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Satisfying a variety of conflicting needs in a changing environment is a fundamental
challenge for any adaptive agent. Here, we show that designing an agent in a modular
fashion as a collection of subagents, each dedicated to a separate need, powerfully
enhanced the agent’s capacity to satisfy its overall needs. We used the formalism
of deep reinforcement learning to investigate a biologically relevant multiobjective
task: continually maintaining homeostasis of a set of physiologic variables. We then
conducted simulations in a variety of environments and compared how modular
agents performed relative to standard monolithic agents (i.e., agents that aimed to
satisfy all needs in an integrated manner using a single aggregate measure of success).
Simulations revealed that modular agents a) exhibited a form of exploration that was
intrinsic and emergent rather than extrinsically imposed; b) were robust to changes
in nonstationary environments, and c) scaled gracefully in their ability to maintain
homeostasis as the number of conflicting objectives increased. Supporting analysis
suggested that the robustness to changing environments and increasing numbers of
needs were due to intrinsic exploration and efficiency of representation afforded by
the modular architecture. These results suggest that the normative principles by which
agents have adapted to complex changing environments may also explain why humans
have long been described as consisting of “multiple selves.”
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“The worst enemy you can meet will always be yourself.”
—Friedrich Nietzsche, Thus Spoke Zarathustra

One of the most fundamental questions about agency is how an individual manages
conflicting needs. The question pervades mythology and literature (1, 2) and is a focus of
theoretical and empirical work in virtually every scientific discipline that studies agentic
behavior, from neuroscience (3), psychology (4–6), economics (7–9), and sociology
(10, 11) to artificial intelligence and machine learning (12, 13). Perhaps most famously,
the question of how an individual manages conflict has been at the heart of over a century
of work on the nature of psychic conflict underlying mental illness (14, 15). How is it
that we (and other natural agents) are so effective in managing fluctuating, ongoing,
and frequently conflicting needs for sustenance, shelter, social interaction, reproduction,
temperature regulation, information gathering, etc.? Growing interest in the design of
autonomous artificial agents faces similar questions, such as how to balance execution of
actions, with the replenishment of energy or need for repair (Fig. 1A). This challenge is
especially difficult in a world that is constantly changing (i.e., features of the environment
are nonstationary) and when the set of distinct needs is large.

A central and recurring debate, that arises with the question of how multiple,
potentially conflicting needs are managed, is whether this relies on a single, monolithic
agent (or “self”) that takes integrated account of all needs, or rather reflects an emergent
process of competition among multiple modular agents (i.e., “multiple selves”) (16–22).
In principle, a monolithic system should be capable of translating information about its
environment and objectives into intelligent behavior in an integrated fashion. However,
the reason modular organization may be so prevalent in biological and psychological
systems is because it affords certain benefits in practice.

In this article, we use the computational framework of model-free reinforcement
learning (RL) (23) to provide a normative perspective on this debate. We implement
two types of agents that must learn to manage multiple needs (or “objectives”): one
that treats the problem monolithically as a simultaneous global optimization over the
different objectives and one in which behavior emerges out of competition between
subagents, each dedicated to a particular objective (Fig. 1B). We cast the problem
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Fig. 1. Concept illustrations. (A) Adaptive organisms are pulled in multiple directions due to competing demands. (B) Do brains balance our needs in a
global fashion (Top; monolithic) or, like the semiautonomous legs of an octopus, might subagents compete for control? (Bottom; modular). In the framework of
reinforcement learning, this contrast corresponds to the one between a network learning a single policy based on a scalar reward value r (Top, Right) versus
multiple subnetworks each learning a distinct policy based on separate reward components (r1, r2,...) (Bottom, Right). (C) A homeostatic task environment. An
agent (white) moves around a grid world, searching for densities (yellow) of different resources that can replenish its internal stats (h1, h2,...). A distinct resource
map is displayed for the distribution of each of the four resources in the same grid world. Stat “meters” at the right show an example of the levels for each stat
at a given point in time, with dotted green lines indicating their set points.

of multiple objectives as the ubiquitous need to maintain
homeostatic balance along different dimensions (Fig. 1C ) and
study nonstationarity by introducing changes in the external
location of required resources over time. Then, by training deep
RL agents in systematically controlled simulated environments,
we provide insights about when and why the modular approach,
implementing “multiple selves,” meets the challenge of learning
to manage multiple needs more efficiently and effectively.

The monolithic agent is based on standard principles and
mechanisms of RL (23). In this approach, reward is defined as
a single scalar value that the agent receives in response to taking
actions in its environment. When there are multiple objectives,
a scalar reward associated with each is combined into a single
reward that the monolithic agent seeks to optimize (13). As
a central example, in homeostatically regulated reinforcement
learning (HRRL) (24), an agent with separate homeostatic drives
is rewarded based on its ability to maintain all its “homeostats” at
their set points. This is done by combining deviations from all set
points into a single reward which, when maximized, minimizes
homeostatic deviations overall. Not restricted just to primitive
drives, HRRL is a general framework for deriving reward from
any objective describable by a set point, whether concrete (like
hydration) or abstract (like reaching a goal) (25).

While standard RL is a provably optimal solution for re-
ward maximization in stationary environments, nevertheless,
this approach faces several challenges. First, an agent must
balance collecting known sources of reward with exploring its
environment to learn about unknown sources [known as the
explore–exploit dilemma (26)], and this typically requires careful
tuning of exploratory noise or bonuses (27). Second, standard
RL struggles in nonstationary environments (28). Third, it is
well known to suffer from the “curse of dimensionality,” which
refers to the exponential growth in the number of relationships
between states and objectives that must be learned by the agent
as the complexity of the environment and/or the number of its
objectives increases (29).

In contrast to the monolithic approach, an agent in the
modular approach is composed of separate “specialist” RL
subagents (modules), each of which learns to optimize reward
pertaining to a single need. As a result, different modules learn
different policies (action preferences for individual states) and, for
a given state, are likely to have different preferences for actions.

The action of the agent is selected based on an arbitration of
the individual module preferences. Such modular architectures
have received increasing attention in RL (30–37), and so has
modularity in machine learning more broadly, because this
“divide-and-conquer” strategy tends to improve learning speed,
scaling properties, and performance robustness (38). However,
these approaches typically attempt to decompose a standard scalar
reward into a more tractable set of subproblems. In contrast, our
starting point is that ecologically valid agents have a set of distinct,
predefined objectives, which can be independent of one another,
and the actions needed to meet these may come into conflict.
We then ask the question: Should these objectives be composed
together at the level of reward (monolithic) or at the level of
action (modular)? In multiobjective cases like these, dedicating
an independent subagent to each objective may not be an optimal
strategy in all cases (39). However, our hypothesis is that such a
one-agent-per-objective heuristic, in which action values rather
than rewards are combined, affords practical benefits for an agent
that must satisfy independent drives.

Here, we compare modular and monolithic architectures
with respect to the ecologically relevant problem of learning to
continuously balance multiple homeostatic needs in a changing
environment. We find that the modular architecture outperforms
the monolithic one and identify critical factors that contribute
to this success by addressing the three aforementioned challenges
faced by the monolithic approach. First, we find that exploration
emerges naturally as an intrinsic property of the modular
architecture, rather than having to be imposed or regulated as
an extrinsic factor: Modules are often “dragged along” by other
modules that currently have the “upper hand” on action, allowing
the former to discover the value of actions they themselves
would not have selected. Second, by learning to bias their
policies toward features that are most relevant to their individual
objectives, while ignoring irrelevant features, they are able to
adapt effectively to changes in the environment. Together, these
factors also make modular agents more robust to an increase in
the number of objectives (and therefore the complexity of the
task/environment).

