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Abstract

Data-driven modeling has emerged as a new paradigm for biocatalyst design and discovery. 

Biocatalytic databases that integrate enzyme structure and function data are in urgent need. Here 

we describe IntEnzyDB as an integrated structure–kinetics database for facile statistical modeling 
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and machine learning. IntEnzyDB employs a relational database architecture with a flattened data 

structure, which allows rapid data operation. This architecture also makes it easy for IntEnzyDB 

to incorporate more types of enzyme function data. IntEnzyDB contains enzyme kinetics and 

structure data from six enzyme commission classes. Using 1050 enzyme structure–kinetics pairs, 

we investigated the efficiency-perturbing propensities of mutations that are close or distal to the 

active site. The statistical results show that efficiency-enhancing mutations are globally encoded 

and that deleterious mutations are much more likely to occur in close mutations than in distal 

mutations. Finally, we describe a web interface that allows public users to access enzymology data 

stored in IntEnzyDB. IntEnzyDB will provide a computational facility for data-driven modeling in 

biocatalysis and molecular evolution.

Grpahical Abstract:

1. INTRODUCTION

As a holy grail challenge in modern chemical sciences, developing new enzyme catalysts 

provides solutions to transform chemically challenging reactions,1 expand substrate 

scope,2 control complex reaction selectivity,3 treat metabolic disorders,4 and degrade inert 

environmental wastes and pollutants.5 Data-driven modeling methods have been extensively 

leveraged to innovate the approaches for enzyme catalyst discovery. They help elucidate the 

mechanisms of enzyme catalysis,6 predict the impact of mutations on enzyme functions,7,8 

and even design artificial enzymes.9

Central to data-driven modeling, databases have been established for storing enzyme 

sequence, structure, and kinetics data (Tables 1 and S1). For example, the Universal Protein 

Resource Knowledgebase (UniProtKB) contains ~36.7 million unique enzyme sequences.10 

The RCSB Protein Data Bank (PDB) contains 108,000 experimentally determined enzyme 

structures.11 BRENDA12 and Sabio-RK13 store enzyme kinetic parameters, including 

80,000 kcat values, 169,000 KM values, and 33,000 kcat/KM values in BRENDA and 

over 56,000 KM or pseudo-dissociation constant values and more than 52,000 velocity 
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constants (Vmax and kcat) in Sabio-RK. These data cover thousands of Enzyme Commission 

(EC) classes that span seven enzyme types (i.e., oxidoreductases, transferases, hydrolases, 

lyases, isomerases, ligases, and translocases). In addition, databases have been established 

to annotate enzyme functions based on their structural, chemical, and metabolic relevance 

(e.g., EzCatDB,14 M-CSA,15 KEGG,16 FunCat,17 Reactcome,18 and MetaCyc19); to 

map enzyme sequence, structure, and function relationships (e.g., PDBSWS,20 SFLD,21 

FunTree,22 IntEnz,23 ExploreEnz,24 and ExPASy25); to classify enzymes based structural 

and functional superfamilies (e.g., CATH26 and SCOP27,28); and to store designed enzymes 

(e.g., ProtaBank29 and Design2Data4).

To develop holistic predictive models for enzyme catalysis, an integrated database is 

needed that merges related enzyme sequence, structure, and function data in one place. 

However, three challenges are identified. First, collecting data from various sources is 

difficult because databases involve different designs (e.g., relational, object-oriented, or 

hybrid), storage hierarchies, query mechanisms, and API protocols. Thus, curating enzyme 

features consumes significant efforts. Second, data cleaning is tricky due to various data 

standards adopted by different databases. Although unified data reporting standards have 

been reported (e.g., STRENDA30 and EnzymeML31), existing enzyme data entries still 

involve missing or inaccurate mutational spot labels, experimental conditions, or other 

information. Additionally, manual typos and rounding errors are not uncommon, leading 

to obstacles for data validation. Third, joining of enzyme structure and kinetics data is 

challenging because they do not have consistently shared keys. Enzyme kinetics databases 

store data entries by EC number and do not always have a PDB ID for mapping with 

the structure database (Table 1). Although UniProtKB is used across databases, one-to-one 

mapping between structure and kinetics is difficult because one UniProtKB may correspond 

to tens of PDB IDs.

