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Significance

Milk is fundamental for early life 
in mammals, providing nutrients 
and immunoregulatory 
compounds to developing young. 
Our study represents the largest 
mammalian milk microbiome 
survey to date. Across the 
mammalian tree of life, we show 
that lactating female mammals 
host a diverse collection of 
bacterial and archaeal taxa in 
their milk, representing one of the 
earliest exposures of mammalian 
young to the microbial world. The 
communities of microbes found 
within milks were largely a 
reflection of random, stochastic 
process. Nonetheless, milk 
microbiomes still showed 
signatures of selection that 
reflected the mother’s 
evolutionary history and ecology, 
including environment and diet. 
Milk microbiomes warrant study 
as the microbial species in milk 
likely colonize offspring guts and 
impact offspring physiology and 
behavior.
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Milk production is an ancient adaptation that unites all mammals. Milk contains 
a microbiome that can contribute to offspring health and microbial-immunological 
development. We generated a comprehensive milk microbiome dataset (16S rRNA 
gene) for the class Mammalia, representing 47 species from all placental superorders, 
to determine processes structuring milk microbiomes. We show that across Mammalia, 
milk exposes offspring to maternal bacterial and archaeal symbionts throughout lac-
tation. Deterministic processes of environmental selection accounted for 20% of 
milk microbiome assembly processes; milk microbiomes were similar from mam-
mals with the same host superorder (Afrotheria, Laurasiathera, Euarchontoglires, 
and Xenarthra: 6%), environment (marine captive, marine wild, terrestrial captive, 
and terrestrial wild: 6%), diet (carnivore, omnivore, herbivore, and insectivore: 5%), 
and milk nutrient content (sugar, fat, and protein: 3%). We found that diet directly 
and indirectly impacted milk microbiomes, with indirect effects being mediated by 
milk sugar content. Stochastic processes, such as ecological drift, accounted for 80% 
of milk microbiome assembly processes, which was high compared to mammalian 
gut and mammalian skin microbiomes (69% and 45%, respectively). Even amid high 
stochasticity and indirect effects, our results of direct dietary effects on milk micro-
biomes provide support for enteromammary trafficking, representing a mechanism 
by which bacteria are transferred from the mother’s gut to mammary gland and then 
to offspring postnatally. The microbial species present in milk reflect both selective 
pressures and stochastic processes at the host level, exemplifying various ecological 
and evolutionary factors acting on milk microbiomes, which, in turn, set the stage 
for offspring health and development.

microbiota | symbiosis | neonate | bacteria | breast milk

The production of milk and nursing of offspring is unique to mammals. Milk is a complex 
bioactive substance of nutritional and immunoregulatory compounds that has far-reaching 
impacts on developing mammalian offsprings’ growth and development (1, 2). For 
instance, milk macronutrient content is a primary factor guiding development and varies 
widely across Mammalia according to phylogeny, maternal diet, nursing frequency, litter 
size, and neonatal growth rate, among others (3, 4). Over 100 million years of adaptive 
evolution has shaped the composition and diversity of milk nutrient and immunological 
profiles across placental mammals.

Milk was historically believed to be sterile. We now know milk harbors a microbiome, 
a collection of diverse bacteria, fungi, and archaea (5–7). Early exposure of mammalian 
young to microbiota occurs through the birthing process, the external environment, and 
maternal milk (8). Microbes may colonize milk from the maternal gut via the entero-mammary 
trafficking pathway (9), maternal and infant skin by passive exposure [as reviewed by 
Fernandez et al. (10)], and the infant oral cavity by retrograde flow during nursing (11). 
Yet, milk microbiomes are compositionally unique from these other niches (12), indicating 
that milk microbiomes are unique ecological communities. Understanding factors under-
lying why certain microbes are present in milk is important as the milk microbiome can 
colonize neonates’ guts (13) and is likely a mechanism by which milk affects neonatal growth 
and microbial–immunological development (10, 14).

The adaptive functions of the milk microbiome remain an open question, however, 
several reasonable hypotheses have been suggested. The microbes in milk are among the 
first to reach the neonatal gut and may shape the early gut microbiome if they are able to 
establish residence (13). Microbial metabolic products may have profound effects on the 
neonates developing gut and immune system. For example, the microbial breakdown of 
certain milk oligosaccharides has been shown to produce bioactive compounds which 
have beneficial effects on gut and immune function development (15). In addition, the 
development of tolerance to benign antigens is as critical as the development of active 
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immune responses to potential pathogens. Exposure to antigenic 
signals from maternal milk microbes may be a mechanism to 
develop immune tolerance to these benign and sometimes bene-
ficial microbes (16). These suggested functions of milk microbes 
are not exclusive; all could be important, and other potential func-
tions may yet be discovered.

Host-associated microbiomes are ecological systems, and like 
any multispecies assemblage, they are structured by some com-
bination of deterministic and stochastic processes. Deterministic 
processes are generally considered those that involve nonrandom, 
niche-based mechanisms such as environmental filtering (e.g., 
pH, moisture) and species interactions (microbe–microbe, host–
microbe). Stochastic processes are generally considered those that 
involve ecological drift and probabilistic dispersal (e.g., random 
changes in communities due to birth, death, and reproduction 
and random chance of colonization, respectively), and are indis-
tinguishable from random, neutral-based processes (17). It is 
now generally accepted that both deterministic and stochastic 
processes simultaneously structure ecological communities but 
vary in their relative importance depending on the system. In 
host-associated microbial communities, community assembly 
processes are generally understudied (18), but are gaining atten-
tion (17, 19). By applying ecological theory to host microbiomes, 
we can increase our ability to explain inter- and intraspecies 
variation (18, 20).