In the following sections, we describe the simulations on
which the observations summarized above were based. First,
we introduce a simple but flexible environment for homeostatic
tasks, construct a deep learning implementation of HRRL to
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learn such tasks, and incorporate this into both monolithic and
modular architectures. We then quantify the differences between
monolithic and modular agents in the homeostatic tasks. We
focus first on an environment with stationary resources and
show that the performance benefits of the modular agent are
related to its intrinsic capacities for exploration and efficiency
of representation. We then turn to nonstationary environments
and show that as the number of homeostatic needs increases, the
relative advantage of modularity is strongly enhanced. Finally,
we situate our work within the relevant reinforcement learning,
evolutionary biology, neuroscience, and psychology literatures
and suggest that the need to balance multiple objectives in
changing environments pressured the evolution of distinct value
systems in the brain, providing a normative account for why
psychic conflict appears central to human psychology.

Results

To compare monolithic and modular approaches, we trained
deep reinforcement learning agents in a simple grid-world envi-
ronment. In this environment, various resources were distributed
at different locations in the grid. The goal of the agent was to move
around the grid to collect resources in order to maintain a set of
depleting internal variables (stats) at a homeostatic set point. Stats
could be replenished by visiting the location of the corresponding
resource and could be exceeded through “overconsumption” by
remaining too long at that location. For example, if the agent
had a low “hunger” stat, it could collect the “food” resource
by moving to the location of that resource. If it ate too much
(stayed too long), it could leave the location with food until
its “hunger” stat decreased below its set point. The monolithic
agent was a standard deep Q-network (DQN) (40), while the
modular agent was a set of DQNs, one corresponding to each
needed resource, from which actions were selected by simply
summing up action value outputs across the DQN modules. A
more detailed description of the environment and agent design
is provided in Materials and Methods.

Initial Testing and Optimization of a Monolithic Agent in a
Stationary Environment. As a reference point for subsequent
evaluations, we first tested random and monolithic agents in a
stationary environment, in which resource locations were fixed in
the four corners of the grid (as in Fig. 1C ) (in all experiments, only
one of each resource density was available, i.e., a single source of
food). Maintaining homeostasis in this simple environment was
not trivially accomplished, as evidenced by the performance of
an agent that selected actions randomly on every time step (Fig.
2A). Despite chance encounters with resources, these were not
sufficient to compensate for the depletion rates of the internal
stats, which declined steadily over time. In contrast, a monolithic
agent could be trained to maintain homeostasis for a variety of
homeostatic set points in this environment. Fig. 2B summarizes
the final internal stat level achieved after 30,000 training steps
(averaged over all four stats and over the final 1,000 steps of
training) for different set points. The monolithic agent reliably
achieved each set point by the end of training. To ensure that
subsequent comparisons were against the best possible monolithic
agent, we selected a fixed set point of 5 for all stats (used in
all subsequent experiments) and optimized the performance of
the monolithic model by performing a search over performance-
relevant hyperparameters, such as the learning rateα and discount
factor γ . Results of this hyperparameter search (SI Appendix, Fig.
S1) were used to select the best-performing parameters for the
monolithic agent. We then matched these parameters and others

(including the total number of trainable parameters for each
agent; see SI Appendix, Table S1) between the monolithic and
modular agents to compare them in the subsequent experiments.

Modularity Benefits Exploration and Learning. To investigate
the impact of modularity on the need for exploration, we
systematically varied the number of steps used to anneal ε
(frequency of random action selection) in ε-greedy exploration
from its initial to final value. We varied the ε annealing time for
both types of agents over four schedules, in which exploration
was reduced linearly from its initial value (ε = 1) to a final
value (ε = 0.01) in 1 step or over 1K, 5K, or 10K time steps
(see Fig. 2C ). Fig. 2D shows average stat levels over the course
of training for the two types of agents in the 1K annealing
schedule (See SI Appendix, Fig. S2 for example time courses of
separated stats). For both agents, stats briefly fell during the initial
exploratory period, then stabilized toward the set point. However,
the modular agent consistently reached the set point faster, while
the monolithic agent first overshot and then undershot the set
point before slowly converging on it and exhibited substantially
more variance while doing so (i.e., its stats reached more extreme
values before converging). This overshoot-undershoot pattern has
been previously observed (24) due to internal stats changing faster
than the agent could adapt through learning. We investigated a
range of other drive parameters and found that the modular agent
mitigated this pattern consistently (SI Appendix, Fig. S3).

The Insets in Fig. 2D show representative learned state-value
maps for each agent early (t = 5,000) and late (t = 20,000) in
training. These maps were constructed, for testing at a given point
in training, by externally and momentarily depleting all internal
stats (setting them to a value of 3) and displaying the highest
Q-value (for the modular agent, after summing action values
across modules) in each grid location (high-valued states in green
and low-valued states in red), after which stats were returned to
their previous value and training continued. In the very early
stages of training (at 5,000 steps), the modular agent learned
a representation of values that reflected the state of the world
(all four corners were valuable because all stats were depleted),
whereas the monolithic agent had not. This pattern (i.e., modular
agents learning appropriate representations very early in training)
was observed in most training runs. In contrast, monolithic agents
learned the appropriate value maps at much later stages in training
(20,000 steps).

Fig. 2E summarizes the results of the different exploration
annealing schedules, measured as mean deviation from the set
point (i.e., averaged over stats for each agent; see Materials
and Methods). While monolithic agents gained progressively
greater performance benefits from increasing periods of initial
exploration, modular agents exhibited virtually no impact of
extrinsically imposed exploration: With only 1 step of annealing,
modular agents were already at or near maximal performance.
This suggests that modular agents may have benefited from an
intrinsic form of exploration, as a consequence of how action
values were updated. These were updated for each subagent
with respect to their individual objectives following every action,
irrespective of which subagent contributed most strongly to the
selected action. For subagents that did not contribute most
strongly, the selected action could be considered (in mean
expectation) to be approximately random (SI Appendix, Fig. S4).
This allowed those subagents to discover the values of actions that
they would not otherwise have selected, providing an intrinsic
and continual form of exploration.

