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Significance

Generalization from the training 
data is a test of a true AI. 
Methods for computing protein 
structure using AI have been 
criticized as merely using pattern 
recognition rather than 
knowledge of the rules of physics 
and chemistry. Here, we show 
that contrary to this view, AI 
methods can accurately identify 
rarely observed features in 
crystal structures, provided these 
are not induced by the crystal 
environment. In contrast, pattern 
recognition would usually select 
the more commonly observed 
structural feature. We propose 
that in this application, the AI 
network has learned the 
principles of protein structure 
such that it can successfully apply 
those to previously unobserved 
situations.
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The CASP14 experiment demonstrated the extraordinary structure modeling capabilities 
of artificial intelligence (AI) methods. That result has ignited a fierce debate about what 
these methods are actually doing. One of the criticisms has been that the AI does not 
have any sense of the underlying physics but is merely performing pattern recognition. 
Here, we address that issue by analyzing the extent to which the methods identify rare 
structural motifs. The rationale underlying the approach is that a pattern recognition 
machine tends to choose the more frequently occurring motifs, whereas some sense of 
subtle energetic factors is required to choose infrequently occurring ones. To reduce 
the possibility of bias from related experimental structures and to minimize the effect 
of experimental errors, we examined only CASP14 target protein crystal structures 
determined to a resolution limit better than 2 Å, which lacked significant amino acid 
sequence homology to proteins of known structure. In those experimental structures 
and in the corresponding models, we track cis peptides, π-helices, 310-helices, and other 
small 3D motifs that occur in the PDB database at a frequency of lower than 1% of 
total amino acid residues. The best-performing AI method, AlphaFold2, captured these 
uncommon structural elements exquisitely well. All discrepancies appeared to be a con-
sequence of crystal environment effects. We propose that the neural network learned 
a protein structure potential of mean force, enabling it to correctly identify situations 
where unusual structural features represent the lowest local free energy because of subtle 
influences from the atomic environment.

CASP14 | alphaFold2 | AI | structure analysis

Protein structure prediction using artificial intelligence (AI) techniques, specifically the 
AlphaFold2 (AF2) deep learning network, developed by the DeepMind team (1, 2), 
performed spectacularly well during the fourteenth season of the Critical Assessment of 
Structure Prediction experiment (CASP14) (3). Analysis of the results showed that AF2 
generated structures in many cases rival the accuracy of structures determined by 
high-resolution X-ray crystallographic methods (3). Indeed, in some cases, the calculated 
structures may represent the biologically relevant ones better than the crystal structures 
because the latter are influenced by crystal packing forces absent in biological systems (4). 
Yet, the AI methods have also been criticized. Here, we address the criticism that current 
deep learning AI methods are only capable of recognizing structural patterns present in 
the training data and have no sense of the energetic subtleties that determine the details 
of protein structures. As Moore and colleagues put it, the predictions might suffer from 
“bias toward structural patterns observed in repositories” (5). More concretely, Skolnick 
and colleagues (6) argued that the neural networks have so many parameters [10 s of 
millions (2)] that they simply store known protein structures in detail and regurgitate 
parts of them where appropriate. If that is the case, these methods do not solve the protein 
folding problem in a meaningful sense, rather we have just collected enough experimental 
structures to allow the equivalent of an effective database lookup to provide accurate 
answers. More broadly, a key test of any AI is the extent to which it can generalize from 
the training data to effectively deal with new situations. Does AF2 pass that test?

One argument that substantial generalization is achieved is based on rough estimates 
of the number of possible local atomic configurations at the 1 Å accuracy often achieved. 
That number appears to be astronomically larger than the number of such configurations 
represented in the PDB. But, it is difficult to make such a back-of-the-envelope approach 
numerically robust. Here, we use a different approach. Many structural features in pro-
teins occur frequently: for example, α-helices, β-strands, and a small number of common 
turns (7). A machine that is effectively consulting a database of observed structures could 
identify these features fairly easily. But, there are also less common features, for example 
310- or π-helices; β-bulges; and unusual turns. By and large, these are less energetically 
favorable when considered in isolation, and they occur when some other structural 
features directly or indirectly compensate for the local-in-sequence relative energetic 
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strain. For example, about 1 in 20 proline residues in the PDB 
occurs with a cis peptide (8) and calculations suggest that this 
rarity is a consequence of the local steric strain (9). Thus, con-
sistent reproduction of rare features requires a computational 
method that in some sense has an appreciation of the subtle 
balance of the interaction energies involved.

The goal of the current study was to investigate and as far as 
possible quantitate the extent to which the AF2 method, as 
deployed during the CASP14 experiment (1), reproduced rare 
structural features. CASP conducts biannual community experi-
ments with the aim of determining the state-of-the-art computing 
protein structure from amino acid sequence. Participants are blind 
to the corresponding experimental structures (3).