Deterministic processes such as host evolutionary history and 
environment can shape mammalian host-associated microbial 
communities, as has been shown for skin (21), oral (22), and 
gut microbiomes (23, 24). Host species generally differ in their 
microbiomes and sometimes these differences parallel differ-
ences in host evolutionary history. Phylosymbiosis describes 
when more closely related hosts have more similar microbiomes 
(25) and has been observed in mammalian gut microbiomes 
(24) and skin microbiomes (21). However, ecological traits that 
mirror evolutionary history may explain phylosymbiosis (20), 
such as when host diet co-varies with phylogeny (26). For 
instance, diet can act as an ecological filter on the gut microbi-
ome likely through filtering dietary-associated microbes for 
species that aid in digestion (26). Additionally, the environment 
has long been regarded as a strong ecological filter, selecting 
specific ecological communities from the regional pool of spe-
cies. Host-associated microbial communities are unique in that 
these filters are acting at both the host level and the host body 
site level, such that the environment of the host affects the 
regional pool of microbial species (e.g., in a forest) and the 
environment of the host’s body site for which the microbes will 
colonize acts as a secondary ecological filter (e.g., gut pH). For 
instance, we have previously shown that where an individual 
lives influences their milk microbiome (27) and that milk nutri-
ent content (milk fat, milk sugar, and milk protein) is related 
to species differences in milk microbiome composition in pri-
mates (5).

Our objective was to generate a comprehensive milk microbi-
ome dataset for class Mammalia to determine the relative contri-
bution of host evolutionary history, diet, environment, milk 
nutrient content and lactation stage on structuring milk micro-
biomes. We utilized samples from the world’s largest collection of 
mammalian milks housed at the Smithsonian National Zoo and 
Conservation Biology Institute (NZCBI) Milk Repository. We 
selected samples in a manner to reduce bias by selecting species 
within the four superorders of placental mammals (Placentalia) 
that represented different environments, diets, milk nutrient con-
tents, and that were collected, when possible, at both early and 
mid-lactation stages (Fig. 1).

Results

Overview. We generated 317,041 high-quality bacterial and 
archaeal 16S sequences (V3-V5 region) from 107 mammalian milk 
samples housed in the NZCBI’s Milk Repository (SI Appendix, 
Table S1). An additional 16 samples were processed, but did not 
yield sufficient sequences for analyses. The complete mammal 
milk microbiome dataset consisted of 13,413 microbial amplicon 
sequence variants (ASVs) from 26 bacterial phyla and 2 archaeal 
phyla. The dominant bacterial phyla were Actinobacteria (18.5%, 
2,409 ASVs, 106 samples), Bacteroidetes (9.8%, 2,501 ASVs, 
104 samples), Firmicutes (23.3%, 2,648 ASVs, 102 samples), and 
Proteobacteria (41.3%, 3,323 ASVs, 106 samples). Archaea were 
rarer, but detected in individuals from all superorders, diet types 
and environments; the archaeal phyla found were Crenarchaeota 
(0.6%, 151 ASVs, 33 samples) and Euryarchaeota (0.02%, 12 
ASVs, 6 samples). The distribution of microbial phyla (SI Appendix, 
Fig. S1A) and genera (SI Appendix, Fig. S1B) differed greatly across 
host taxa. No microbial ASVs were identified as being core mammal 
milk microbes (in 90% of samples); only one ASV was found in at 
least 40% of samples, which was a Staphylococcus sp. (ASV16). This 
was consistent with no core bacteria found within superorders and 
diet types, other than ASV16 (Staphylococcus sp., core in Xenartha) 
and ASV141 (Lactococcus sp., core in Insectivores).

We found that microbiome structure was similar between early 
and mature lactation stages in the repeated measures dataset of 21 
females from 15 species (SI Appendix, Table S2). Lactation stage 
did not influence bacterial ASV richness or phylogenetic diversity 
(SI Appendix, Fig. S2A; Linear Mixed Model Wald X2 P = 0.62 
and P = 0.3) or bacterial composition (SI Appendix, Fig. S2B; 
Bray–Curtis PERMANOVA: Pseudo F1,41 = 0.58, P = 0.81). We 
then identified the effect of host superorder, diet, environment 
and milk nutrient content on milk microbiomes (SI Appendix, 
Table S3) with an independent-measures dataset of 83 females 
from 47 species. For all composition analyses, we report Bray–
Curtis distances only, but found similar results with Jaccard and 
unweighted UniFrac unless otherwise noted.

Ecoevolutionary Factors Shape Milk Microbiome Structure. 
We first assessed the effects of host superorder, diet, environment 
and milk nutrient categories on milk microbiome structure. Milk 
microbiome structure (alpha and beta diversity) consistently differed 
among environments and diet types, while milk microbiome 
composition (beta diversity) also differed among superorders 
and milk nutrient categories. Among all independent females 
sampled (n = 83), the average number of microbial ASVs present 
in mammalian milk was 210 (SD ± 152). Among environments, 
captive marine mammals had the lowest microbial richness and 
phylogenetic diversity in their milk, which was significantly lower 
than captive terrestrial mammals (Fig. 2A; richness ANOVA F3,71 = 
3.1, P = 0.032, post hoc P = 0.08; phylogenetic diversity ANOVA 
F3,71 = 3.67, P = 0.016, post hoc P = 0.024). Among diet types, 
herbivores had the highest microbial richness and phylogenetic 
diversity in their milk, which was significantly higher than 
carnivores (Fig.  2A; richness ANOVA F3,71 = 9.18, P < 0.001, 
post hoc P < 0.001; phylogenetic diversity ANOVA F3,71 = 4.49, 
P = 0.006; post hoc P = 0.013). Milk microbiome composition 
differed among all superorders, environments, diet types, and milk 
nutrient categories, which in total accounted for explaining 20.3% 
in microbiome variation (Fig. 2 B and C and SI Appendix, Fig. S3; 
Bray–Curtis PERMANOVA: superorder Pseudo F3,71 = 1.78, R2 
= 6.0%, P = 0.001; environment Pseudo F3,71 = 1.96, R2 = 6.6%, 
P = 0.001; diet type Pseudo F3,71 = 1.38, R2 = 4.7%, P = 0.001; 
milk nutrient category Pseudo F3,71 = 1.34, R2 = 3.0%, P = 0.001; 
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all pairwise < 0.05). We then analyzed how ecoevolutionary factors 
affected milk microbiomes individually and through interactions.

