat format (fragment-level informa-
tion, including CpG starting index, methylation pattern of all covered CpGs and 
number of fragments with exact multiCpG pattern) at GEO under the accession 
number GSE233417 (47).
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