In the present work, we developed an integrated structure–kinetics enzymology database, 

IntEnzyDB, for facile data-driven modeling and machine learning. We previously reported 

the beta version of IntEnzyDB as a hydrolase database.32 In this work, we expanded 

IntEnzyDB to incorporate data from six EC classes. IntEnzyDB allows fast operation of 

large amounts of enzyme structure data and enables mapping between enzyme kinetics 

and structure. Using these data, we analyzed the propensities of catalytic efficiency 

enhancement, neutrality, and deletion for mutations that are close or distal to the active 

site. Finally, we developed a web interface for IntEnzyDB that allows public users to freely 

access and analyze the data.

2. COMPUTATIONAL METHODS

Database Construction.

IntEnzyDB is a relational database with a flattened data structure. IntEnzyDB adopts 

one data table to store all enzyme records of the same structural hierarchy (i.e., chain, 

residue, or atom) or property (i.e., kinetics). The current version of IntEnzyDB consists of 

five data tables: one table storing enzyme kinetic parameters such as Michaelis constants 

(KM) and apparent turnover numbers (kcat); three tables storing enzyme chain-level, amino 

acid-level, and atom-level structural information; and one table for one-to-one mapping of 
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enzyme structure, substrate, and kinetics. Notably, the number of data tables can be easily 

expanded as we further develop IntEnzyDB to incorporate more enzyme properties (e.g., 

stability, mechanism, etc.). Thus, users can perform various types of joinings under the SQL 

framework to map enzyme structure and function data based on their need.

Data Collection.

The kinetics data in IntEnzyDB were extracted from BRENDA,12 Sabio-RK,13 ProtaBank,29 

and Design2Data,4 the structure data from the PDB,11 and the sequence data from 

UniProt.10 The enzyme kinetics table contains EC number, UniProtKB entry, organism, 

substrate, experimental temperature, and mutational information. Using the UniProt 

Retrieve/ID mapping tool and PDB Data API, we collected 9415 protein structures 

associated with the PDB IDs under UniProtKB in the kinetics table.

The PDB structure data are stored in three tables. The enzyme chain table stores the general 

information of a PDB structure, including PDB ID, EC number, enzyme type, enzyme name, 

mutation, organism, chain ID, resolution, FASTA sequence, active site location, number of 

residues, and missing residues. The enzyme amino acid table stores the amino acid-level 

structural information, including PDB ID, chain ID, amino acid name, amino acid index, and 

center-of-mass coordinate of the amino acid. The enzyme atom table stores the atom-level 

structural information, including PDB ID, chain ID, atom name, atom index, amino acid 

name, amino acid index, and atom coordinates. IntEnzyDB will continue incorporating data 

from other sources, such as STRENDA.30 The database is open to the public and can be 

accessed through the web interface (https://intenzydb.accre.vanderbilt.edu). Any changes 

will be posted on the web interface.

Data Curation.

The kinetics data are filtered based on the following criteria: (1) at least one wild-type 

kinetics parameter (kcat and KM) exists under one UniProtKB; (2) at least one PDB structure 

exists under one UniProtKB; (3) substrate information exists for each kinetic parameter; 

(4) experimental temperature and pH values are known for each kinetic parameter; (5) 

mutation is known for each kinetic parameter; and (6) mutations are single amino acid 

substitutions. Curation yielded 4243 kcat/KM values derived from 691 enzymes and 2592 

enzyme mutants (i.e., single amino acid substitutions) combined with 943 substrates. The 

experimental temperatures of the kinetic parameters range from 278.1 to 363.1 K (Figure 

S1). The experimental pH values for the kinetic parameters range from 3 to 11 (Figure S1). 

These enzymes span six EC classes, including oxidoreductases (EC 1), transferases (EC 

2), hydrolases (EC 3), lyases (EC 4), isomerases (EC 5), and ligases (EC 6). Notably, no 

kinetic data from EC 7 were found in the curated dataset. This is likely associated with the 

scarcity of translocases in the enzyme population. Although single mutations are the focus 

of this study, a kinetics data table was curated for mutants with two or more amino acid 

substitutions (see the Supporting Information).