Individual and Interactive Effects of Ecoevolutionary Factors 
on Milk Microbiomes. We examined if there was a relationship 
between host phylogeny and changes in microbial composition 
using phylosymbiosis analyses. Although closely related species 
tended to have more similar microbiomes, there was no 
evidence for phylosymbiosis (SI Appendix, Fig. S4). We found 
no evidence of phylosymbiosis between milk microbiomes and 
host phylogeny (Robinson–Foulds = 0.91) or host divergence 
time (Jaccard Mantel test, P = 0.086). We also verified within 
superorders and diet types with sufficient sample size (n > 7: 
Euarchontroglires, Laurasiathera, Herbivore, and Carnivore) that 
there was no indication of phylosymbiosis (Jaccard Mantel test, 
P = 0.074, P = 0.39, P = 0.33, P = 0.34).

Then, we assessed the individual and collective contributions of 
host phylogeny and quantitative traits of diet items (based on Elton 
dietary traits) and milk nutrient content [milk sugar gross energy 
(GE) in mg/kcal (GE) and milk protein GE] on milk microbiome 
composition using multiple regression on dissimilarity matrices 
(MRM) (30–32). It is important to note that we did not directly 
quantify maternal diet, but used Elton traits to represent dietary 
components of each species. All three variables were significant 

(Bray–Curtis: P = 0.001), with their shared variance explaining 
2.6% of variation and their individual variance explaining 5.4% 
(Bray–Curtis: dietary items 3.2%, phylogeny 1.7%, milk nutrient 
content 0.5%; SI Appendix, Table S4 and Fig. S5 Venn diagram). 
We found similar results for Jaccard measures, but not for UniFrac 
(only diet was significant and explained 1.3%).

To uncover direct and indirect effects of diet and milk nutrient 
content on milk microbiome composition we used quantitative 
traits of dietary items and milk nutrient content in distance-based 
linear modelling (DBLM) and structural equation modeling 
(SEMs). In DBLMs, we determined whether individual milk nutri-
ent content (sugar GE or protein GE) or individual dietary items 
(invertebrate, mammal/bird, fish, scavenged, fruit and plant) were 
linked to milk microbiome compositional changes. Milk microbi-
ome composition consistently changed in a linear relationship as 
mammalian hosts ate more fish and plants (Fig. 2D and SI Appendix, 
Fig. S6; Jaccard DBLM: fish P = 0.002, plant P = 0.002; Bray–
Curtis DBLM: fish P = 0.004, plant P = 0.04). Likewise, changes 
in the amount of milk protein GE, milk sugar GE and fruit con-
sumption showed linear relationships with milk microbiome com-
position, but this depended on the composition measure 
(SI Appendix, Fig. S6; Jaccard DBLM: milk protein GE P = 0.002; 
Bray–Curtis DBLM: milk sugar GE P = 0.002, fruit P = 0.004). 
Dietary items of invertebrates, mammals/birds, and scavenged did 

Fig. 1. Host phylogenetic tree representing our experimental design. Host environment is shown in the outer ring, diet type in the inner ring, milk nutrient category 
as letters and branches colored by superorder. Two data subsets (represented by circles) were analyzed: i) a repeated measures (lactation stage) dataset of 21 
females from 15 species sampled at an early and a mature lactation stage to quantify the effect of lactation stage on milk microbiomes, and ii) an independent 
measures (ecoevolutionary) dataset of 83 females from 47 species to examine host superorder, diet, environment and milk nutrient content impact on milk 
microbiomes. The host phylogenetic tree (rooted and ultra-metric) was created using TimeTree (28) and visualized with Interactive Tree of Life (iTol) v6 (29).
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not show any indication of linear relationships with composition. 
In SEMs, we tested whether diet (principal component axis 1 of 
Elton traits as used in DBLM) directly impacted microbiome struc-
ture (species richness, phylogenetic diversity, Bray–Curtis, UniFrac) 
or indirectly impacted microbiome structure via individual milk 
nutrient components (milk sugar GE or milk protein GE). We 
found diet to significantly influence milk sugar GE (standardized 
coefficient = ± 0.52, P < 0.001), but not milk protein GE (Fig. 3); 
reflecting that herbivores generally have more sugar GE in their 
milk and also higher species richness (SI Appendix, Fig. S7). Diet 
directly influenced microbial species richness, a pattern that was 
observed in earlier analyses with herbivores having the highest 
microbial richness and carnivores the lowest (Fig. 2A). Diet indi-
rectly influenced microbial composition through milk sugar GE 
(UniFrac: standardized coefficient = ± 0.22, P = 0.03; Bray–Curtis: 
standardized coefficient = ± 0.46, P < 0.001). Protein had a direct 
effect on milk microbial phylogenetic diversity and composition 
(Faith’s phylogenetic diversity: standardized coefficient = ± 0.285, 
P = 0.01; Unifrac: standardized coefficient = ± 0.447, P < 0.001; 
Bray–Curtis: standardized coefficient = ± 0.268, P = 0.007).