To examine the potential contribution of intrinsic exploration
to the performance of modular agents, we conducted an ablation
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Fig. 2. Performance of models in an environment with fixed resource locations. (A) Stat levels decline over time for an agent that moved randomly on every
time step, shown for a period of 30,000 time steps (same as period used for all subsequent experiments). (B) Monolithic agents can learn to achieve homeostasis
for a variety of set points (data averaged for 10 agents; final stat levels calculated for each agent by averaging across levels of all four stats over the final 1000
time steps of training). (C) Agents were further tested using four annealing schedules for �-greedy exploration. Values of � were initialized at 1 and linearly
decreased on each time step until reaching a final value of 0.01. This decrease occurred over a period of 1, 1,000, 5,000, or 10,000 time steps (i.e., schedule 1
applied effectively no annealing, while schedule 4 spread the annealing process over the first third of training). (D) Time course of average stat levels during
training for monolithic (blue) and modular (orange) agents (N = 30 each; shading shows standard deviation at each time point, and the green dotted line
represents the set point of 5 used for all four stats). Insets show representative heat maps for the maximum action value in each state in the grid world when
all four stats were depleted equally to a value of three units for the monolithic and modular agents at time points 5,000 and 20,000. The modular agent learned
to represent the appropriate high value of all four corners of the grid (where the resources were located) much earlier in training. (E) Direct comparison of the
effects of exploration annealing on homeostatic performance of the monolithic and modular agents (N = 50 each) in an environment in which resources were
fixed in the four corners of the grid world, and decision noise was gradually decreased according to one of four annealing schedules. Homeostatic performance
was calculated as in Materials and Methods Eq. 8 (lower is better). Performance of the monolithic agent (blue) relied heavily on the extrinsically imposed
exploration, showing a substantial improvement in performance with increasing duration of annealing. The modular agent (orange) was essentially unaffected
by the annealing schedule, achieving near-maximal performance with virtually no extrinsically imposed exploration. Boxplots display the interquartile range
and outliers for N models. (F ) Results of an ablation experiment testing for the effects of intrinsic exploration in modular agents, in which action transitions
were only saved into the memory of a particular module when that module took its preferred action or when the action was selected randomly according to
the epsilon schedule. As a control, for monolithic agents, saving transitions to memory was randomly skipped with a fixed probability (P = 0.3) to match the
proportion of skipped experience in the modular agents. This rendered modular agents dependent on annealing, suggesting that intrinsic exploration was
“knocked out” and that performance was “rescued” when extrinsic exploration was reintroduced.

experiment in which each module could only learn from actions
that it would have taken if it had full control (that is, for which it
was most responsible; see Materials and Methods for details). This
manipulation substantially impaired the performance of modular
agents in the absence of extrinsically imposed exploration,
rendering them—like the monolithic agents—dependent on the
annealing schedule, with performance “rescued” as exploration
was reintroduced with annealing (Fig. 2F ). In this ablation exper-
iment, monolithic agents were also randomly deprived of learning
from experience at a comparable rate as the modular agent as a
control and were relatively unaffected by the manipulation.

The Advantage of Modularity is Enhanced in Changing Environ-
ments and with More Objectives. To increase task difficulty, we
systematically varied two parameters: degree of nonstationarity
(rate of change) in the environment and the number of
homeostatic needs of the agent (and corresponding resources

in the environment; see SI Appendix, Fig. S2 for example
environments). We first introduced nonstationarity such that
each resource moved independently to a different randomly
selected grid location at stochastic time intervals determined
by a Poisson process with rate λ. Fig. 3A shows results for
monolithic and modular agents when λ = 0.02. The difference
in performance between monolithic and modular agents was
substantially greater in this environment compared to the
ones in which resources remained at fixed locations. Modular
agents exhibited slightly greater reliance on exogenously applied
exploration at the earliest points in learning, but this quickly
diminished and was dramatically less than monolithic agents
which continued to exhibit heavy reliance on annealing.

We further tested the effects of nonstationarity by systemat-
ically varying λ. Fig. 3B shows the time course for each type
of agent (average of the four stats) over training (using the
1,000-step annealing schedule) for different λs, varying from
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Fig. 3. Performance of models in nonstationary and increasingly complex environments. (A) Comparison of modular (orange) and monolithic (blue) agents
(N = 100 each) in an environment with four resources, each changing location at a Poisson rate of � = 0.02. Homeostatic performance was calculated as in
Materials and Methods Eq. 8 (lower is better). Modular agents were again relatively unaffected by the exploration annealing schedule, whereas the monolithic
required significant exploration to have comparable performance (note that the differences between agents are greater here than in Fig. 2E). Boxplots display
the interquartile range and outliers. (B) Trajectories of stats levels (average of four stats) over training for modular and monolithic agents using the 1,000-
annealing-step schedule, for environments with different rates of change varying from � = 0.001 (slowest, darkest line) to � = 0.02 (fastest, lightest line). For
monolithic agents, homeostatic performance was worst in the most slowly changing environment, improving with the rate of environmental change, whereas
modular agents consistently and quickly achieved homeostasis regardless of the rate of change in the environment. (C) Trajectories of stats levels (average
of all stats) over training for modular and monolithic agents with different numbers of homeostatic objectives, from four (lightest line) to eight (darkest line),
using the 1,000-annealing-step schedule in the fastest changing environment (� = 0.02). For monolithic agents, homeostatic performance worsened with more
homeostatic objectives, whereas the modular agent consistently and quickly achieved homeostasis regardless of the number of objectives. Shading represents
standard deviation across all trained models. (D) Summary of results across all manipulations. The duration of annealing (amount of extrinsic exploration)
increases for plots from left to right, and the left and right horizontal axes of each plot represent the number of stats and rate of resource location change (�),
respectively. The vertical axis displays homeostatic performance. The modular agent was able to robustly achieve homeostasis (the orange surface remained
mostly flat across all conditions).

the slowest rate of change (λ = 0.001, darkest lines) to fastest
(λ = 0.02, lightest lines). Modular agents (orange) were largely
impervious to the rate of change, consistently learning to achieve
homeostasis relatively early during training. Monolithic agents
(blue) performed worse overall, and performance worsened as
resource locations changed more slowly. On further investigation,
we found that agents occasionally fell into local minima solutions
in nonstationary environments (possibly due to overfitting on
old resource locations) and that intrinsic exploration helped
modular agents rely less on additional resource movements
(which happened more often in fast changing environments) to
escape these minima (See SI Appendix, Fig. S5 and related sup-
plementary information). This suggests that, in slowly changing
environments, the difference between modular and monolithic
agents should be even greater when extrinsic exploration is
decreased, an effect that is consistent with findings shown in
the leftmost plot in Fig. 3D (and discussed further below).

Finally, to compare how the two types of agents fared with
an increasing number of objectives, we held λ constant at 0.02
and increased the number of stats and corresponding resources
(and associated subagents in the modular architecture, while
comparably increasing the number of trainable parameters in the
monolithic model). Fig. 3C shows the time course of training
for four (lightest line) to eight (darkest line) stats using the
1,000-annealing-step schedule. Again, modular agents achieved
homeostasis regardless of the number of objectives, even in this
more difficult nonstationary environment, while the monolithic
agent exhibited strong sensitivity to the number of objectives.

Fig. 3D summarizes more results across all conditions. This
highlights the observation that modular agents maintained good
homeostatic performance (orange surface remains largely low
and flat) across the three task manipulations studied: amount
of extrinsically imposed exploration (increasing from leftmost
to rightmost plots), rate of nonstationarity (Right axis of each
plot), and number of homeostatic needs (Left axis of each plot),
whereas the performance of monolithic agents was sensitive to all
of these, with performance degrading in a parametric fashion in
response to each manipulation (blue surface overall higher and
steeply pitched). A more complete set of time courses is provided
in SI Appendix, Figs. S6 and S7, and we support the generality of
this effect by replicating it with a varied exploration procedure (SI
Appendix, Fig. S10) and over a range of different drive parameters
(SI Appendix, Fig. S3). Note that the difference between modular
and monolithic agents in slowly changing environments (λ =
0.001) was greatest with the least amount of extrinsic exploration
(leftmost plot) and decreased with longer annealing, whereas the
modular agents showed good performance and little change as a
function of extrinsic exploration, consistent with the suggestion
above that intrinsic exploration helped them escape local minima
in slowly changing environments.