To conduct one-to-one mapping of enzyme kinetics to structure, we adopted a three-step 

curation workflow. In step 1, we extracted PDB IDs from the research articles associated 

with the enzyme kinetics using the text mining method (see the Supporting Information). 
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In step 2, for the kinetic values where the PDB IDs are not available from the research 

papers, we manually identified the PDB structures by aligning the mutation spot annotations 

(taken from PDB files). In step 3, under each UniProtKB, we selected the PDB structures 

with active-site annotation, top resolution, and the least number of missing residues. This 

three-step approach allowed us to perform one-to-one mapping of the kinetic data with the 

PDB structure through UniProtKB, yielding 155 PDB structures precisely paired with 1050 

kcat/KM values. For the curated dataset, we evaluated the distribution of structure resolution 

and number of unresolved residues (Figure S2). These data allow in-depth analysis of 

enzyme structure–function relationship. Notably, the kinetic data table for higher-order 

mutants will be added to IntEnzyDB in the future after we accomplish the structure–kinetics 

mapping. These data will enable the analysis of structure–kinetics relationship for enzymes 

with multiple mutational sites, revealing the structural basis behind epistatic effects. Data 

collection and curation are performed in Python and R software, and all statistical analyses 

were performed in R software. The curated kinetic and structural data tables and the data 

curation codes can be found in the Supporting Information.

3. RESULTS AND DISCUSSION

Design Architecture and Data Processing Efficiency of IntEnzyDB.

Unlike object-oriented databases that store each enzyme record in an individual data 

table (or file),11 IntEnzyDB adopts a relational database architecture with a flattened data 

structure (as detailed in Computational Methods). This allows IntEnzyDB to be expandable 

to incorporate other types of enzyme function data such as stability33 and solubility.34 The 

database employs five tables to store enzyme kinetics and structure information (Figure 

1, top), including three tables for cleaned enzyme structure data derived from the PDB 

(i.e., ① chain, ② amino acid, and ③ atom), one table for kinetics data derived from 

BRENDA and Sabio-RK (labeled as ④), and one reference table (labeled as ⑤). The 

chain, amino acid, and atom tables share PDB ID and Chain ID as foreign keys. The chain 

table contains general protein structure information, including enzyme name, organism, 

gene, FASTA sequence, active site, and resolution; the amino acid table stores amino 

acid attributes, properties, and physiochemical parameters, including residue name, residue 

sequence number, amino acid weight, center-of-mass coordinates; the atom structure table 

stores the atom types and coordinates, including atom name, atom sequence number, residue 

name, residual sequence number, atomic weight, and atom Cartesian coordinates.

The kinetics table contains kinetic parameters, enzymology assay information, and sequence 

data, including UniProtKB, EC number, organism, substrate, mutation, experimental 

temperature, apparent turnover number (kcat), Michaelis constant (KM), enzyme efficiency 

(kcat/KM), and change of free energy barriers for a mutant compared to the wild-type 

enzyme (ΔΔG‡, converted from kcat/KM according to eq 1). The kinetics table uses 

UniProtKB (sequence ID) as the foreign key. The reference table (Table 1 and Figure 1) 

contains the one-to-one mapping relationship between kinetics data and PDB data based 

on the foreign keys PDB ID, Chain ID, and UniProtKB (as detailed in Computational 

Methods). This table can be used to identify the PDB structure for given kinetic data 
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of interest. The data from the table can also be used to investigate the structure–kinetics 

relationship.

We benchmarked the time of pulling enzyme structure data using IntEnzyDB against 

a manual curation strategy (Figure 2). Using IntEnzyDB, a user can directly filter and 

download cleaned and tabulated structural data using SQL language; in contrast, for the 

manual curation strategy, a user needs to first download data from the PDB, then read 

and reformat the data by entry, and eventually combine them in one table on the local 

computer. Figure 2 shows that IntEnzyDB is ~2 times faster than the traditional approach 

for 200 enzymes (80 vs 173 s) and ~6 times faster for 1000 enzymes (151 vs 905 s). The 

results indicate that the operating time using IntEnzyDB is nearly independent of data size, 

which largely outperforms the manual operation strategy when operating on large amounts 

of structural data (i.e., thousands or more).