We determined whether any abundant microbial ASVs (n = 
135 ASVs) were related to milk sugar GE and milk protein GE 
amount. We found six bacterial ASVs (Rothia sp. ASV 154, Rothia 
sp. ASV2, Streptococcus sp. ASV31, Acinetobacter sp. ASV 259, 
Actinobacillus sp. ASV 126, Streptococcus sp. ASV 45) whose abun-
dance positively correlated with milk sugar GE and one bacterial 
ASV (Solibacillus silvestris ASV 347) positively correlated with 
milk protein GE (SI Appendix, Table S5 and Fig. S8), after adjust-
ing for multiple comparisons.

Community Assembly Processes in Mammalian Milk, Gut, and 
Skin Microbiomes. We assessed microbial community assembly 
processes using a null model-based approach (33, 34). We found 
that ecological drift, dispersal limitation, and environmental 
selection-guided assembly of milk microbiomes, creating 
dissimilarity between individuals’ milk microbiomes. Processes 
generally considered stochastic (17, 33, 34) had the largest 
influence on milk microbiome assembly: Drift accounted 
for 53% of all pairwise community comparisons; dispersal 
limitation accounted for 26% and homogenizing dispersal 1%. 
We accessed previously published datasets on mammalian gut 
(24) and skin (21) microbiomes, subset to similar number of 
samples from similar number of taxonomic groups (SI Appendix, 
Table S7), and used the same modeling approach to estimate 
their community assembly processes. Mammalian milk 
microbiomes experienced the highest ecological stochasticity, 
accounting for 80% of all pairwise community comparisons, 
in community assembly mechanisms compared to 69% for 
mammalian gut microbiomes and 45% for mammalian skin 
microbiomes (Fig. 4A). In contrast, deterministic processes of 
species sorting or environmental selection accounted for 20% 
in milk microbiomes, followed by gut microbiomes at 40% and 
skin microbiomes at 55%. The high ecological stochasticity in 
milk microbiomes may be a reflection of their lower microbial 
diversity (Kruskal-Wallis, X2 = 55.9, df = 2, P < 0.001) compared 
to gut and skin microbiomes (pairwise Wilcoxon rank sum 
test P < 0.001; Fig. 4B). Collectively, we explained all of the 
deterministic processes occurring in mammal milk microbiome 
composition with superorder, environment, diet type and milk 
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Fig. 2. Milk microbiome structure explained by deterministic processes. (A) Captive terrestrial mammals had greater bacterial richness than captive marine 
mammals. Bottlenose dolphins displayed in figure as captive (n = 2 captive, n = 1 wild). Herbivores had greater bacterial richness and phylogenetic diversity 
than carnivores. Mammalian milk microbiome composition covaries with (B) superorder and environment, as well as (C) diet type and milk nutrient category as 
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nutrients explaining 20.3% of the variation in microbiomes 
among individuals (Figs. 2 and 5) as reported earlier.

Discussion

We demonstrate that stochastic and deterministic processes 
influence milk microbiome community assembly. Ecological 
drift had a large influence on milk microbiomes. Microbial taxa 
in milk microbiomes likely originate from gut, skin, and oral 
microbiomes through enteromammary trafficking (9), skin con-
tact (10) and retrograde flow from infant oral cavity (11). 
Ecological stochasticity may be compounded in milk microbi-
omes given the multiple contributing sources of microbial taxa. 
Nonetheless, milk microbiomes still showed signatures of envi-
ronmental selection, accounting for 20% of variance, that 
reflected the mother’s evolutionary history and ecology. We also 
observed similar microbiomes at early and mature lactation 
stages, suggesting similar ecoevolutionary processes are con-
trolling milk microbiome composition across lactation. Previous 
studies have found variation in milk microbiomes across lacta-
tion in some species, namely primates (5, 12, 27), suggesting 
that temporal variation in milk microbiomes occurs in some 
species and may best be detected with greater longitudinal sam-
pling resolution within specific species or animal groups. Our 
study encompasses hosts across the mammalian tree and lends 
itself to broad comparisons across lactation, in which we found 
that factors such as evolutionary history, external and internal 

environments, and stochasticity shape the mammalian milk 
microbiome throughout lactation.

Deterministic processes guiding milk composition included the 
superorder of the host species. Yet, we found no evidence of phy-
losymbiosis in milk microbiomes, in contrary to patterns seen in 
mammalian gut (23, 24) and skin microbiomes (21). The lack of 
phylosymbiosis may be a result of the low microbial diversity in 
milk and the increased stochasticity in the assembly of complex 
microbial communities (35) or it may reflect our sampling design, 
which we strategically picked samples to represent multiple envi-
ronments, diet types and milk nutrient contents to limit ecological 
filtering covariation with evolutionary history (20). We conclude 
that host evolutionary history is a selective force on which microbes 
exist in milk, but it is not solely based on how distantly related 
species are. Diet, environment, and high levels of stochasticity/
drift were likely mechanisms decoupling host evolutionary change 
from milk microbiome change.