We focused on the subset of the CASP14 structure prediction 
targets classified as template free (10), so that previously obtained 
experimental structure information could not be directly utilized 
by the machine. We also examined only structures determined at 
high resolution because analysis of the CASP results showed that 
agreement between AF2 models and experimental structures 
decreased with experimental data quality, suggesting an increasing 
impact of experimental error with lower resolution (3). We searched 
the selected experimental structures and their AF2 models for 
uncommon structure features. Where there are differences between 
the computed and experimental structures, we also examined 
whether protein–protein interactions or crystal contacts were 
involved and whether bound ligands could influence the local con-
formation because the AF2 models were calculated as stand-alone 
free molecules.

The results show that AF2 structures include all the unusual 
features in the set of proteins not affected by the crystal environ-
ment. We therefore conclude that this class of deep learning AI 
method does generalize from its training data so as to correctly 
determine seldom seen subtle and energetically complex structural 
features. Given the nature of the method, the likely reason for this 
is that the machine learns a potential of mean force between the 
different atom types (11) that can be used to evaluate the relative 
free energy of any considered constellation of atoms.

Results

Table 1 lists the six selected CASP14 targets. Residue numbering 
is that of the target sequences provided to CASP participants and 
sometimes differs from that of the final experimental structures 
deposited in the PDB. The structures of targets T1046s1 and 
T1065s2 were determined in complex with partner proteins, while 

the remaining proteins were reported by the experimentalists to 
function as monomers, and examination of the corresponding 
crystal contacts also supports the monomeric state.

Cis Peptides. Cis peptides other than those involving proline residues 
in the second position are energetically strained and rare [less than 
1 in 1,000 (17, 18)]. For prolines, the cis/trans energy difference is 
smaller, but still significant (9), and about 1 in 20 prolines in the 
PDB is reported as cis (8). In the CASP analysis set, there are no 
nonproline cis peptides and of the 46 prolines, four are reported as 
cis (Table S2). Surprisingly, 21 prolines are in one target, T1090 
(16), which is only 191 residues long. Of these 21 prolines, three are 
involved in cis peptides. The AF2 best models agree with experiment 
for all 42 trans prolines and three of the four cis prolines. The cis 
proline peptide (Leu40–Pro41) in the T1090 experimental structure 
is predicted by all five AF2 models as trans, with an estimated average 
coordinate error of 0.5 Å. Examination of the experimental electron 
density in this region unambiguously supports the assignment of 
the cis peptide (Fig. 1). The residue preceding cis peptide, Leu40, 
adopts α-helical backbone dihedral angles, which is rarely observed 
in crystal structures because of the resulting sterically strained 
interaction between the Cβ atom and the proline backbone Cα 
and C atoms (8). Here, this local conformation allows the carbonyl 
oxygen of Leu40 to form favorable electrostatic interactions with 
the Arg141 guanidinium group of a symmetry-related molecule and 
the side chain is buried in the interface. In contrast, the trans proline 
in the AF2 structures, in the absence of crystal contacts, results in 
a favored Leu40 conformation with no steric strain between the 
Cβ atom and Pro41 atoms. Consequently, the Leu40 CO group 
in the AF2 calculated structure is oriented so that the interprotein 
electrostatic interaction could not be made (Fig.  1). Notably, a 
substantial contribution to this crystal contact interface is provided 
by a nonnative 18-residue N-terminal tag that forms an α-helix (16). 
These observations suggest that AF2’s trans peptide is not an error, 
rather it is likely the preferred conformation in solution and the 
experimental cis conformation is a crystallographic artifact (Fig. 1). 
Thus, overall, on this small sample, AF2 correctly assigned cis and 
trans proline states in all cases, an assignment that is sometimes 
difficult to make experimentally in structures determined at low or 
moderate resolution.

π- and 310-Helices. A survey of 5,620 protein structures identified a 
total of 1,010 π-helices (19). Of these, 80% are comprised of a single 
residue insertion into α-helices, forming a single π-helix turn, also 
termed π-bulge or α-bulge, with two i to i+5 backbone hydrogen 

Table 1. CASP14 targets selected for analysis

Target Protein
Number of 
residues* PDB code

Resolution 
(Å) Rwork/Rfree Reference AF2 GDT-TS

T1046s1† Antiholin 157 6px4 1.65 0.195/0.225 (12) 97.22

T1049 Receptor-binding domain 
of adhesin MrpH

141 6y4f6y4e 1.75 1.02 0.153/0.183 
0.107/0.128

(13) 93.10

T1065s2† Immunity protein CDII 98 7m5f 1.59 0.140/0.167 Michlska et al, 
unpublished;