The high data processing efficiency of IntEnzyDB likely results from its flattened data 

structure. Compared to the traditional approach where data tables and files are accessed 

serially, IntEnzyDB loads all data entries at one time. This approach makes IntEnzyDB 

slower when processing smaller amounts of data (e.g., for one enzyme structure, 86 vs 1.9 

s) but can save tremendous amounts of time for repeated opening and reading of files when 

handling large amounts of structure data (e.g., 3.5 min for 5000 structures). Therefore, 

IntEnzyDB provides an efficient solution for extracting enzyme structural features for 

statistical analysis or machine learning.

Statistical Analysis of Kinetic Parameters in IntEnzyDB.

From IntEnzyDB, we curated 4243 kcat/KM values for enzymes with single amino acid 

substitution. The dataset consists of 691 wild-type enzymes, 2592 enzyme mutants, and 943 

substrates (as detailed in Computational Methods). The number of kcat/KM values has tripled 

the size of the hydrolase kinetics data we reported in the prior work (i.e., 1240).32 Among 

the 4243 kcat/KM values, 29.2% are oxidoreductases (EC 1), 19.4% are transferases (EC 2), 

32.6% are hydrolases (EC 3), 9.1% are lyases (EC 4), 4.9% are isomerases (EC 5), and 4.9% 

are ligases (EC 6) (Figure 3, left). To evaluate the impact of mutation on enzyme catalysis, 

we investigated the distribution of ΔΔG‡ values derived from 2592 enzyme mutants, where 

ΔΔG‡ is converted from the ratio of the catalytic efficiency of the mutant to that of the 

wild-type enzyme (eq 1):

ΔΔG‡ = − RT ln kcat
mutant /KM

mutant

kcat
wild‐type /KM

wild‐type (1)

where R, T, kcat, and KM are the gas constant, experimental temperature, turnover number, 

and Michaelis constant, respectively. Notably, the wild-type enzyme and the mutant have the 

same substrate, temperature, and pH in the data analysis. The distribution of ΔΔG‡ follows a 

right-skewed Gaussian that ranges from −5.5 to 11.2 kcal/mol with a mean of 1.3 kcal/mol 

(Figure 3, right). The breadth of the distribution is wider than that of hydrolases (i.e., 

−4.2 to 9.4 kcal/mol), but the mean value is similar (i.e., 1.2 kcal/mol).32 We categorized 

the mutants to be efficiency-enhancing (ΔΔG‡ ≤ −0.5 kcal/mol), -neutral (−0.5 kcal/mol 

< ΔΔG‡ ≤ 0.5 kcal/mol), and -deleterious (ΔΔG‡ > 0.5 kcal/mol). The efficiency-neutral 
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mutations involve a narrow energy window (i.e., ±0.5 kcal/mol), and their impact on enzyme 

efficiency falls into the range of experimental error. We observed 11.1% of the mutants 

to be efficiency-enhancing, 29.7% efficiency-neutral, and 59.2% efficiency-deleterious. As 

expected, the mutations that decrease the catalytic rate are much more populated than those 

that are neutral or beneficial to catalysis. The efficiency-enhancing mutations appear to be 

more abundant in the database than their natural abundance.35,36 This phenomenon might 

be caused by observational bias. For example, researchers are more likely to perform and 

report kinetic data when efficiency-enhancing mutants are observed. Another cause is the 

lack of deleterious mutations, whose kinetic parameters are beyond the detection limit of 

biochemical assays.

Mutation Effects for Close versus Remote Mutations.

After joining enzyme kinetics with structure data using the reference table (Figure 1), we 

obtained 1050 reactions with one-to-one-mapped enzyme structure–kinetics pairs, including 

385 oxidoreductase reactions, 83 transferase reactions, 355 hydrolase reactions, 114 lyase 

reactions, 71 isomerase reactions, and 42 ligase reactions. Noticeably, the number of data 

entries for hydrolases (355) is less than the amount of data curated in our prior work 

(403).32 This is because in this work we applied a stricter filtration condition that traces 

every kinetic entry to the corresponding structure in the literature using text mining (as 

detailed in Computational Methods) rather than simply relying on UniprotKB to map the 

kinetic entry with the best-resolved structure as done previously, and we removed reaction 

entries whose wild-type and mutation reaction pH could not be matched. In addition, there 

are 3193 kcat/KM values from the kinetics table whose corresponding enzyme structures 

(either wild-type or mutant) or active-site annotation is not known. To address this, we will 

obtain the missing structures using enzyme structure prediction tools (e.g., AlphaFold237 

and RoseTTAFold38) and curate the active-site annotation from the M-CSA database39 or 

label them manually.