The external environment of the host and the internal nutri-
tional environment of the host’s mammary gland were linked to 
milk microbiome structure. Regional microbial pools and niche 
preference or nutritional constraint may explain the mechanism 
behind environmental conditions shaping milk microbial structure. 
We found that marine mammals had the lowest milk microbial 
diversity. The marine environment is microbially diverse, consisting 
of a few abundant taxa and many rare, locally endemic taxa (36). 
Limited dispersal of marine microbes due to seawater stratification 
(37) may contribute to restricted microbial pools and thus low 
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models used in structural equation modeling. In all models, diet influences milk sugar GE. (A) Diet directly influenced microbial species richness. (B–D) Milk protein 
GE influenced microbial diversity and composition (Faith’s phylogenetic diversity, Bray–Curtis, and UniFrac) and (C and D) diet indirectly influenced microbial 
composition via milk sugar GE (Bray–Curtis and UniFrac). Principal coordinate axis 1 (PC1) values were analyzed for both metrics of composition (Bray–Curtis 
and UniFrac) and principal component axis 1 (PC1) for Elton dietary traits. Line thickness is scaled in proportion to the associated effect size, with dashed lines 
representing non-significant paths. ± symbols indicated that at one variable in the path is represented by a principal coordinate axis, which has positive and 
negative values that are reversible. Residual variance of observed variables listed within circular arrow.
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milk microbial richness and high dissimilarity among marine mam-
mal milk microbial composition. Milk microbial composition 
varied by all environments (captive, wild, marine, and terrestrial) 
highlighting the role of regional microbial pools on microbiome 

structure. Mammalian gut and skin microbiomes are influenced 
by the environment, including captivity (38), geographic location 
(39), and co-habitation (40), suggesting that microbial symbionts 
are acquired from the external environment such as community 
contact (number of individuals housed together) and contact with 
novel substances (dietary diversity, antibiotics, medical care, and 
human contact). Our results indicate milk microbiomes are simi-
larly influenced by environmental conditions.

Mammalian hosts also vary in milk nutrient content (milk 
fat, milk sugar, and milk protein), which may lead to filtering 
of microbes in milk via nutritional constraints. Milk microbes 
may be selected on their ability to feed off dominant milk nutri-
ents or incorporate nutrients into their cellular structure (41). 
Milk sugar and milk protein had linear relationships with milk 
microbial composition, indicating that mammals with similar 
milk nutrient profiles harbor more similar milk microbiomes. It 
is important to note that milk fat was correlated with milk sugar 
and milk protein in our dataset, and we cannot differentiate the 
effect of milk protein and milk sugar from milk fat. Additionally, 
we found six bacterial taxa whose abundance correlated with 
milk sugar GE and one with milk protein GE that merit further 
study. Milk nutrient content may reflect ecological filtering via 
nutrient utilization and constraints. Previous studies have 
demonstrated milk microbial composition to be associated with 
milk fatty acid profiles in humans (41) and milk fat and milk 
protein profiles in humans and other primates (5). Our results 
provide additional evidence for bacterial selection processes by 
milk nutrient content and that this likely occurs widely across 
the mammalian tree of life.

Our analytic method to measure milk sugar content measures 
total sugar and cannot distinguish between free glucose and galac-
tose, lactose, and other larger oligosaccharides. The proportion of 
sugar as oligosaccharides as opposed to lactose varies widely in 
mammals (42). Milk oligosaccharides vary substantially in molec-
ular weight, carbohydrate composition and structure and can have 
antibiotic, prebiotic and osmotic functions (43, 44). Many path-
ogenic microbes obtain access to cells by attaching to oligosac-
charide residues on cell membranes. When these microbes attach 
to free oligosaccharides in milk, they remain bound and will 
transit the neonatal gut until being excreted in the feces. Some 
oligosaccharides can be metabolized by select microbes. This has 
been shown in detail for human milk oligosaccharides (43). Thus, 
some milk oligosaccharides serve as food for specific benign or 
even beneficial microbes giving them a boost in colonizing the 
neonatal gut. Metabolic products from the breakdown of oligo-
saccharides have been shown to have important beneficial effects 
on the neonate (45, 46). Finally, low molecular weight oligosac-
charides produce an osmotic gradient, in the same manner as does 
lactose, which draws intracellular water into the milk. In species 
such as sea lions, which produce no lactose (47), small oligosac-
charides likely serve as the main mechanism to bring water into 
the milk. Future research on the mechanisms structuring milk 
microbiomes should consider investigating the potential roles of 
milk oligosaccharides.

Diet directly and indirectly influenced milk microbial diversity 
and composition. Diet directly impacted the number of microbial 
species in milk, with herbivores having higher bacterial richness 
and diversity than carnivores. We also observed that diet uniquely 
explained up to 3% of variance in microbial composition in 
MRMs, and particularly that the amount of plant and fish (and 
fruit to a lesser extent) in diet was directly linked to turnover in 
communities in DBLMs. Diet had an indirect effect on milk 
microbiome structure via milk sugar GE content. Maternal diet is 
one component by which milk nutrient composition varies (3, 4), 

Fig. 4. Comparative analysis of milk microbiomes versus mammalian gut 
(24) and skin (21) microbiomes. (A) Relative influence of assembly mechanisms 
shaping mammalian milk, gut, and skin microbiomes. We used null model 
analysis to compare phylogenetic beta diversity distances from each bacterial 
community to random phylogenetic trees (33, 34). Comparison calculations 
indicated how community assembly processes influenced microbial variation. 
(B) Milk microbiomes had the lowest microbial diversity, which may partially 
explain high ecological stochasticity in milk microbiomes, while skin and gut 
microbiomes did not differ from one another. *** indicates p < 0.001 from 
pairwise Wilcoxon rank sum test.

Fig. 5. Host evolutionary history, environment, diet, and milk nutrient content 
contribute to milk microbiome structure, yet much of milk microbial assembly 
is due to random, stochastic processes. Null model analysis assigned 80% 
of variation to stochastic processes and 20% to deterministic processes. 
We collectively explained all deterministic processes in milk composition 
with phylogeny, diet, milk nutrient content, and lactation stage (tested via 
PERMANOVA). Modifying diet and environmental conditions can affect milk 
composition, thus impacting offspring gut microbiome colonization and health.
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and in turn we found milk sugar GE content influenced milk 
microbiome composition. Our findings suggest that particular 
microbial taxa may colonize milk based on maternal dietary choice 
and on their ability to utilize dominant milk nutrients (48).