98.47

T1074 Bdellovibrio bacterio-
vorus Bd0675

202 7oc9 1.50 0.197/0.213 (14) 89.77

T1082 Bacteriophage T4 spackle 
protein

97 7cn67cn7‡ 1.60 1.15 0.179/0.228 
0.107/0.121

(15) 95.33

T1090 N-terminal domain of 
chromatin remodeling 
protein Ssr4

193 7k7w 1.77 0.177/0.206 (16) 89.02

*The number of residues corresponds to the sequences provided to the CASP14 predictors.
†T1046s1 was determined in complex with holin and T1065s2 was determined in complex with CdiA.
‡PDB entry code 7cn7 includes the T1082 target in complex with the lysozyme domain of GP5 tail lysozyme.

http://www.pnas.org/lookup/doi/10.1073/pnas.2221745120#supplementary-materials
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bonds. The exact per residue frequency is not provided in the study, 
but assuming an average of 200-residue long chains, it is <0.1%. An 
earlier survey of 936 proteins containing a total of 224,046 amino 
acids identified a total of 728 residues forming π-helices, an overall 
frequency of 0.3% (20). In agreement with this low frequency, only 
one of the six selected CASP14 experimental structures contains a 
π-helix (Table 2), and there are no other π-helices in the calculated 
structures, consistent with the experimental ones. The experimental 
π-helix occurs in target T1046S1, an antiholin, which forms a 
complex with holin. The complex regulates T4 phage lysis of an 
infected host cell. Holin forms lesions in the host membrane and 
antiholin inhibits this activity (12). Antiholin folds into a three-
helical bundle, with the first α-helix distorted at His17 to form a 
single α-helix turn spanning Gly14–Met20. The AF2 best model 
has a very high overall level of agreement with the crystal structure, 
as reflected in a 97.6 GDT-TS score (21). The model also contains 
the π-helix turn, with estimated atomic errors of ~0.4 Å. Consistent 
with that and the high quality of the crystal structure (1.65 Å 
resolution), the superposition of the model and the experimental 
structure show deviation in backbone atomic positions of 0.2 to 
0.4 Å (Fig. 2A). The prediction of the π-helix is not a trivial outcome 
of the core packing, as demonstrated by the second-best predicted 
model (Baker Group), where there is an unbroken α-helix, displaced 
relative to the experimental structure (Fig. 2B). The motif is also not 
retrievable from the PDB by sequence similarity: The closest match 
of the 11 residues around the π-helix turn has 55% identity and 
forms a β-strand (PDB entry 8A3T). Neither is it straightforwardly 
predicted by coevolution information: Replacement of the three 
turn residues by gap characters in the multiple sequence alignment 
does not affect the local conformation.

Careful inspection of the environment for the residues on the 
helix revealed that in both the X-ray structure and the AF2 model, 
the side chain of Phe7, seven residues away, forms favorable hydro-
phobic interactions with neighboring residues including two 
edge-to-face interactions with the side chains of Tyr4 and Tyr34 
on the second α-helix. In contrast, the Phe7 side chain in the 
Baker’s group model is tucked close to the loop between the second 
and third α-helices, forming two unfavorable interactions, one 
with the carboxylic group of Asp49 (3.1 Å) and the second with 
the backbone carbonyl group of Cys46 (3.2 Å). Conversely, in the 
X-ray structure and AF2 model, this position is occupied by the 
side chain of His6, which provides a more favorable electrostatic 

environment than that of the Phe7 benzyl group (Fig. 2C). The 
energy cost of inserting a residue to form a π-helix turn has been 
estimated to be ~3 to 6 kcal/mol (22, 23). It appears that in this 
case, that strain is compensated by improved interactions seven 
residues away.

It has been proposed that the protein destabilization due to inser-
tion of a residue to form a π-helix would tend to be selected against 
unless it was associated with a functional advantage (19, 24, 25). 

Fig. 1. A cis-trans proline change induced by crystal packing. In the CASP target T1090 (chromatin remodeling protein Ssr4 N-terminal domain) crystal structure, 
Pro41 has a cis peptide, but it is trans in the AF2-calculated structure. (Left) Pro41 and its crystal environment together with the associated electron density map. 
The Leu40 backbone CO group interacts with the solvent inaccessible Arg141 guanidinium group of a neighboring molecule. Interaction is shown by magenta 
dashed lines, neighboring molecule carbon atoms are colored gray, and Arg141 is superscripted with “. (Right) Pro41 superposition of the crystal (green) and AF2 
(sky blue) structures highlighting the difference between the cis and trans peptides. Trans does not allow formation of the intermolecular interaction. It appears 
that the AF2 structure’s trans conformation likely represents the in vivo solution state.