Using 1050 structure–kinetics pairs, we investigated the difference in the efficiency-

perturbing propensities for mutations that are spatially close versus distal to the active-site 

residues (Figure 4). Notably, all of the enzyme structures used in the analysis were assumed 

to be in the monomeric form, although a dimeric or polymeric form might be the active 

form in catalysis. This analysis has been conducted for hydrolases in our prior work.32 In 

contrast, the current dataset involves a greater number of enzymes with a wider converge of 

enzyme types. As such, the statistical study can potentially inform a more holistic trend for 

the spatial dependence of efficiency-perturbing mutations. The distance between a mutation 

spot and the active site was measured between the mutation residue’s Cα coordinate and the 

geometric center of the active-site residues’ Cα coordinates. Using 15 Å as an empirical 

cutoff, the efficiency-enhancing propensity of the close mutations (8.0%) is found to 

resemble that of the distal mutations (8.2%). However, the efficiency-deleterious mutations 

are much more populated for the close mutations (72.8%) than the distal mutations (47.2%). 

As a compensation, the efficiency-neutral mutations are about 26% more observed for distal 

mutations.
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The efficiency-perturbing propensity may be dependent on the choice of the spatial cutoff 

values. To reduce arbitrariness, we evaluated the proportions for the close versus distal 

mutations using different spatial cutoffs sampled from 10 to 20 Å with a 1 Å interval (Table 

S2 and Figure S3). Cutoff values below 10 Å were not tested because of the scarcity of 

mutations (especially beneficial mutations) falling into the close mutation category. The 

efficiency-enhancing propensity is estimated to be 7.9% (with lower quartile 6.4% and upper 

quartile 8.3%) for the close mutations and 8.5% (with lower quartile 7.6% and upper quartile 

9.5%) for the distal mutations—they remain highly similar. Despite the fluctuation, the 

propensity of rate deletion is still much higher for the close mutations (72.8% with lower 

quartile 69.6% and upper quartile 76.8%) than for the distal mutations (47.2% with lower 

quartile 42.7% and upper quartile 50.3%). This trend remains to be compensated by the 

efficiency neutral mutations (19.1% with lower quartile 16.8% and upper quartile 21.9% for 

close mutations and 44.6% with lower quartile 40.2% and upper quartile 50.2% for distal 

mutations). Notably, the same trend still exists when the data are separately analyzed for the 

three major enzyme classes: oxidoreductases, transferases, and hydrolases (Figure S4–S6).

The statistical studies show that close mutations are equally probable in inducing efficiency 

enhancement as distal mutations, indicating that efficiency-enhancing mutations are globally 

distributed. This result is consistent with the observation that the Whitehead group reported 

for Escherichia coli-expressed amidases36 and supports a prior statistical study by the 

Kazlauskas group (based on 55 rate-enhancing enzyme variants) showing that both close and 

distal mutations can improve activity.40 For enzyme engineering, given the smaller number 

of residues in the active site than the distal spots, strategies that emphasize mutagenesis of 

active-site residues are likely to be more statistically productive, such as the combinatorial 

active-site saturation test (i.e., CASTing41). In addition, our statistical results show that 

distal mutations, especially those occurring on the surface residues (Figure S7), are much 

less likely to induce efficiency deletion than close mutations. This illustrates the important 

roles of distal mutations in avoiding rate deletion and inducing neutral drift on the fitness 

landscape, explaining the broadly reported observation of distal mutation in beneficial 

mutants during directed evolution.42 Finally, we found that mutation of residues on the 

β-strand is significantly more deleterious than that on the α-helix or coil (Figure S8). 

This observation might help inspire the development of new design principles for function-

enhancing mutations.

IntEnzyDB Web Interface.