One direct mechanism by which microbes may colonize milk and 
feed on milk nutrients includes enteromammary trafficking. The 
enteromammary pathway is hypothesized to be a mode by which 
specific bacterial taxa move from the maternal gut to the mammary 
gland and then to infant gut postnatally (49–51). Evidence from 
mouse models suggests that live commensal bacteria coated with 
immunoglobulin A reside in dendritic cells in gut-associated lym-
phoid tissue, particularly the mesenteric lymph node and Peyer’s 
patch (50, 52), and they are trafficked from these lymphoid tissues 
through the bloodstream to the mammary gland (9). Evidence for 
this pathway also exists in a human study in which lactating women 
given oral supplements of Lactobacillus had increases in the same 
strain in their milk (53). We found 50 Lactobacillus ASVs in 24 
mammalian species and 28 Bifidobacterium ASVs in 17 mammalian 
species, indicating that these probiotics could be similarly examined 
in future experimental studies; specifically in host species with both 
probiotic genera, which in our dataset included: Aardvark, 
Nine-banded armadillo, Bongo, Bactrian camel, Great Pyrenees dog, 
Western lowland gorilla, Golden lion tamarin, humans, Common 
marmoset, Bornean orangutan, and Hoffman’s two-toed sloth. On 
contrary to the enteromammary pathway, Petrullo et al. (54) found 
that vervet monkey gut microbiomes are no more similar to the milk 
microbiome within individuals as between individuals (54). We 
hypothesize that this result may be a reflection of high stochasticity 
in milk microbiomes. Our study shows that while gut and milk 
microbiomes may differ, broad dietary categories (omnivore, carni-
vore, and herbivore) and specific dietary items (fish and plants, and 
fruit to a lesser extent) directly impacted milk microbiome compo-
sition. Together, these results are consistent with an entero-mammary 
pathway and suggest gut microbes associated with specific diets may 
be passed from the gut to the mammary gland. The enteromammary 
pathway is one of a series of milk inoculation pathways, with others 
including passive transfer from maternal and infant skin microbi-
omes and retrograde flow transfer from infant oral microbiomes. 
These pathways are likely common across mammalian taxa, but 
likely differ in contribution to seeding mammary glands based on 
nursing frequency and duration, fur type, and infant oral cavity 
structure.

We demonstrate that stochastic and deterministic processes 
influence milk microbiome community assembly. Ecological drift, 
reflecting the random chance of microbial birth, death, and repro-
duction rather than niche preference, had the greatest influence 
on milk microbiomes compared to mammalian gut and skin 
microbiomes. Milk microbiomes had the lowest microbial diver-
sity, which may partially explain the high ecological drift (35, 55). 
We also found that gut microbiomes experienced greater drift than 
skin microbiomes, and this may reflect transient dietary associated 
microbes in gut microbiomes (56). All the host-associated micro-
bial communities examined (milk, gut, and skin) had low homog-
enizing dispersal as seen in other gut metacommunities (34), but 
contrasting to free-living bacterial metacommunities (33). This 
suggests hosts limit mass homogenizing effects. Microbial taxa in 
milk microbiomes likely originate from gut, skin, and oral micro-
biomes, which may compound ecological stochasticity given the 
multiple contributing sources of microbial taxa.

When working with lower microbial biomass samples, such as 
milk, steps to limit contamination are important. Contrasting 
findings have motivated best practices when analyzing microbial 
communities of extremely low to non-existent microbial biomass 
samples such as in placenta and brain tissue (57). However, milk 

samples are much higher in microbial quantity than such extreme 
cases and estimates in humans and livestock estimate microbial 
quantities of approximately 1 × 105 to 1 × 107 colony-forming 
units/mL of focal bacterial taxa (58). Regardless, we followed best 
practices throughout laboratory and postsequencing analyses, 
including working in clean, controlled laboratory spaces, sample 
randomization, negative controls in extraction and in PCR, mock 
communities in extraction, and postsequencing techniques that 
identify contamination such as the R package decontam (16, 57). 
We could not control for variation in sampling across time and 
space given that these samples were often collected by independent 
researchers to deposit in the Smithsonian Milk Repository for a 
multitude of different projects over many years. We acknowledge 
that this variation in sample collection (e.g., multiple collectors, 
different years) may have increased the stochasticity observed in 
milk microbiomes, but would be highly improbable to contribute 
to the deterministic processes we observed (e.g., effects of diet). 
We encourage future work to adhere to recommendations put 
forth as techniques (e.g., ref. (57)) to improve characterization of 
reproductive microbiomes (16).

Milk is essential to neonatal health and development, providing 
nutrients and immune factors. We show that across Mammalia, 
milk is providing bacterial and archaeal symbionts to offspring. 
Our study is the first to uncover the processes involved in struc-
turing milk microbiomes across the mammalian tree of life. We 
were able to identify factors contributing to deterministic processes 
including host evolutionary history, environment, diet, and milk 
nutrition. Stochastic processes drive much of the milk microbiome 
composition, as well as gut and skin microbiomes, albeit to a lesser 
extent. The strong influence of stochastic processes explains why 
manipulating microbiomes is challenging and often unsuccessful. 
Notably, our results are consistent with entero-mammary traffick-
ing, representing a mechanism by which microbes are transferred 
from the mother’s gut to mammary gland and then to offspring 
postnatally. Mediating the milk microbiome through the maternal 
diet may offer subtle effects that influence offspring gut microbi-
omes and health (48). Together, we demonstrate that applying 
community ecological theories to microbiome science yields val-
uable information on how microbial communities assemble and 
provides perspective on developing therapeutics, such as probiot-
ics, which could be used for mammals in human care (16).