Value Representations Learned by Monolithic and Modular
Agents. In addition to differences in dependence on exploration,
another important difference is the types of value representations
each agent is capable of learning. Fig. 4A provides a conceptual
illustration of the point that, for the monolithic agent, there will
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A

B

Fig. 4. State-values and policies learned by monolithic and modular agents. (A) Loss of information in the monolithic architecture. Plots of the hypothetical
time course for rewards relevant to each of four subagents, that sum to a constant value at every time point. This extreme case highlights the potential loss of
information available to a monolithic agent: Summing the reward signals obscures differences in the reward relevant to each objective, making it difficult for it
to develop a policy that is sensitive to them individually. (B) State-value and policy maps learned by each type of agent. A monolithic agent and a modular agent
were trained for 30,000 steps in the same nonstationary environment (� = 0.02). After training, all resource locations were changed, with resource 1 moved to
the center of the grid (maps at Left), and the internal stat for that resource h1 depleted to 0, while all other stats were set to their set point of 5 (level meters
to the Left of the resource maps). This state was then passed to both models, to construct state value and policy maps (monolithic in Upper Right; modular in
Lower Right), which display the maximum Q-value output for each grid location and its corresponding action direction (black arrows). For the modular agent,
maps in the middle show the values outputted by each individual module (with color reflecting relative state values within each map, and transparency the
absolute value at each grid location, allowing comparison of values between modules). Module 1 had higher action values overall, reflecting the depleted state
of stat 1 and thus contributing the most to the final value map (at Right) after summing action values across modules. The final value/policy maps show that
the modular agent had a clear path to resource 1 from any location in the grid. However, the monolithic agent, while recognizing the higher value of resource
1, had many paths that did not lead there. Paths can be traced by following the black arrows (some example paths starting from grid corners are shown in light
blue).

be a loss of information when separate reward components are
combined into a single scalar value (the flat black line is the
sum of the four sources of reward as they vary over space or
time), which can make it difficult to learn a policy sensitive to
the individual objectives. In contrast, in the case of the modular
agent, policy learning for each objective was kept separate and
based only on the reward for the corresponding objective. The
consequences of this difference are shown in Fig. 4B. In this
example, a monolithic and a modular agent were each trained in
the same environment with nonstationary resources, and then,
their state values and policies were examined immediately after
changing all of the resource locations, by setting all stats to their
set point except for one, corresponding to the resource now placed
at the center, that was set to 0 (i.e., signifying the greatest need).
The color coding of the state-value maps (at the far right of the
figure) shows that both agents accurately identified the location
of the resource with the greatest current value (green at the center
of the maps). However, the policies learned by the agents (shown
as arrows in each grid location indicating the preferred action at
that location) differed considerably between them. The modular
agent learned a policy by which, starting at any location, a path
following the policy lead to the resource with the greatest current
value (at the center). In contrast, for the policy learned by the

monolithic agent, many paths failed to lead to that location.
This difference was because the monolithic agent had the more
difficult task of constructing a global policy for every possible set
of needs and resource locations (that is, a form of conjunctive
coding that grows exponentially with the number of resources),
whereas the modular agent constructed individual policies for
each objective (a form of compositional coding, that grows only
linearly with the number of resources), that could then simply
be summed together (shown in the lower middle plots) to allow
the policy associated with the most valued resource to have the
greatest influence.

Discussion

In this article, we showed that a modular architecture can learn
more efficiently and effectively to simultaneously manage multi-
ple homeostatic objectives, both in nonstationary environments,
and as the number of independent objectives was increased.
We provided evidence that this was for at least two reasons:
intrinsic exploration and a factoring of representational learning
by objective. Intrinsic exploration reflected an emergent property
of the modular architecture, in which the actions determined by
the needs of one subagent served as a source of exploration for
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the others, allowing them to discover the value of actions they
may not have otherwise chosen in a given state. Modularity also
allowed each subagent to focus on, and “specialize in serving”
its own objective, allowing it to learn objective-specific policies
that could be invoked as a function of their current value in
determining the action of the agent as a whole. Together, these
factors contributed to the ability of the modular architecture
to support adaptation in changing environments (even when
change was infrequent) and to deal gracefully with the “curse
of dimensionality” associated with an increase in the number
of objectives. In the remainder of the article, we consider how
our findings relate to relevant ones in reinforcement learning,
biology, neuroscience, and psychology.

Connections to Reinforcement Learning.
Modularity. Some have argued that reward maximization in RL
is sufficient to produce all known features of intelligent behavior
(41). In practice, such a reward function, even if possible to
specify, is difficult to maximize because it requires gathering
enough information to map all states of the world onto a
preferred action. The alternative that we have considered here
is to train modules without the need to consider a global reward.
Both earlier (30, 42–47) and more recent (31, 33–37) work
has also considered the use of specialized RL modules, typically
to decompose a single objective into manageable subproblems,
in the tradition of mixture-of-experts systems (48). In most of
this work, and that presented here, modules compete for action
in parallel. However, other kinds of modular organization are
possible, such as the option framework in hierarchical reinforce-
ment learning [HRL (49)], in which action modules are arranged
in a strict temporal hierarchy. However, in HRL, modules are
under centralized control. From this perspective, our organization
is heterarchical or decentralized. These approaches may be
complementary. For example, one could conceive of objective-
specific modules being separate HRL agents in their own right,
or alternatively, that certain objectives might occasionally assume
a hierarchical role over others. The world contains structures that
are both tree-like (i.e., hierarchical) as well as independently
varying (heterarchical) (50) and, accordingly, effective learning
agents are likely to reflect both kinds of organization.
Multiple objectives. Our work is also related to the field of
multiobjective reinforcement learning (MORL), which has
studied how to optimally learn multiple policies that cover a
range of trade-offs between objectives, known as a Pareto front
(13, 39, 51). Typically, MORL learns policies that do not focus
on single objectives, but rather specific preferences over them
(i.e., it would learn a separate policy for valuing food and
water equally, for valuing food twice as much as water, etc.).
However, since all objectives must be considered together, it is
subject to problems similar to those inherent to the monolithic
approach—the dimensionality of the problem grows with the
number of objectives—and to the challenges of nonstationarity,
as the relative importance of objectives is likely to change over
time. As we have shown here, the modular architecture has the
potential to deal gracefully with these problems. The field of
multiagent RL has also studied multiple objectives, but typically
in the setting of separate entities competing or cooperating in
a shared environment (52); in contrast, we have considered the
benefits of multiple subagents competing within a single agent
(i.e., body), in which they compete for control of action rather
than, or in addition to resources.
Nonstationarity. Nonstationarity is a fundamental feature of the
world, and RL usually requires specialized machinery to deal
with it, such as adaptive exploration based on detecting context

changes (28, 53–56). In contrast, the modular architecture ben-
efits from emergent exploration that arises from the competition
between subagents. Additionally, what counts as a change in
the environment might differ between modules. We suggest that
equipping modules with learnable attention masks (Materials and
Methods) allowed them to ignore changes in the environment that
were irrelevant to their particular goal; this raises the interesting
possibility that empirical learning phenomena, such as latent
inhibition (57) and/or goal-conditioned attention (58), may
reflect a similar form of learned inattention in the service coping
with nonstationarity.