Table  2. Statistics of uncommon features in CASP14 
template-free high-resolution structures

Total number in crystal 
structures 46

Prolines Number of cis Pro in 
crystal structures

4

Cis Pro present in AF2 
models

3

Cis Pro not predicted, 
affected by crystal 
contacts

1

p-helices Crystal structures 1
AF2 models 1

310-helices (three-residues) Crystal structures 13
AF2 models 11
Predicted but contains 

four residues
1

Not predicted, affected by 
crystal contacts

1

310-helices (six-residues) Crystal structures 1
AF2 models 1

Small 3D structure motifs Total number in crystal 
structures

18

Present in AF2 structures 13
Not in AF2 structures, 

affected by crystal 
contacts/environment

5

Small 3D structure motifs Found in AF2 structures, 
not observed experi-
mentally, crystal 
contacts

1
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The example of antiholin supports this proposal. In the experimen-
tal holin:antiholin complex, Arg16 of antiholin forms a salt bridge 
with an aspartic acid on holin (Fig. 2D), an apparently important 
feature of the protein–protein interface. The Baker group model 
without the π-bulge has Arg16 and the preceding helical amino 
acids out of register by one residue, so that the interprotein salt 
bridge cannot form. That is, the π-bulge is critical to function.

310-helices are more abundant than π-helices, accounting for 
approximately 4% of amino acids (26, 27). However, most are short, 
with only three amino acids. Four-, five-, and six-residue 310-helices 
are uncommon, occurring in 0.8%, 0.4%, and 0.2% of total num-
ber of amino acids, respectively (27). In line with those observations, 
the selected crystal structures contain thirteen three-residue 
310-helices, of which eleven are present in both the crystal structure 
and the AF2 model (Table 2), and there are no 310-helices in the 
models that are absent in the experimental structure.

One of the two 310-helices absent in the AF2 model comprises 
residues 100 to 103 of T1049, the tip adhesin MrpH (13). The 
five AF2 models have a range of conformations here with an esti-
mated average coordinate error of 0.9 Å. This experimental 
310-helix is associated with crystal contacts. Glu103 in the crystal 
structure is involved in a salt bridge with Arg119 of a crystal 
symmetry–related molecule. Moreover, the C-terminal region of 
the AF2 model, which includes a 6xHis tag, extends the C-terminal 
β-strand. That polypeptide would clash with the 310-helix of the 
crystal structure and the 6xHis tag would clash with a second 
neighboring molecule. Instead, the crystal structure’s C-terminal 
region reverses direction to provide space for the 6xHis tag in a 

solvent channel. We also note that Glu103 may have a functional 
role, which is indicated by the AF2 model but not by the crystal 
structure. In the calculated structure, it forms a hydrogen bond 
with Tyr18 and both residues are placed in the vicinity of a zinc 
ion that coordinates three histidine residues and a carboxylic group 
of a ligand (two crystal structures are available, one with a bound 
glutamic acid and the second with a bound tartrate). The zinc ion 
is critical for the protein function in biofilm formation (13). 
However, Glu103 in the crystal structure is positioned further 
from the zinc center and from Tyr18, and instead forms the salt 
bridge with the neighboring molecule. Hence, the AF2 model 
likely better represents the biologically relevant structure. A 
sequence search of the 310-helix and the flanking three residues 
on each end identified no identical sequence. The closest homolog 
had 70% sequence identity and an entirely different fold in this 
region. Yet again, AF2 had no template peptide that could guide 
the prediction.

The second 310-helix discrepancy occurs in T1082 (bacterio-
phage T4 Spackle protein). The crystal structure has a three-residue 
310-helix at Val72–Tyr75. The AF2 model has this feature, but 
with an extra 310 residue at Gly71, making a rarer four-residue 
310-helix (Gly71–Tyr75). The Ser69–Gly70–Gly71 tripeptide 
preceding Val72 adopts a different conformation in the experi-
mental and AF2 structures. Gly70 CO group forms a hydrogen 
bond with Gln74 side chain in the crystal structure, a feature not 
present in the AF2 structure. Instead, all five AF2 models have an 
i to i+3 backbone hydrogen bond between the backbone Gly71 
CO and Gln74 NH, so extending the length of the 310-helix by 

