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ABSTRACT
Background  Neurodevelopmental disorders (NDDs) are 
associated with altered development of the brain especially 
in childhood. Copy number variants (CNVs) play a crucial 
role in the genetic aetiology of NDDs by disturbing gene 
expression directly at linear sequence or remotely at three-
dimensional genome level in a tissue-specific manner. Despite 
the substantial increase in NDD studies employing whole-
genome sequencing, there is no specific tool for prioritising the 
pathogenicity of CNVs in the context of NDDs.
Methods  Using an XGBoost classifier, we integrated 
189 features that represent genomic sequences, gene 
information and functional/genomic segments for 
evaluating genome-wide CNVs in a neuro/brain-specific 
manner, to develop a new tool, neuroCNVscore. We used 
Human Phenotype Ontology to construct an independent 
NDD-related set.
Results  Our neuroCNVscore framework (https://github.com/​
lxsbch/neuroCNVscore) achieved high predictive performance 
(precision recall=0.82; area under curve=0.85) and 
outperformed an existing reference method SVScore. Notably, 
the predicted pathogenic CNVs showed enrichment in known 
genes associated with autism.
Conclusions  NeuroCNVscore prioritises functional, 
deleterious and pathogenic CNVs in NDDs at whole 
genome-wide level, which is important for genetic studies 
and clinical genomic screening of NDDs as well as for 
providing novel biological insights into NDDs.

INTRODUCTION
Neurodevelopmental disorders (NDDs) 
are characterised by the inability to achieve 
cognitive, emotional and motor develop-
mental milestones including autism spectrum 
disorder (ASD), attention deficit hyperac-
tivity disorder (ADHD) and schizophrenia. 
It is estimated to affect over 11.3%, and 
15% of the population in low-income and 
middle-income countries1 and USA,2 respec-
tively. NDD’s heritability is high that has 
been estimated from twin and family studies 
as 50%–90% in ASD,3 88% in ADHD4 and 
85% in schizophrenia.5 Genomic alterations 

are commonly found in children with NDDs. 
However, the explained genetic aetiology of 
NDDs accounts for only a small proportion.

Copy number variants (CNVs) are structural 
variants (SVs) in the genome that involve the 
gain or loss of large segments of DNA, which 
have been implicated in NDDs.6 7 Systematic 
identification of CNV pathogenicity by virtue 
of their number, size and impact on the 
genome is still a challenge. It is approximately 
1000 CNVs per genome ranging in size from 
50 base pairs (bp) to several mega bases (Mb). 
CNVs make effects by altering the dosage of 
gene regions8 as well as by perturbing non-
coding areas.7 9 Growing number of studies 
by whole genome sequencing (WGS) and the 
complexity of identifying pathogenic CNVs 
call for computational prediction tools.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Copy number variants (CNVs) are important in the 
genetic aetiology of neurodevelopmental disorders 
(NDDs). Systematic identification of CNV pathoge-
nicity by virtue of their size, number and impact on 
genome is challenge. Several tools are available to 
evaluate CNVs or structural variants, but none on 
CNVs specific for NDDs.

WHAT THIS STUDY ADDS
	⇒ NeuroCNVscore is a useful tool in prioritising func-
tional and/or pathogenic CNVs in NDDs at whole 
genome-wide level in a neuro/brain-specific manner.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Given the expanding studies on NDDs and the usage 
of sequencing in clinical practice, our neuroCNV-
score speeds up the screening on pathogenic CNVs, 
which facilitates the clinical diagnoses of CNVs with 
unknown significant, and thus may provide novel bi-
ological insights into NDDs.
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Many assessing tools have been developed to evaluate 
the pathogenicity of single nucleotide variants,10 11 but 
fewer studies have systematically focused on assessing the 
pathogenic CNVs, especially none in NDD-related CNVs. 
Recently, SVScore,12 SVFX,13 SVPath14 and AnnotSV15 
have been developed to interpret the SVs by integrating 
results from prediction matrices of SNPs, using cancer-
related SVs as inputs, counting SVs with overlapped 
exons, or integrating multiple sources to annotate SVs. 
However, the aggregated effects on SNPs, somatic impacts 
of SVs or only overlapping exons without tissue-specific 
information may bias the effects of CNVs. As germline 
variations are the major focus in NDDs, a specific tool is 
needed for assessing the effects of CNVs on NDDs.