Material and Methods

Data Overview. Milk samples were used from the Department of Nutrition 
Science’s Milk Repository at NZCBI. Our study comprised 107 milk samples from 
47 species (SI Appendix, Table S1) representing four mammalian superorders 
(Afrotheria, Euarchontoglires, Laurasiathera, and Xenarthra), four diet types (car-
nivore, herbivore, insectivore, and omnivore), four environments (marine captive, 
terrestrial captive, marine wild, and terrestrial wild) and three nutrient content 
categories (protein, fat, and sugar; SI Appendix, Fig. S9). We defined early lactation 
samples as coming from the first quarter of the average length of lactation, and 
mature lactation samples as the second quarter prior to weaning, declining milk 
yields, or offspring primarily consuming food as supplement (59). Researchers 
that provided samples to the milk repository were provided general guidelines 
on milk collection, which included following general standard operating proce-
dures for handling animals (e.g., wearing gloves), washing the nipple area with 
sterile water, using oxytocin for animals that require anesthetization for sample 
collection, not collecting any milk that was in contact with skin, and freezing milk 
samples following collection. All samples were maintained in a −20 °C freezer 
since deposition into the milk repository, with limited freeze–thaws.

We analyzed two data subsets to properly account for pseudoreplication in the 
complete dataset: i) a repeated measures dataset of 21 females from 15 species 
sampled at an early and a mature lactation stage to quantify the effect of lacta-
tion stage on milk microbiomes (SI Appendix, Table S2) and i) an independent 

http://www.pnas.org/lookup/doi/10.1073/pnas.2218900120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2218900120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2218900120#supplementary-materials
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measures dataset of 83 females from 47 species to identify the effect of host 
superorder, diet, environment and milk nutrient content on milk microbiomes 
(SI Appendix, Table S3).

Molecular Methods and Sequencing. We extracted DNA from 300 µL of milk 
using Qiagen ProFecal DNA Extraction Kit. Prior to following the manufacturer’s 
instructions, milk samples were centrifuged at 10,000 g for 10 min, the super-
natant discarded and the remaining pellet extracted (12). Negative extraction 
controls (n = 6), negative PCR controls (n = 3) and one positive mock control 
(ZymoBIOMICS D6300) were included. We targeted the 16S rRNA gene with 
primers 515F-Y and 939R, performed a two-step PCR library prep, pooled clean 
libraries in equimolar amounts, and size selected our desired amplicon size fol-
lowing methods outlined in Keady et al. (39), with one modification: increase in 
annealing temp to 68 °C, which improved amplicon DNA yields. We sequenced 
the pooled library on an Illumina MiSeq (2 ×  300  bp kit) at the Center for 
Conservation Genomics at NZCBI.

Sequence Data Processing. Data processing and subsequent analyses was con-
ducted in R (v 4.0.3). We quality filtered sequence data using dada2 package 
and identified bacterial and archaeal ASVs (60, 61). Taxonomy was assigned to 
ASVs using the Ribosomal Database Project classifier (62). We built a phyloge-
netic tree using FastTree (63) in QIIME2 (64), and combined data files for further 
analysis using the phyloseq package (65). Contaminants were filtered with the 
decontam package using the “either” method to identify contaminants (66). We 
filtered singletons, ASVs not assigned to Bacteria or Archaea, and ASVs in class 
Chloroplast. We rarified samples to 3,000 total reads per sample given high 
variation in sequencing depth (SI Appendix, Fig. S10).

Milk Nutrient Content. We assayed milk samples for nutrient content at the 
NZCBI Nutrition Laboratory. Samples with sufficient volume and part of the inde-
pendent measures dataset (n = 64) were assayed for macronutrient composition 
(% crude protein, % fat, % sugar) using standard methods developed at NZCBI (67) 
and detailed in Power et al. (68). Protein GE, fat GE, and sugar GE were calculated 
in mg/kcal GE from those percentages and were used in cluster analysis to create 
milk nutrient categories; see SI Appendix for additional detail.

Measures of Microbiome Structure. We used alpha diversity (ASV richness 
and Faith’s phylogenetic diversity) (69) and beta diversity measures (Bray Curtis, 
Jaccard, and unweighted UniFrac distances) to quantify milk microbiome struc-
ture. We performed square root and log transformations on alpha diversity meas-
ures when appropriate to improve normality. We report Bray–Curtis distances 
(except for phylosymbiosis analyses; see below), but found similar results with 
Jaccard and unweighted UniFrac unless otherwise noted. We verified that our 
explanatory variables were not confounded by examining generalized variance 
inflation factors (70) using the package car. We were unable to use host order 
as a factor as it was confounded with diet type in our ecoevolutionary analysis.

Lactation Stage Analysis. We quantified the effect of lactation stage on milk 
microbiome structure using a repeated measures dataset of 21 independent 
females (15 unique species) sampled at early and mature lactation stages that 
represented a diversity of individuals from superorders, environments, and diets 
(n = 42; SI Appendix, Table S2). For alpha and beta diversity, we used linear 
mixed models and PERMANOVAs, respectively with animal ID as a random effect.

Ecoevolutionary Analysis. We quantified the effect of superorder, environ-
ment, diet type, and milk nutrient content on milk microbiome structure. For 
alpha diversity, we used ANOVAs and conducted post hoc analyses using Tukey 
Honest Significant Differences method. For beta diversity, we used PERMANOVAs. 
PERMANOVA results are sensitive to unbalanced designs (71, 72); we conducted a 
subsequent analysis using a balanced dataset, which supported all of our findings 
presented herein. We tested dispersion for explanatory variables for each micro-
bial measure and in both datasets using function betadisper (package vegan) (73) 
(SI Appendix, Table S6). We then examined individual and combined effects of 
ecoevolutionary factors on milk microbiomes.