Fig. 2. The T1046S1 (antiholin) π-helix. (A) Superposition of the crystal (green) and the AF2 (sky blue) structures. Both contain a short π-helix. (B) Superposition 
of the crystal (green), AF2 (sky blue), and Baker’s group (lavender) structures. The Baker group structure has a continuous α-helix with no π interruption, resulting 
in a different position of Arg16. (C) The environment of Phe7 in the three structures. In the crystal and AF2 structures, Phe7 is located within a hydrophobic core 
and His8 is exposed to solvent, whereas in the Baker’s group structure, Phe7 is located in approximately the same position as His8 in the crystal structure and 
interacts unfavorably with a backbone CO and a carboxyl group. The location of Arg16 on the experimental and AF2 structures is indicated. (D) Superposition 
of the crystal (green) and AF2 (sky blue) structures in the context of the complex with holin (gray). Arg16 forms a salt bridge with an aspartic acid on the partner 
holin protein. Without the π-helix segment, that key intermolecular interaction cannot be made. In this case, the AF2 structure includes a rare motif that is 
stabilized by interactions nine residues away, and that is critical to function.
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one residue (Fig. 3). No clear evidence exists that the Ser69–
Gly70–Gly71 conformation is affected by crystal contacts or ion 
binding even though this region is quite close to a neighboring 
molecule. The crystallographic temperature factors of these resi-
dues are low and the AF2-estimated atomic position errors are also 
low (~0.6 Å). Thus, the extra 310 turn may be a calculation error. 
Nevertheless, the three-residue 310-helix determined in the crystal 
structure is contained within the four-residues of the AF2-calculated 
structure and in that sense, the prediction is correct.

The selected CASP14 experimental structures contain one rare 
six-residue 310-helix, at residues Val28–Gln33 of the T1090 struc-
ture, connecting the native N-terminal α-helix (which follows an 
engineered affinity tag α-helical segment) to the first β-strand. 
AF2 captured this rare long 310-helix precisely.

Small 3D Structure Motifs. A number of classifications for small 
3D structure motifs have been published, based on geometric 
criteria and hydrogen bonding patterns and independent of amino 
acid sequence (7, 28–32). Analysis of ~50,000 PDB structures has 
been reported (33). The statistics of the small 3D structure motifs 
and their subtype in this set are listed in SI Appendix, Table S1. 
The motifs included are alpha–beta-motif, asx-motif, asx-turn, 
beta-bulge, beta-bulge-loop, beta-turn, gamma-turn, nest, niche, 
Schellman-loop, st-motif, st-staple, and st-turn. We use the same 
terminology for these motifs as employed by Golovin and Herick 
and listed in PDBeMotif. The survey found that 16 of the motifs 
occur in less than 1% of the total number of PDB amino acids. 
We extracted data on the occurrence of these uncommon motifs in 
the selected CASP14 targets for both the experimental structures 
and the AF2 models using the PDBeMotifs server. Nine out of the 
sixteen motif types were found, involving four of the six structures. 

A total of eighteen motifs were identified in the experimental 
structures. Statistics of all the 3D structure motifs considered are 
provided in Table 2, and the details are provided in SI Appendix, 
Table S3. All the motifs not present in the calculated structures are 
associated with crystal environment effects. Where the calculation 
does not agree with the crystal structure, we examined all five AF2 
models to confirm that none predicted the rare motif. Below, we 
describe interesting cases.

In one case, an experimentally observed rare motif is also found 
in the calculated structure, though the local structure is displaced 
relative to experiment. T1090 contains a β-turn il conformation 
(0.6% frequency) comprising Val111 to Lys114 at the tip of a 
solvent-exposed β-hairpin, with an estimated average coordinate 
error of 0.5 Å (Fig. 4). There is an orientation difference of the 
β-turn between the experimental and calculated structures of up 
to 3 Å, yet the unusual β-turn il conformation is present in both. 
Coevolution appears not to determine this feature, since an AF2 
calculation in which residues in positions 111 to 114 in the mul-
tiple sequence are replaced by gap characters still produced models 
containing the same β-turn il conformation.

The crystallographic temperature factors in this region are some-
what elevated compared with those in the protein core, as often 
observed in solvent-exposed regions within crystals. There are no 
crystal effects that appear to affect the loop conformation and there 
is no obvious factor in the protein environment that appears to 
influence one loop orientation over another. That is, the local energy 
surface appears fairly flat. Thus, in a structural sense, the calculated 
loop structure appears to be in error, but the energy discrepancy is 
likely small. Most importantly, the rare motif is modeled.

Strikingly, thirteen of the eighteen small 3D structure motifs 
occur in T1074, the BD0675 protein from Bdellovibrio bacterio-
vorus, a 202-residue protein of unknown function that folds into 
a distorted β-roll-like structure (Table 1). The AF2 model agrees 
with eight of these thirteen uncommon motifs. Three of the dis-
cordant motifs occur within the loop encompassing residues 88 
to 98. All five AF2 structures have loop conformations with no 

Fig.  3. Different-length 310 helices in AF2 and experimental structures. 
Superposition of T1082 (bacteriophage T4 spackle protein) crystal (green) 
and AF2 (sky blue) structures highlighting the difference between the three- 
(experimental) and four-residue (calculated) 310 helices, and the similar 
ensuing complex helical architecture Gly70 CO in the crystal structure forms a 
hydrogen bond with Gln74 side chain, and Gly71 CO in the AF2 structure forms 
an additional 310-helix hydrogen bond. This one hydrogen bond difference 
may be a computational error, the only one involving a rare motif found in 
these protein structures. The error introduces a rarer structural feature than 
the one found by experiment.