Recent work has also suggested decomposing a reward signal
into separate components as a strategy to deal with nonstationar-
ity in the reward function itself (e.g., to account for the fact that
water becomes more rewarding when thirsty). In this “reward
bases” model (59), the importance of each learned component
of value can be reweighted on the fly, allowing for immediate
adaptation to the changing physiologic state of the agent. In the
modular architecture we considered here, agents directly sensed
their own physiologic state. While this rendered the reward
function itself stationary (i.e., the reward associated with any
specific combination of the state of the agent and the environment
was constant), we consider this a more plausible design, in which
the capacity to dynamically reweight module importance as a
function of agent state and/or change in the environment was
implicit and learned, as opposed to being externally imposed.
Exploration. As already noted, the need for exploration is a
fundamental feature of—and challenge for—RL, and existing
solutions generally make use of some form of noise or explicit
exploratory drives/bonuses (27). The work presented here sug-
gests an additional class of strategy: that exploration can arise as
an added benefit of having multiple independent objectives since
exploitation from the perspective of one is exploration from the
perspective of others. This form of exploration is analogous to
that described by ref. 60, in which hierarchical organization of
policies provides “semantic exploration” that arises from actions
at different time scales. In this article, heterarchical organization
of policies provided semantic exploration arising from actions
serving different objectives. A similar architecture is also described
in ref. 61, in which multiple DQN modules with the same
objective provided exploratory noise (i.e., from different random
initialization of module networks). In the architecture presented
here, we have suggested that exploration was driven primarily
by diverse objectives rather than diverse initializations. Next,
while explicit exploration could be combined with a modular
architecture by implementing a dedicated “exploration module”
(62), an appealing feature of the modular architecture on its own
is that exploration arises as an emergent property of the system.
That said, this does not preclude the possibility that natural agents
make use of both strategies (63). Relatedly, exploration may
also emerge naturally from the free-energy principle, in order to
reduce model uncertainty (64), or as a result of Bayesian model
averaging, in which actions are derived from a weighted sum
over policies that may vary in complexity or reliability (65). Our
findings reflect a mechanism in model-free systems, in which
uncertainty is reduced by virtue of policy diversity along the
dimension of organismal need (rather than model complexity),
but which could be complemented by the more complex world-
models learnable in the free-energy framework and/or model-
based RL.

Connections to Biology and Evolution. In order to survive,
organisms must maintain a set of physiological variables within
a habitable range, with the capacity of these variables to vary
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independently introducing the potential for conflict between
them. Frameworks to explain homeostasis include drive reduc-
tion theory (66), predictive control (67), active inference (68),
motivational mapping (69), and, more recently, homeostatically
regulated reinforcement learning (HRRL) (24). HRRL is a
general framework that aims to account for the others and has
been used not only to explain low-level drive satisfaction but also
more abstract goal-seeking (25) and even psychiatric phenomena
(70). However, HRRL collapses a high-dimensional reward
surface into a single number, and its challenges as a monolithic
approach have not been previously interrogated through simula-
tion. Our work suggests that maintaining an independent set of
homeostatic reward components offers computational advantages
that are in keeping with modularity as a general principle in
biological organization.

Organisms exhibit modularity from the level of organelles
and cells to organ systems and brain regions. While modularity
exists on a continuum and its definition is nontrivial, especially
in learning systems (71), having components that function
independently to some extent has been shown to be favored
by evolutionary processes. For example, neural networks evolved
with genetic algorithms develop modularity when trained on
goals that change in an independent fashion, whereas monolithic
networks develop for stationary goals (72). Furthermore, when
neural networks are evolved simply to minimize connection costs,
they both become increasingly modular and adapt better to new
environments (73). In bacteria, metabolic networks are more
modular the more variable are their environments (74). These
findings are consistent with our results that modularity provides
significant performance benefits in nonstationary environments.
More broadly, we might even expect to find similar adaptations
at the population level, especially in complex societies of
organisms; this may explain why we see humans with widely
varying or competitive attitudes within groups, even when more
homogeneous cooperative populations might be expected to
result from group selection (75).

Connections to Neuroscience. There is growing evidence for
modular RL in both brain and behavior. It has long been
recognized that the most basic homeostatic needs (e.g., osmotic
balance, metabolic state, thermoregulation, etc.) are represented
in a compartmentalized form within the hypothalamus (76),
and similar modular organization has been reported within
higher-level structures. For example, within the basal ganglia,
striosomes have been proposed as specialized units that compete
for action selection (77), which is consistent with recent evidence
for heterogeneous dopamine signaling and mixture-of-experts
learning in that region (78). Diverse dopamine responses coding
for salience, threat, movement, accuracy, and other sensory
variables (79) have also been observed, including subpopulations
of dopamine neurons that track distinct needs related to food
and water (80) and social reward components (81). Behavioral
modeling has suggested modular reward learning for separate
nutritional components like fat and sugar (82). While it is possible
that such heterogeneity is simply a side effect of standard scalar
reward maximization given uneven sensory inputs to dopamine
neuron populations (83), our work suggests the possibility of
a more functional role, predicting that dopamine heterogeneity
may track the multiplicity of ongoing needs an agent must satisfy,
and distinct learning systems associated with these.

There is also mounting evidence for separated value functions
in the human brain (84, 85) and that decision dynamics are
best modeled using competing value components (86). Others
have proposed that opposed serotonin and dopamine learning

systems reflect competition between optimistic and pessimistic
behavioral policies (87) and that human behavior can be fit best
by assuming it reflects modular reinforcement learning (88, 89).
Our work provides an explanation for these findings, which are
all consistent with the idea that different objectives compete for
behavioral expression in parallel (90). There is also evidence for
hierarchically structured value signals in the brain (91, 92). That
said, and as noted above, where human brain function should be
placed along the continuum of centralized to distributed control
of behavior remains an interesting and important open question
(93).

Connections to Psychology. The study of intrapsychic conflict
has a long history in psychology; between ego, id, and superego
(14), opposing beliefs (94), approach-and-avoid systems (95),
affects (96), motivations (97), and even subpersonalities (98).
Despite their specifics, these accounts all have in common the
following: the assumption that an individual is composed of
multiple distinct subsystems responsible for satisfying different
objectives (i.e., “multiple selves”), all of which compete to
express their proposed actions in the behavior of the individual
(whether these are covert “actions,” such as internal thoughts
and feelings, or overt physical actions). While there have been
a large number of theories that propose a qualitative account
of the mechanisms involved, to date, there have been few
formally rigorous or quantitative accounts, nor any that provide
a normative explanation for why the mind should be constructed
in this way. In cognitive psychology, theories and mechanistic
models have been proposed regarding the conflict between
controlled and automatic processing (99, 100) and, similarly
in cognitive neuroscience, between model-based and model-free
RL systems (101) as well as the role of conflict in processing
more generally (102). However, none of these deal explicitly with
conflicting policies that have altogether different objectives (i.e.,
the goal has typically been to maximize a single scalar reward),
nor have any provided an account of why conflict itself might
actually be intrinsically useful (i.e., for exploration). Our work
provides a normative account of these factors.

In the psychodynamic literature more specifically, not only has
there been an effort to describe conflict between opposing psycho-
logical processes but also its resolution by “defense mechanisms”
(6, 103–106), which we speculate might reflect complex ways to
arbitrate between modules. In addition, a psychotherapy often
aims to “integrate” psychological sources of conflict (107–109).
Such integration might have to do with a developmental process
that progresses along the previously mentioned continuum
from heterarchical to hierarchical organization. Our work is
certainly far removed from concepts like defense mechanisms
or psychological integration, but we hypothesize that modular
RL is a framework upon which more formal correspondences to
the conflict-based psychodynamic theories could eventually be
built.