We here present a novel supervised machine learning 
framework, named as neuroCNVScore (https://github.​
com/lxsbch/neuroCNVscore), to score the pathoge-
nicity of CNVs related to NDDs. We hypothesise that the 
computational prediction on pathogenic CNVs would 
benefit from a set of comprehensive tissue-specific 
features covering the whole genomic regions. Hence, 
we employed germline CNVs obtained from published 
NDD studies,16–19 and curated gene lists together with a 
comprehensive set of neuro/brain-specific data on non-
coding regions from ENCODE,20 Roadmap,21 EpiMap22 
and PsychENCODE23 to train our models. Moreover, 
we constructed an independent dataset associated with 
NDDs by filtering the phenotypes from Human Pheno-
type Ontology (HPO, https://hpo.jax.org/) to evaluate 
the performance of our trained models. The perfor-
mance of neuroCNVScore was compared with a reference 
method SVScore.12 This neuroCNVScore is designed for 
assessing the pathogenicity of CNVs in NDDs generated 
from association studies or genetic tests.

METHODS
Data collection and preprocessing/harmonisation
We developed neuroCNVscore, which used XGBoost and 
comprehensive genome-wide features to evaluate the likeli-
hood that a given CNV contributes to the development or 
manifestation of NDDs. To assess the pathogenicity associ-
ated with CNV in NDDs, we gathered training set (identified 
by genomic coordinates) from several case–control NDD 
studies. We assigned CNVs from cases as likely pathogenic 
(LP). In contrast, the CNVs from unaffected individuals and 
parents served as the control. Together, we collected 86 694 
CNVs in the LP set and 786 058 in the control set from four 
data sources, respectively (figure 1).

Initial data filtering and harmonisation were performed 
on all autosomal chromosome CNVs in three major steps. 
First, we excluded CNVs with a size smaller than 50 bp, 
and the remaining CNVs were categorised into two groups 
based on their impact on the genome: copy number loss 
and copy number gain. Next, we deleted CNVs which had 
90% reciprocal overlap between LP and control. Finally, 
we applied an empirical cumulative distribution func-
tion with bin size of 60 to generate size matched LP and 

control to overcome the amount of disparity between 
groups. For each CNV type, we sampled an equal number 
of LP CNVs ensuring the matching of control CNVs in 
each bin. For the training process, we retained 13 857 
cleaned LP CNVs and 13 859 cleaned control CNVs.

Next, we constructed an independent test set by assem-
bling 51 819 disease associated variations from ClinVar 
database (https://www.ncbi.nlm.nih.gov/clinvar/) and 
136 181 common CNVs from GnomAD 2.1 (http://www.​
gnomad-sg.org/). For the NDD-related set, we retained 
CNVs with length >50 bp, germline, pathogenic and the 
term of HPO: 0012759 (neurodevelopmental abnor-
mality associated genes). For common CNVs, we kept 
CNVs with quality record PASS, and allele frequency 
>0.1. To avoid overestimation, we removed those CNVs 
with 90% reciprocal overlap within the training dataset 
under the same variant type.

Finally, we collected several NDD-related gene lists 
to evaluate the biological validity and robustness of 
neuroCNVscore including CHD8 target genes,24 human 
postsynaptic density proteins25 and ASD risk genes (FDR 
(false discovery rate)<0.3).18 The overall workflow is 
outlined in figure 1.

A comprehensive tissue-specific feature collection and 
feature matrix construction
For each CNV, a broad range of features was compiled 
into a feature matrix. We leveraged 189 features in total 
from three different levels: (1) gene level (Gen), (2) func-
tional/genomic segment level (Fun) and (3) sequence 
level (Seq). The description of features is shown in online 
supplemental table S1.