Fig. 4. Agreement between an experimental and calculated rare 3D structure 
motif despite local rigid body displacement of a loop. Superposition of part 
of the T1090 (chromatin remodeling protein Ssr4 N-terminal domain) crystal 
(green) and AF2 (sky blue) structures, showing an uncommon β-turn il (residues 
111 to 114) that is present in both the crystal and calculated structures despite 
the ~3 Å hinge-like shift of the β-hairpin in the model relative to the crystal 
structure. The superposition included the entire molecule. There are no crystal 
contacts in the vicinity of the loop, and its lack of contacts with the rest of the 
protein suggests a shallow and broad energy minimum.

http://www.pnas.org/lookup/doi/10.1073/pnas.2221745120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221745120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221745120#supplementary-materials
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uncommon motifs. The loop is involved in crystal contacts, and 
superposition of the AF2 structures on the crystal structure shows 
that the AF2 loop conformations cannot be accommodated in the 
crystal context because of clashes with a neighboring molecule. 
Thus, these three experimental rare motifs appear to be an artifact 
of the crystal packing.

Two more uncommon small 3D motifs in T1074 are not pres-
ent in the AF2 models. One comprises residues 174 to 177, which 
adopt a β-turn il conformation in the crystal structure, and the 
more common type ir in the five AF2 models (estimated model 
average coordinate error of 0.6 Å). The difference between the two 
motifs is a flipped peptide bond with little difference in the other 
atomic positions. In the experimental structure, this β-turn is also 
intimately involved in a crystal contact and the common ir turn 
motif in the calculated structure cannot be accommodated because 
of clashes with the neighboring molecule. In contrast, the exper-
imentally observed peptide enables hydrogen bonding between 
the peptide CO group and the side chain of Gln201 on the adja-
cent β-strand, which in turn is also hydrogen bonded to the side 
chain of Gln177. So here too, the difference appears to be due to 
crystal packing interactions.

The fifth disagreement between the X-ray and AF2 structures 
involves a hairpin loop on T1074 that is placed differently in the 
two structures (labeled Hairpin 1 in Fig. 5). The AF2 placement 
of Hairpin 1 cannot occur in the crystal structure because it would 
overlap with a bound tert-butanol molecule, in particular clashing 
with the side chain of Arg152 on this loop (Fig. 5A). The 
tert-butanol was included in the crystallization solution but not 
included in the AF2 calculations. A clash with the tert-butanol is 
avoided by Hairpin 1 of the crystal structure adopting a more 
open conformation, i.e., moving further away to enlarge the cleft 
where the tert-butanol binds. In turn, the open Hairpin 1 con-
formation requires that an adjacent hairpin loop (Hairpin 2 in 
Fig. 5) adopts an uncommon 3D motif, niche3l (0.1% frequency), 
so as to prevent an unfavorable electrostatic interaction (2.9 Å) 
between two backbone CO groups, one of Gly154 on Hairpin 1, 
and the second of Asp160 on Hairpin 2 (Fig. 5B). In contrast, 
Gly154 in the closed Hairpin 1 conformation is placed remotely 
from Hairpin 2 and Asp160 CO flips over (Fig. 5B). Hairpins 1 
and 2 flank a cleft that was proposed to contain a potential ligand 
binding site (14). Therefore, their mobility may be relevant to the 
function of the protein, which is currently unknown. That is, a 
closed Hairpin 1 conformation similar to the one in the AF2 

structure may be preferred at the apo-state and the more open 
crystal structure conformation may be similar to that when the 
postulated ligand binds. Elevated crystallographic temperature 
factors in this region (average backbone atoms’ B = 64) and higher 
predicted coordinate errors by AF2 (1.9 Å) also suggest loop flex-
ibility. Confirmation of this proposal awaits discovery of the pro-
tein function and its ligand.

Uncommon Structural Features in AF2 Models Absent in the 
Experimental Structures. None of the AF2 structures contain π- 
or 310-helices that are not found in the experimental structures. 
However, all five AF2 structures of T1049 contain a single 
uncommon 3D structure motif that is absent in the experimental 
structure, a st-turn iil (0.8% frequency) (Table 1 and SI Appendix, 
Table S3). This motif comprises residues Ser117–Pro118–Arg119 
in an omega loop spanning residues 110 to 120 where the estimated 
average coordinate accuracy is 0.8 Å (Fig. 6). Ser117 is buried in 
the experimental structure, and the side chain hydroxyl group is 
well compensated by electrostatic interactions with surrounding 
hydrophilic groups. In contrast, the Ser117 hydroxyl group of 
the AF2 structure is on the protein surface and interacts with the 
backbone NH group Arg119 (Fig. 6). Examination of crystal contacts 
shows that the AF2 structure in this region cannot be accommodated 
in the crystal environment, suggesting that the absence of this rare 
feature in the experimental structure is a consequence of the crystal 
environment. A BLAST sequence search against the PDB for the 
Ser–Pro–Arg motif together with the three flanking residues on 
each side finds ten proteins containing Ser–Pro–Xaa sequences. Of 
these, five exhibit the rare ST-turn iil conformation, suggesting that a 
proline in the second position enriches the occurrence of the ST-turn 
iil compared with other residues. Whichever energetic consideration 
is involved, for a proline in the second position, the occurrence of 
the ST-turn iil increases substantially.