To make IntEnzyDB accessible by public users, we developed a web interface that has a 

back-end link to IntEnzyDB on MongoDB (Figure 5). The web interface allows users to 

dynamically connect to MongoDB and generate data tables based on search queries. The 

dynamic connection scheme also makes it easy for users to obtain the most updated data 

as we continue expanding the database. The website contains general information about 

the database architecture and scope under the “Home” and “Research” pages. Under the 

“Database” page, a user can find kinetics data (i.e., the “Kinetics Data” tab), structural 

data (i.e., the “Structure Data” tab), and mapped structure–kinetics data (i.e., the “Kinetics-

Structure Reference” tab). Under the “Kinetics Data” tab, the user can find 4243 curated 

kinetics data for enzymes with single amino acid substitution where both kcat and KM are 
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available. The data table contains variables including EC number (e.g., 3.1.1.2), UniProtKB 

(e.g., P27169), organism (e.g., Homo sapiens), substrate (e.g., phenylacetate), mutation (e.g., 

H115W), experimental temperature (e.g., 298.15 K), and change of free energy barrier ΔΔG‡ 

(e.g., 1.7 kcal/mol, converted from eq 1). Under the “Structure Data” tab, the user can 

find general structural information, including the PDB ID (e.g., 1V04), enzyme name (e.g., 

arylesterase), active-site index (e.g., 115), and resolution (e.g., 2.2 Å). On the “Kinetics-

Structure Reference” tab, the mapped kinetics–structure pairs are shown. For each entry in 

this reference table, the UniProtKB matches an entry in the kinetics table and a PDB ID in 

the structure table. Under this tab, a user can click on the UniProtKB or PDB ID hyperlink 

to directly access the UniProt or PDB website for more detailed structure and functional 

information.

Besides the data tables, the user can access the “Search” tab and find specific enzyme data 

entries in the data tables using UniProtKB, PDB ID, or EC number as search queries. The 

user can also visualize the statistical analysis of enzyme kinetics data under “Statistics”, 

including the number of enzymes in each EC class, the distribution of ΔΔG‡, and the 

frequency of mutations in IntEnzyDB. On the “Database Access” tab, the user can find 

instructions to directly access IntEnzyDB on MongoDB. This way, the user can access the 

full database with five tables shown in Figure 1 and query enzymes of interest.

4. CONCLUSION

Here we report IntEnzyDB as an integrated structure–kinetics enzymology database. 

IntEnzyDB adopts a relational architecture with a flattened data structure. The database 

consists of five data tables, including one kinetics table, three structure tables, and one 

structure–kinetics reference table. In the benchmark for processing 1000 protein structures, 

IntEnzyDB is 6 times faster than the manual curation approach that relies on direct 

downloading from the PDB website and accessing from a local directory. The high 

efficiency of IntEnzyDB is due to its flattened data structure: with all of the structure/

kinetics data entries read into computer memory in the form of giant data tables, the time for 

repetitive file input/output operations can be saved.

From IntEnzyDB, we curated 4243 data entries where both kcat and KM are known for 

enzyme mutants with single amino acid substitution. These data are primarily derived 

from three enzyme commission classes: oxidoreductases (29.2%), transferases (19.4%), and 

hydrolases (32.6%). Lyases, isomerases, and ligases are observed to occupy 9.1%, 4.9%, 

and 4.9% of the population, respectively. Through analysis of mutation effects, we observed 

11.1% of the mutants to be efficiency-enhancing, 29.7% efficiency-neutral, and 59.2% 

efficiency-deleterious.

Using 1050 enzyme structure–kinetics pairs, we investigated the spatial dependence of 

efficiency-perturbing propensities of mutations. Specifically, we categorized mutations as 

either close or distal to active-site residues using various spatial cutoff values ranging 

between 10 and 20 Å with a 1 Å interval; for each cutoff value, we tested the proportions 

of efficiency-enhancing, -neutral, and -deleterious mutations for both “close” and “distal” 

mutations. The efficiency-enhancing propensity is estimated to be 7.9% (with lower quartile 
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6.4% and upper quartile 8.3%) for the close mutations and 8.5% (with lower quartile 7.6% 

and upper quartile 9.5%) for the distal mutations—they are highly similar. Despite the 

fluctuation, the propensity of rate deletion is much higher for the close mutations (72.8% 

with lower quartile 69.6% and upper quartile 76.8%) than for the distal mutations (47.2% 

with lower quartile 42.7% and upper quartile 50.3%). This trend is compensated by the 

efficiency-neutral mutations (19.1% with lower quartile 16.8% and upper quartile 21.9% for 

close mutations and 44.6% with lower quartile 40.2% and upper quartile 50.2% for distal 

mutations).