Limitations and Future Work. There are several limitations of
the work presented here, that could be addressed in future
research. First, the reward decomposition across modules was
prespecified in a simple way: one subagent for each resource.
However, in nature, correlations can exist between internal stats
(i.e., food replenishing nutrients and water). Early work suggests
that related drives (110) interact behaviorally more than less
related drives (111), hinting that policy modularity may vary
with drive independence. Future work would therefore relax
the one-module-per-drive constraint and explore performance in
environments with different correlation structures. For example,
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given three correlated and two uncorrelated drives, a hybrid
model with one 3D reward component and two 1D reward
components might outperform a fully monolithic or fully
modular agent. To what extent such organization is innate or
learned is another open question.

Second, our task definition did not capture the true multi-
plicity of objectives humans face and their variety (for example,
one could imagine a pain module, contributing only negative
rewards, or modules for more abstract objectives, such as for
money or social respect). While our results concerning the curse
of dimensionality were encouraging in considering an agent
with a large or expandable set of objectives, we modeled all
objectives identically with reward functions that were symmetric
around a set point. Furthermore, although rewards derived from
drive reduction may not be sufficient to capture all objectives,
we predict that the benefits of modularity would extend to
different reward functions to the extent that sources of reward
are independent, as previously discussed.

Next, we did not explore model-based approaches in this
work. Such approaches may have significant promise; a model-
based but unidimensional version of HRRL was able to account
for features of addiction (112), and a single-agent model-
based approach demonstrated impressive capabilities in balancing
multiple homeostatic goals in changing environments (113).
Nevertheless, such model-based approaches may benefit from
modularity in order to avoid interference between tasks (114) and
to deal with curse of dimensionality in complex environments.
Future work should therefore explore hybrid systems in the rich
space that combines model-free, model-based, monolithic and
modular learning components.

Finally, a critical feature of any modular architecture is
the mechanism used for adjudication. We used a minimalist
implementation that simply summed Q-values, as a way of
identifying the benefits intrinsic to the modular structure, rather
than the adjudication mechanism. However, more sophisticated
forms of arbitration, that could flexibly and dynamically reweight
individual module outputs, might better exploit the benefits of
modularity. This would be important for cases in which different
objectives may change in relative importance faster than modules
can adapt through reinforcement learning or if more global
coordination is required for certain tasks.

Concluding Remarks. The question with which we began was
“How do agents learn to balance conflicting needs in a complex
changing world?” The work presented in this article suggests that
a modular architecture may be an important factor, addressing
two critical challenges posed by the question: a) the ability
to adapt effectively and efficiently as needs and the resources
required to satisfy them change over time and b) the ability to
avert the “curse of dimensionality” associated with an increasing
number of objectives. These observations may help provide
insight into the principles of human brain organization and
psychological function and, at the same time, inform the design
of artificial agents that are likely to face a similar need to satisfy
a growing number of objectives.

Materials and Methods
Approach. We draw on the field of reinforcement learning, which models
learning agents in a Markov decision process (MDP) in the following way: At
each time step t, an agent perceives the state of the environment st , takes an
action at based on its learned behavior policyπ(s), causing a transition to state
st+1 and receiving reward rt . The agent tries to collect as much reward as it can
in finite time. However, since its lifespan is both unknown to the agent and long

relative to the timescale of learning, the time horizon for reward collection is
typically treated as infinitely far away. The agent thus aims to maximize the sum
of discounted future rewards, defined as the return Gt [1],

Gt = rt + γ rt+1 + γ 2rt+2... =
∞∑

t=0

γ trt , [1]

where γ ∈ {0, 1} is the discount factor, a parameter that determines the
present value of future rewards. The agent can then learn to estimate the
expected return of action a in state s, defined as the action value Q(s, a) (Eq. 2),
which we sometimes refer to simply as Q-value or action value for clarity.

Q(s, a) = Eπ [Gt|st = s, at = a], [2]

Once the agent has learned to estimate action values accurately, then a good
behavioral policy simply takes the action with the highest Q-value, also called
the greedy action, in each state [3]:

π(s) = argmaxaQ(s, a). [3]

However, considering that Q-values are suboptimal while learning takes
place, always choosing actions greedily ensures that potentially more rewarding
actions are never tried out. The simplest way to approach this explore–exploit
trade-off is to select actions greedily with probability ε but randomly otherwise
(termed ε-greedy exploration). Then, using the agent’s experience, we use the
Q-learning algorithm (115) to update action values in order to minimize the
magnitude of the temporal difference (TD) error δ defined in Eq. 4.

δ = rt+1 + γ max
a

Q(st+1, a)− Q(st , a). [4]

In the case where there are a large, or infinite, number of states (i.e., because
state variables are continuous), function approximation is required to learn a
mapping8(s) from states to action values. Typically, a neural network is used,
with parameters θ that can then be learned by gradient descent to directly
minimize the TD loss function. Such networks are termed deep Q-networks
(DQN) (40), and standard implementation details are summarized in Training
Details.

Last, we summarize how we apply RL in the context of multiple goals. Given a
set of objectives {o1, o2, ...oN}, we define a vector of rewardsEr = (r1, r2, ...rN)
corresponding to each objective and distinguish our two main approaches in
general terms. The monolithic approach computes a scalar reward r = f(Er)
and then learns Qmonolithic as usual, whereas the modular approach first learns
a corresponding vector of Q-values EQ = (Q1, Q2, ...QN) and then computes
Qmodular = g(EQ), for some functions f and g.

While many other reinforcement learning algorithms exist, such as those
that learn models of the environment (116), or those that dispense with Q-
values entirely (117), we focus our work on model-free Q-learning because of
its simplicity, interpretability, empirical support from neuroscience (118), and
success as an off-policy algorithm. Off-policy learning means that agents can
learn from experience that did not derive from its current policy and is important
because in this work, modules learn in parallel from a shared set of actions.

Environment. We developed a flexible environment in which an agent could
move around and collect resources in order to fulfill a set of internal physiologic
needs. Specifically, we constructed an 8×8 grid world, where each location
(x, y) in the grid indexed a vector of resource abundances of length N (i.e.,
there were N overlaid resource maps). For example, in an environment with
four resources, the grid location (1, 1) might have resource abundances of
[0, 0, 0.8, 0], indicating 0.8 units of resource 3 was present at that location.
The spatial distribution of the amount of each resource was specified by a 2D
Gaussian with mean µx ,µy and covariance matrix 6 and was normalized to
ensure there was always the same total amount of each resource (Fig. 1A).

The agent received as perceptual input a 3 × 3 egocentric slice of the N
resource maps (i.e., it could see the abundance of all resources at each position
in its local vicinity, as well as a wall of pixels set to −1 if it was next to
the border of the grid). In addition to the resource landscape, the agent also
perceived a vector Ht = (h1,t , h2,t , ..., hN,t) consisting of N internal variables,
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each representing the agent’s homeostatic need with respect to a corresponding
resource. We refer to these variables as “internal stats” or just “stats” (such
as osmostat, glucostat, etc.) which we assume are independent (hi is only
affected by acquisition of resource i) and have some desired set point h∗i . One
should imagine these variables in the most general sense—while our study
used a homeostatic interpretation, one could imagine the internal variables also
representing more abstract notions like distance to a particular goal (70). For
most of our experiments, all homeostatic set points were fixed at the same value
H∗ = h∗1 = h∗2 = h∗N and did not change over the course of training.