Individual and Interactive Effects of Ecoevolutionary Factors. We quantified 
phylosymbiosis between host phylogeny and microbial dendrograms using two 
methods: topological congruence between host phylogenies and milk microbi-
ome dendrograms using normalized Robinson–Foulds (21) and Mantel tests with 

Pearson correlation between matrices of host divergence time and Jaccard microbi-
ome dissimilarities (24). We built a rooted and ultra-metric host phylogenetic tree 
(newick format) using TimeTree (28). We randomly selected a single sample per host 
species (n = 47) and created microbiome dendrograms and distance matrices with 
Jaccard distances as in Song et al. (24). We also subset within superorder and diet 
to test for phylosymbiosis at lower taxonomic scales as in Ross et al. (21).

We assessed diet and milk nutrient effects on milk microbiomes, using quan-
titative traits as opposed to categories used in the prior analyses. We quantified 
the effects of milk nutrient content and dietary items (n = 45) on milk microbi-
ome composition. For milk nutrient content, we used raw sugar GE and protein 
GE values for 73 individuals for which we had these data. For dietary items, we 
identified percent dietary content from the EltonTraits 1.0 database (74); we 
only included dietary categories with at least five data points in our dataset 
(Invertebrates, Mammals/birds, Fish, Scavenged, Fruit, and Plant) and one indi-
vidual per species (n = 47) following Song et al. (24). The EltonTrait database 
did not include Przewalski horse (Equus ferus przewalskii), however we verified 
its diet composition with the NZCBI’s senior nutritionist M. Maslanka.

We evaluated individual and shared variance of host phylogeny, dietary traits 
(Elton traits), and milk nutrient content on milk microbiome structure using vari-
ance partitioning (ecodist package) (30–32). We analyzed samples with complete 
nutrient content data for milk sugar GE and milk protein GE (n = 73). Results were 
visualized with package eulerr (75). We also assessed the relationship between 
individual milk nutrient components and dietary items (Elton Traits) with micro-
biome composition using DBLMs (package vegan, function capscale) (73). The 
dataset included one individual per species with complete milk nutrient data 
(n = 45). We selected our final model using forward model selection (package 
vegan, function ordiR2step) (73).

We tested direct and indirect effects of quantitative dietary items (Elton Traits) 
on milk nutrient content and microbial structure with structural equation mod-
eling (package lavaan) (76). We tested three a priori models with four metrics of 
microbial structure (species richness, Faith’s phylogenetic diversity, Bray–Curtis, 
and unweighted UniFrac) (SI Appendix, Fig. S11). Briefly, our three models are i) 
a full model representing all possible relationships between variables, ii) model 
2 without a bidirectional relationship between milk sugar GE and milk protein 
GE, and iii) model 3 assumes no direct relationship between diet and milk micro-
biome structure (SI Appendix, Fig. S11). Samples with milk sugar GE and milk 
protein GE were analyzed (n = 73). Milk fat GE was not included due to covariance 
with milk protein and milk sugar (SI Appendix, Supporting Text). Distance matrices 
were created for microbial composition (Bray–Curtis and unweighted UniFrac) 
(package phyloseq, function distance) (65) and principal coordinate axis 1 (PC1) 
values were analyzed for both metrics of composition and from principal compo-
nent axis 1 for Elton dietary traits (package stats, function princomp). Response 
variables were log10 transformed as needed to meet test assumptions and mod-
els were compared using ANOVA P-values and Akaike Information Criterion. If no 
significant difference was observed between two models, the most parsimonious 
model was interpreted as the final model.

We assessed relationships between milk nutrient content and microbial abun-
dance using linear regressions. All samples with complete milk nutritional data 
(milk sugar GE, milk protein GE, and milk fat GE) were analyzed (n = 67). We log 
transformed microbial taxa abundance and only included ASVs with at least 5% 
abundance and presence in a minimum of five samples (n = 135 ASVs). P values 
were adjusted for multiple comparisons with Benjamini and Hochberg correction.

Community Assembly Processes. We performed a null model analysis to 
estimate the relative influence of ecological processes on the assembly of 
three distinct microbial communities from mammals (i.e., subset data from 
gut, milk and skin bacterial communities). Gut and skin microbiome data 
was downloaded from Song et al. (24, 77) and Ross et al. (21) respectively, 
and were subset to similar number of samples from similar number of tax-
onomic groups (SI Appendix, Table S7). Null model analysis was performed 
separately on each dataset. We followed the framework developed by Stegen 
et al. (33) and methodology from Zha et al. (34), by comparing observed and 
null-predicted bacterial communities using two metrics: the β-nearest taxon 
index (βNTI) and a modified version of Raup–Crick distances (RCBray) (78) based 
on relative abundance data according to Chase et al. (79). The workflow of 
the analysis was performed as described by Zha et al. (34). See SI Appendix 
for additional detail.

http://www.pnas.org/lookup/doi/10.1073/pnas.2218900120#supplementary-materials
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Data, Materials, and Software Availability. The data generated and analyzed 
during this study are available in the National Center for Biotechnology Information 
Sequence Read Archive repository (BioProject ID: PRJNA843071) (80). Final files for 
analyses (feature table, taxonomy table, phylogenetic tree, and metadata file) and 
R code are available on figshare: https://doi.org/10.6084/m9.figshare.21482829 
(81). Previously published data were used for this work (21, 24).
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