Discussion

This study shows that an AI deep learning network is very successful 
in capturing structural features that occur infrequently in protein 
structures. Overall, of the 37 rare structural features found in the 
experimental structures, 30 are found in the corresponding calcu-
lated structures. Of the seven not found, six appear to be a conse-
quence of crystal contacts and one a consequence of the presence 
of a bound organic molecule included in the crystallization 

Fig. 5. Bound ligand (tert-butanol) present in the crystallization solution affecting a hairpin loop location and formation of an uncommon small 3D motif in the 
crystal structure. Superposition of T1074 (Bdellovibrio bacteriovorus Bd0675) crystal structure (green) and the AF2 model (sky blue). (A) Hairpin 1 open (crystal 
structure) and closed (AF2 model) conformations. The uncommon niche3l motif on the crystal hairpin 2 of the crystal structure is colored magenta. A tert-
butanol is bound in the experimental structure but was not included in the calculated structure. The side chains of Arg152 in the AF2 structure overlap with the 
tert-butanol molecule. (B) Atomic detail of hairpins 1 and 2 showing that the Asp160 CO group in the uncommon nich3l conformation avoids the short contact 
with Gly154 CO, which would occur if the Hairpin 2 conformation resembles that in the AF2 calculated structure. Here, the AF2 Hairpin 2 conformation is likely 
more representative of the in vivo structure in a postulated ligand-free state.

http://www.pnas.org/lookup/doi/10.1073/pnas.2221745120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221745120#supplementary-materials
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solution. Thus, the calculated structures appear to contain all the 
experimentally observed rare motifs that are not artifacts of the 
crystal environment. There are two instances of rare motifs found 
in the calculated structures that are not present in the correspond-
ing experimental ones: an extra residue in a 310-helix which may 
be a computational error, and a rare turn that the crystal environ-
ment could not accommodate. That is, its absence in the experi-
mental structure appears to be a crystallographic artifact.

The success in the identification of rare features provides support 
for the view that the machine is generalizing from the training data 
such that it can determine when unusual structural features are 
the energetically optimal solution. How the machine does this is 
less obvious. Given the type of data used for training, the impli-
cation is that it does something akin to learning a knowledge 
potential. That is, it learns the probability distributions for the 
interatomic distances between each pair of atom types in the PDB. 
These distributions are used to determine the relative probability 
of the set of interatomic distances present in any conformation. 
In this sense, the machine likely does something equivalent to 
learning a potential of mean force (11). Some aspects of the poten-
tial, especially packing, are incorporated in the training loss func-
tion (2). Most, including electrostatics, are not. The information 
representing the potential is distributed over the trained network, 
and thus over a very large number of parameter values. As a result, 
it may be a more nuanced force field than those traditionally used 
to represent potentials and may also effectively include 
higher-than-pairwise terms not usually part of physics-based 
potentials. We note that this conclusion is not based on direct 
evidence but is a likely explanation for the machine’s capabilities. 
A possible confounding factor is the role of coevolution informa-
tion in determining conformational details. In the limited tests we 
have done, removing local coevolution signals does not appear to 
be key. Another study of AF2 properties (34) provides some sup-
port for these points of view. That work shows that sets of confor-
mational decoys can be ranked with AF2 in the absence of 
coevolution information (although coevolution is often important 
for finding the approximate global minimum—see below).

An algorithm that can compute protein structure from sequence 
must solve two problems. One is to be able to recognize the lowest 
free energy conformation among the set of sampled conforma-
tions, and there are data showing that classical physics-inspired 
potentials are able to do this, although the AF2 potential achieves 
a higher level of agreement with experimental coordinates. The 
second problem is finding the global free energy conformation, 
which classical methods have generally not achieved yet, even 
when starting from a conformation close to the experimental one 
(4). The examples here demonstrate how difficult this is. For 
instance, for the π-helix case, creating that feature allows better 
interactions for an amino acid nine residues away from the inserted 
residue (Fig. 2), and inspection suggests that there is no physical 
space smooth energy gradient between the simpler continuous 
α-helical conformation and the observed arrangement. How AF2 
and related machines find the minimum is unclear. One view is 
that the large neural network transforms the data into a space 
where there is a monotonic relationship between free energy and 
conformation (35). A second explanation is that the sequence 
coevolution restricts the conformational options sufficiently to 
provide an approximate solution, and the Rooney and Ovchinnikov 
study (34) takes that view. Note that because of detailed confor-
mational differences within protein families, coevolution is likely 
inherently not atomic resolution.