To interact with the environment, on each time step, agents could move to
a new location by selecting one of four cardinal directions on the grid. For each
internal stat, if the abundance of resource i in the new location was above some
threshold Rthresh, the stat hi increased by that abundance level. Additionally,
each internal stat decayed at a constant rate to represent the natural depletion
of internal resources over time (note: resources in the environment themselves
did not deplete). Thus, if the agent discovered a location with a high level
of resource for a single depleted stat, staying at that location would optimize
that stat toward its set point; however, others would progressively deplete.
Agents were initialized in the center of the grid, with internal stats initialized
below their set points at a value of 0 and were trained for a total of 30,000
steps in the environment. Thus, the task was for agents to learn in real time
to achieve homeostasis in a continuous-learning infinite-horizon setup (i.e.,
the environment was never reset during training to more closely reflect the
task of homeostasis in real-world organisms). Environmental parameters are
summarized in SI Appendix, Table S1.

Models. In order to succeed in the environment just described, any RL agent
would need to learn a function that converts its perceptual input into a set of
optimal action values. Strategies to do so range from filling in a look-up table
that maps all possible states to their values to training a neural network to
approximate such a mapping function. Our setup required the latter strategy,
pragmatically because homeostatic variables were continuous and therefore
could not be tabulated and theoretically because we believe that the brain likely
uses this kind of function approximation for reward learning (119).
Monolithic agent. We created a monolithic agent based on the deep Q-network
(DQN) (40). The agent’s perceptual input at each time step was a concatenation
of all local resource levels in its egocentric view, along with all internal stat
levels. Its output was four action logits subsequently used for ε-greedy action
selection. We used the HRRL reward function (24) which defined reward at each
time step rt as drive reduction, where drive D was a convex function of set-point
deviations, with convexity determined by free parameters m and n; see Eq. 5.

rt = D(Ht)− D(Ht+1) where D(Ht) = m

√√√√√ N∑
i=1

|h∗i − hi,t|
n. [5]

Modular agent. We created a modular agent that consisted of a separate DQN
for each of N resources/stats. Here, each module had the same input as the
monolithic model (i.e., the full egocentric view and all N stat levels) but received
a separate reward ri,t derived from only a single stat. The reward function for
the ith module was therefore defined as in Eq. 6, where drive D depended
on the ith resource only. This one-dimensional version of HRRL has been used
previously (112), so that maximizing the sum of discounted rewards is equivalent
to minimizing the sum of discounted homeostatic deviations for each module
individually.

ri,t = D(hi,t)− D(hi,t+1) where D(hi,t) = m
√
|h∗i − hi,t|

n. [6]

To select a single action from the suggestions of the multiple modules, we
used a simple additive heuristic based on an early technique called greatest-
mass Q-learning (43). We first summed Q-values for each action across modules
and then performed standard ε-greedy action selection on the result. More
specifically, if Qi(s, a) was the Q-value of action a suggested by module i, a
greedy action at was selected as in Eq. 7

at = arg max
a

∑
i

Qi(s, a). [7]

Drive parameters. We made a principled selection of the drive parameters
that would be suitable for both agents. First, the constraint n > m > 1 was
necessary to be consistent with physiology (24); for example, drinking the same
volume of water should be more rewarding in states of extreme thirst compared
to the satiated state. Second, we wanted both agents to have a similar drive
surface topology. Therefore, we selected (n, m) = (4, 2), such that n

m = 2,
providing the modular agent with a quadratic drive surface. Other parameter
settings were investigated in SI Appendix, Fig. S3.
Training details. All Q-networks were multilayered perceptrons (MLP) with
rectified linear nonlinearities, trained using double Q-learning (120) [a variant
on standard deep Q-learning that uses a temporal difference Huber loss function,
experience replay, and target networks (40)]. More specifically, on each time
step of training, a transition consisting of the current state, action, next state,
and reward was saved into a memory buffer. On each time step after a minimum
of 128 transitions had been saved, a batch of at least 128 and up to 512
transitions was randomly sampled from memory and used to backpropagate the
TD-loss from Eq. 4 through the network. Gradient updates were performed on
network parameters using the Adam optimizer (121). Importantly, we matched
the number of trainable parameters between the modular and monolithic agents
(to ensure that if the modular agent consisted of N DQN modules, it did not
have N times as many parameters as the monolithic model, possibly giving it an
unfair advantage).

For both models, ε was annealed linearly from its initial to final value at
the beginning of training at a rate that was experimentally manipulated as
described in the main text. To quantify model performance, we calculated the
average homeostatic deviation per step 1 between two time points t1 and t2
after a sufficient period of learning and exploration as in Eq.8 (Lower1 therefore
indicated better homeostatic performance). We used t1 = 15k and t2 = 30k,
representing performance across the second half of the training period (except
for results presented in Fig. 3A which used t1 = 25k for visualization purposes)

1 =

t2∑
t=t1

∑
i
|h∗i − hi,t|

t2 − t1
. [8]

Finally, in nonstationary environments, learning a sparse attentional mask
over the input to each network was required for good performance (SI Appendix,
Fig. S12). Therefore, all models in all environments were trained with such a
mask. For example, assuming that the input I to our networks was a vector
of length 40 (i.e., consisting of four 3×3 egocentric views and four internal
stats) and Awas a 40-element masking vector, then the input was element-wise
multiplied by the masking vector before being passed to the network as A� I.
All elements of A were initialized to a value of 0.1 and were optimized along
with the rest of the network during training (for the modular agent, each module
learned a separate mask). An L1 regularization term applied to A was added
to our loss function so that loss L = δ + β

∑
i |Ai|, where Ai were individual

elements of A, β was a weighting parameter, and δ was the TD-loss already
described. Additional parameters for both models as well as the environment
are summarized in SI Appendix, Table S1.
Ablation experiment. To investigate the sources of exploration in the modular
agent, we performed an ablation where experienced transitions were only saved
to memories for a particular module in the following cases: a) The action taken
was nongreedy (i.e., random) or b) the action taken was the preferred action
of that module. In the monolithic case, in order to control for less transitions
being stored overall, 30% of nongreedy actions were randomly selected to not
be stored in memory, an amount that was roughly similar to the number of
transitions that were not saved for the modular model.

Data, Materials, and Software Availability. Code data have been deposited
in https://github.com/zdulbz/Multiple-Selves (122).

ACKNOWLEDGMENTS. This project/publication was made possible through the
support of a grant from the John Templeton Foundation. The opinions expressed
in this publication are those of the authors and do not necessarily reflect the
views of the John Templeton Foundation. This work was also supported in part
by the Office of Naval Research.

10 of 12 https://doi.org/10.1073/pnas.2221180120 pnas.org

https://www.pnas.org/lookup/doi/10.1073/pnas.2221180120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2221180120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2221180120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2221180120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2221180120#supplementary-materials
https://github.com/zdulbz/Multiple-Selves


1. J. A. Arlow, Ego psychology and the study of mythology. J. Am. Psychoanal. Assoc. 9, 371–393
(1961).

2. R. Harré, F. M. Moghaddam, “Intrapersonal conflict” in Global Conflict Resolution through
Positioning Analysis (Springer, 2008), pp. 65–78.

3. F. Pallasdies, P. Norton, J. H. Schleimer, S. Schreiber, Neural optimization: Understanding
trade-offs with pareto theory. Curr. Opin. Neurobiol. 71, 84–91 (2021).

4. A. H. Maslow, “45. Conflict, frustration, and the theory of threat” in Contemporary
Psychopathology (Harvard University Press, 2013), pp. 588–594.