Finally, we described the web interface for IntEnzyDB, which employs a back-end link to 

MongoDB. The web interface allows public users to dynamically access and query data 

based on their need. Besides the kinetics, structure, and reference data tables, the web 

interface also contains instructions for users to directly access data tables on IntEnzyDB.

As the next steps for developing IntEnzyDB, we will further expand the mapped structure–

kinetics data table by using predicted structures and active-site annotation. Text mining 

strategies will be implemented to enable more comprehensive data validation and expansion. 

We will incorporate more types of enzymology data to IntEnzyDB, including stability, 

solubility, expressibility, and even molecular modeling data derived from high-throughput 

simulations.43
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Figure 1. 
Architecture and relation map for IntEnzyDB. (top) The database architecture involves 

five tables, including three enzyme structure tables (i.e., chain-level, amino acid-level, and 

atom-level), one enzyme kinetics table, and one reference table with foreign keys from the 

structure and kinetics tables. The tables are mapped by the following keys: PDB ID, Chain 

ID, and UniProtKB. (bottom) Mapping relationship between variables of different tables.
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Figure 2. 
Operation time vs the number of PDB IDs by IntEnzyDB (blue line) and the manual 

curation method (red line). The operation time for downloading, reading, and cleaning data 

in a tabulated form is measured for the tasks of processing 1, 100, 200, 400, 600, 800, and 

1000 PDB IDs. Data downloading and reading/cleaning are represented by the dotted and 

dashed lines (in light red), respectively. The total operation time for the manual curation 

method is shown by the red solid line. All operation times are measured in seconds.
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Figure 3. 
Statistics of kinetics data for enzyme mutants with single amino acid substitution in 

IntEnzyDB. (left) Distribution of kinetics data for six EC classes. (right) Distribution 

of ΔΔG‡ values for 2592 enzyme-variant-catalyzed reactions with a bin size of 0.5 kcal/

mol. Efficiency-enhancing mutants are defined as those with ΔΔG‡≤ −0.5 kcal/mol (red), 

efficiency-neutral mutants as those with −0.5 kcal/mol < ΔΔG‡≤ 0.5 kcal/mol (light gray), 

and efficiency-deleterious mutants as those with ΔΔG‡ > 0.5 kcal/mol (dark gray).
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Figure 4. 
Proportions of efficiency-enhancing (red), -neutral (light gray), and -deleterious (dark gray) 

mutations for close mutations (≤15 Å) and distal mutations (>15 Å). There are 622 

close mutations and 428 distal mutations. The distance is defined as the distance of the 

mutation residue Cα coordinate to the geometric center of the active-site residues’ Cα 
coordinates. Efficiency-enhancing mutants are defined as those with ΔΔG‡≤ –0.5 kcal/mol 

(red), efficiency-neutral mutants as those with –0.5 kcal/mol < ΔΔG‡ ≤ 0.5 kcal/mol (light 

gray), and efficiency-deleterious mutants as those with ΔΔG‡ > 0.5 kcal/mol (dark gray).
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Figure 5. 
Screenshots of IntEnzyDB web interface: (left) home page for the IntEnzyDB website; 

(right) database tabs for the website.
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Table 1.

A brief summary of enzymology databases.

Database Type Databases Data UniProtKB EC Number PDB ID

Kinetics

BRENDA Kinetics Yes Yes Part

Sabio-RK Kinetics Yes Yes No

STRENDA DB Kinetics with uniform data standard Yes Yes No

Structure

PDB PDB Structure Yes Yes Yes

AlphaFold DB Predicted Structure Yes No No

UniProt Sequence with Functional annotation Yes Yes Yes

Kinetics and structure data for 
designed enzymes

ProtaBank Kinetics/Structure Part Part Part

Design2Data Kinetics/Structure Yes Yes Yes
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