It is not a goal of this study to analyze other sorts of discrepancy 
between the experimental and calculated structures, though we do 
report a minor one that is possibly a computational error. A recent 
paper by Terwilliger and colleagues (36) asserts that detailed com-
putational errors are common. In the CASP14 assessment, discrep-
ancies are also fairly common, but a large fraction of those are likely 
attributable to crystal artifacts (4). Similarly, in this analysis, about 
20% of experimental rare features are not found in the calculated 
structures, but all appear to be crystallographic artifacts. The 
Terwilliger et al. study uses structure comparisons of pairs of pro-
teins with identical sequences, each crystallized in different lattices 
to provide an estimate of experimental uncertainty caused by crystal 
effects. They make an interesting observation that differences are 
very small at short or moderate distances between residues (at 15 Å 
Cα atom separation, about 0.1 Å median discrepancy between 
crystal structure pairs and about 0.25 Å between calculated/exper-
imental pairs). Taken at face value, these data suggest that at this 
Cα atom separation, the median computed structure inter-Cα error 
is ~0.15 Å, or 1%. However, that is likely an overestimate, since 
the comparison of crystal structures in this way is not bias free. 
First, experimental procedures may tend to make the structures 
too similar, since one structure is often solved based on the other. 
Second, different crystal forms of the same protein tend to employ 
the same regions on the protein surface for crystal contacts, induc-
ing the same crystallographic artifacts. A detailed analysis of this 
phenomenon has been reported for 25 nonisomorphous crystal 
forms of T4 lysozyme (37). The protein molecules in this set of 
structures showed quasi-equivalent association due to utilization 
of common crystallographic symmetry axes.

There are limitations to our study. Because there are no auto-
mated methods for relating structural differences to crystal envi-
ronmental effects, the number of features analyzed is small. While 
this is an insufficient number to provide precise statistics on the 
fraction of rare features produced in calculated structures, it is 
sufficient to show that fraction is large. Because human interpre-
tation of structural features is required, there is potential for bias. 
We endeavored to minimize that by scrutinizing each case from 
the point of view of a champion of computational methods (JM) 
and an experimentalist (OH) who if anything is biased toward the 
superiority of experiments. We also decided in advance which rare 

Fig.  6. The single instance where an AF2 model contains an uncommon 
feature, not present in the corresponding crystal structure. Local superposition 
of T1049 (receptor-binding domain of adhesin MrpH) crystal structure (green) 
and AF2 model (sky blue) ω-loop showing the uncommon Ser116 st-turn iil in 
the AF2 model that is absent in the experimental structure. Instead, Ser116 
in the crystal structure is buried and forms three favorable electrostatic 
interactions. Ser116 in the modeled structure is exposed to the solvent. The 
ω-loop is involved in crystal contacts, and superposing the entire AF2 model 
on the experimental structure reveals that the predicted loop conformation 
would clash badly with a symmetry-related molecule.
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feature criteria and which structures to include and did not alter 
these during the work.

Methods

CASP14 single protein or domain targets were considered. Targets were classified 
as template based (easy and difficult) or template free by the CASP14 organizers 
based on hidden Markov model analyses and structure similarity to PDB entries 
(Kinch et al, Proteins 89:1618, 2021). For the purpose of the current study, 23 
free modeling proteins were examined. Of these, six structures determined to a 
resolution limit of 2 Å or better were selected for detailed evaluation. The analyses 
utilized the computer programs DSSP (38) for secondary structure classification, 
PDBeMotif (33) for identifying rare motifs, and PyMol (39) for visual inspection 
and for local and global structure alignment. The features examined are cis pep-
tides, 310-helices, π-helices, and small 3D motifs that occur in the PDB at frequency 

lower than 1% of the total number of residues, as defined previously (33). The 
statistics are provided in SI Appendix, Table S1.

CASP allows participants to submit up to five models per target. For each target, 
we first analyzed both the experimental structure and the AF2 “Best Model” [the 
model with the smallest overall backbone difference to the experimental structure 
based on the GDT-TS criterion used by CASP (40)]. Where there was a disagree-
ment between the two structures, we examined all five AF2 predictions to see 
whether any of the models agreed with the crystal structure and confirmed that 
no such cases occurred. When a discrepancy between the calculated and experi-
mental structures was identified, we checked for a possible influence of crystal or 
partner protein contacts on the crystal structure. A previous analysis by a CASP14 
assessor showed that these are a very common cause of such discrepancies (4).

Data, Materials, and Software Availability. All study data are included in the 
main text and/or SI Appendix.
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