5. J. S. Brown, Principles of intrapersonal conflict. Conf. Res. 1, 135–154 (1957).
6. M. J. Horowitz, Introduction to Psychodynamics: A New Synthesis (Basic Books, 1988).
7. G. Ainslie, Picoeconomics: The Strategic Interaction of Successive Motivational States Within the

Person (Cambridge University Press, 1992).
8. F. Gul, W. Pesendorfer, Temptation and self-control. Econometrica 69, 1403–1435 (2001).
9. M. H. Bazerman, A. E. Tenbrunsel, K. Wade-Benzoni, Negotiating with yourself and losing: Making

decisions with competing internal preferences. Acad. Manag. Rev. 23, 225–241 (1998).
10. S. V. Sandy, S. K. Boardman, M. Deutsch, “Personality and conflict.”, in The Handbook of Conflict

Resolution: Theory and Practice, P. T. Coleman, E. C. Marcus, Eds. (John Wiley & Sons, New York,
NY, 2011), pp. 289–315.

11. A. A. Scholer, E. T. Higgins, “Conflict and control at different levels of self-regulation” in Self-
control in Society, Mind, and Brain (Oxford Academic, 2010), pp. 312–334.

12. K. Deb, “Multi-objective optimization” in Search Methodologies (Springer, 2014), pp. 403–449.
13. D. M. Roijers, P. Vamplew, S. Whiteson, R. Dazeley, A survey of multi-objective sequential

decision-making. J. Artif. Intell. Res. 48, 67–113 (2013).
14. S. Freud, The Ego and the Id (WW Norton & Company, 1923/1989).
15. G. Feixas et al., Cognitive conflicts in major depression: Between desired change and personal

coherence. Br. J. Clin. Psychol. 53, 369–385 (2014).
16. D. Haig, Intrapersonal conflict. Conflict 18, 8 (2006).
17. D. Migrow, M. Uhl, “The resolution game: A multiple selves perspective” (Jena Economic Research

Papers, Tech. Rep., 2009).
18. A. S. Bergner, D. M. Oppenheimer, G. Detre, VAMP (Voting Agent Model of Preferences): A

computational model of individual multi-attribute choice. Cognition 192, 103971 (2019).
19. J. Elster, The Multiple Self (Cambridge University Press, 1987).
20. D. Lester, A Multiple Self Theory of Personality (Nova Science Publishers, 2010).
21. G. Loewenstein, Out of control: Visceral influences on behavior. Org. Behav. Hum. Dec. Process.

65, 272–292 (1996).
22. M. J. Frank, M. X. Cohen, A. G. Sanfey, Multiple systems in decision making: A

neurocomputational perspective. Curr. Direct. Psychol. Sci. 18, 73–77 (2009).
23. R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction (MIT Press, 2018).
24. M. Keramati, B. Gutkin, Homeostatic reinforcement learning for integrating reward collection and

physiological stability. eLife 3, e04811 (2014).
25. K. Juechems, C. Summerfield, Where does value come from? Trends Cognit. Sci. 23, 836–850

(2019).
26. L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement learning: A survey. J. Artif. Intell. Res.

4, 237–285 (1996).
27. T. Yang et al., Exploration in deep reinforcement learning: A comprehensive survey. arXiv

[Preprint] (2021). http://arxiv.org/abs/2109.06668 (Accessed 1 April 2023).
28. S. Padakandla, K. J. Prabuchandran, S. Bhatnagar, Reinforcement learning algorithm for non-

stationary environments. Appl. Intell. 50, 3590–3606 (2020).
29. R. Bellman, Dynamic programming. Science 153, 34–37 (1966).
30. N. Sugimoto, M. Haruno, K. Doya, M. Kawato, Mosaic for multiple-reward environments. Neural

Comput. 24, 577–606 (2012).
31. H. Van Seijen et al., Hybrid reward architecture for reinforcement learning. Adv. Neural Inf.

Process. Syst. 30 (2017).
32. T. Tajmajer, “Modular multi-objective deep reinforcement learning with decision values” in 2018

Federated Conference on Computer Science and Information Systems (FedCSIS) (IEEE, 2018),
pp. 85–93.

33. T. Haarnoja et al., “Composable deep reinforcement learning for robotic manipulation” in 2018
IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2018), pp. 6244–6251.

34. J. Wang, S. Elfwing, E. Uchibe, Modular deep reinforcement learning from reward and
punishment for robot navigation. Neural Networks 135, 115–126 (2021).

35. V. Gupta, D. Anand, P. Paruchuri, A. Kumar, “Action selection for composable modular deep
reinforcement learning” in The International Foundation for Autonomous Agents and Multiagent
Systems (2021).

36. J. Xue, F. Alexandre,“ Multi-task learning with modular reinforcement learning” in International
Conference on Simulation of Adaptive Behavior (Springer, 2022), pp. 127–138.

37. W. Carvalho, A. Filos, R. L. Lewis, S. Singh, Composing task knowledge with modular successor
feature approximators. arXiv [Preprint] (2023). http://arxiv.org/abs/2301.12305 (Accessed 1 April
2023).

38. S. Mittal, Y. Bengio, G. Lajoie, Is a modular architecture enough? arXiv [Preprint] (2022).
http://arxiv.org/abs/2206.02713 (Accessed 1 April 2023).

39. C. F. Hayes et al., A practical guide to multi-objective reinforcement learning and planning. Auton.
Agent. Multi-Agent Syst. 36, 1–59 (2022).

40. V. Mnih et al., Playing Atari with deep reinforcement learning. arXiv [Preprint] (2013).
http://arxiv.org/abs/1312.5602 (Accessed 1 April 2023).

41. D. Silver, S. Singh, D. Precup, R. S. Sutton, Reward is enough. Artif. Intell. 299, 103535 (2021).
42. S. Whitehead, J. Karlsson, J. Tenenberg, “Learning multiple goal behavior via task decomposition

and dynamic policy merging” in Robot Learning (Springer, 1993), pp. 45–78.
43. S. J. Russell, A. Zimdars, “Q-decomposition for reinforcement learning agents” in Proceedings of

the 20th International Conference on Machine Learning (ICML-03) (2003), pp. 656–663.
44. M. Humphrys, W-Learning: Competition Among Selfish Q-Learners (University of Cambridge

Computer Laboratory, 1995).
45. N. Sprague, D. Ballard, “Multiple-goal reinforcement learning with modular Sarsa(O)” in

Proceedings of the 18th International Joint Conference on Artificial Intelligence (2003),
pp. 1445–1447.

46. K. Doya, K. Samejima, Ki. Katagiri, M. Kawato, Multiple model-based reinforcement learning.
Neural Comput. 14, 1347–1369 (2002).

47. R. S. Sutton et al., “Horde: A scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction” in The 10th International Conference on Autonomous
Agents and Multiagent Systems—Volume 2 (2011), pp. 761–768.

48. R. A. Jacobs, M. I. Jordan, S. J. Nowlan, G. E. Hinton, Adaptive mixtures of local experts. Neural
Comput. 3, 79–87 (1991).

49. R. S. Sutton, D. Precup, S. Singh, Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artif. Intell. 112, 181–211 (1999).

50. C. Kemp, J. B. Tenenbaum, The discovery of structural form. Proc. Natl. Acad. Sci. U.S.A. 105,
10687–10692 (2008).

51. C. Liu, X. Xu, D. Hu, Multiobjective reinforcement learning: A comprehensive overview. IEEE Trans.
Syst. Man, Cybernet.: Syst. 45, 385–398 (2014).
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