In brief, a set of gene level features (N=62) that contain 
gene entity, dosage sensitivity and neurodevelopmental 
phenotype were collected. Since non-coding CNVs may 
disrupt regulatory regions to compromise gene expres-
sion and translation in a linear or three-dimensional 
(3D) manner, we obtained a regulatory cascade cata-
logue (N=120 at functional/genomic segment level). 
This catalogue integrated multiomics data encompassing 
experimentally identified or computational predicted 
regulatory regions with a focus on tissue-specific annota-
tion. Finally, the sequence level features (N=7) composed 
of information of GC content, cross-species conser-
vation score (phylop46way and phastcon46way which 
are derived from phyloP or Hidden Markov Model via 
multiple alignment of 45 vertebrate genomes to the 
human genome), heterochromatin positions, collapsed 
repeat regions (DacMapExclude, DukeMapExclude are 
genomic regions calculated by different algorithms) 
retrieved from the UCSC genome browser (http://​
genome.ucsc.edu/), and human accelerated regions 
accessed by Doan et al.26 These features were instru-
mental in identifying functional genomic regions and/or 
filtering out the genomic regions which may cause arte-
facts from downstream segments.

Based on a variety of features, annotations were 
performed in three distinct ways: (1) counting the 

https://github.com/lxsbch/neuroCNVscore
https://github.com/lxsbch/neuroCNVscore
https://hpo.jax.org/
https://www.ncbi.nlm.nih.gov/clinvar/
http://www.gnomad-sg.org/
http://www.gnomad-sg.org/
https://dx.doi.org/10.1136/bmjpo-2023-001966
https://dx.doi.org/10.1136/bmjpo-2023-001966
http://genome.ucsc.edu/
http://genome.ucsc.edu/


3Liu X, et al. BMJ Paediatrics Open 2023;7:e001966. doi:10.1136/bmjpo-2023-001966

Open access

Figure 1  The flow chart of neuroCNVscore development and evaluation in this study. In data sets, the sources of training set 
and test set are listed. The training set was derived from four neurodevelopmental disorders (NDDs) studies under the case–
control design, while the validation set was from ClinVar and GnomAD. The numbers of raw and cleaned CNVs in the brackets 
are indicated. In neurofeatures, comprehensive neuro/brain-related features were gathered at gene, sequence and functional/
genomic segments levels. In prediction and validation, biological validations were performed in two ways: (1) correlation 
analyses between phyloP46way and the pathogenic scores generated by the new model where phyloP46way was excluded 
from the feature matrix; (2) utilisation of an independent set of NDD-related gene lists including PSD genes to cognition, CHD8 
targets and ASD risk genes. CNV, copy number variantl LP, likely pathogenic; PSD, postsynaptic density.
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number of overlapped features with a given CNV, (2) 
assessing a discrete value that denotes the number of the 
features which has >50% reciprocal overlapped regions 
with a given CNV and (3) calculating the average value 
of overlapped regions between the feature and a given 
CNV. After initial annotation, we divided the entire 
feature matrix based on the length of each CNV and then 
applied min-max scaling. Considering the differences in 
features, for example, triplosensitivity is a measurement 
only for the copy number gain, we kept 172 features out 
of 189 for the copy number loss model and 172 features 
out of 189 in the copy number gain model, respectively.

Design of XGBoost model and the training strategy
To choose an appropriate model, we compared the perfor-
mances among different algorithms (Naïve Bayes, logistic 
regression, support vector machine (SVM) and XGBoost), 
and we found that XGBoost had the best performance in 
the python framework from Scikit 0.22.1 with the binary 
logistic objective function. A total of 80%/20% of the variant 
sets were used as training/test sets, respectively. Next, we 
trained the XGBoost model with optimised parameters by 
using grid search and evaluated our models through an inde-
pendent test set. Additionally, we assessed the performance 
by comparing our model with SVScore, which can evaluate 
various types of SV including CNV.

Statistics
Statistical analyses were performed using Python (V.2.7). 
The performance was measured by precision recall (PR) 
and receiver operating characteristic (ROC) curves. For 
individual feature comparison, we applied two-tailed 
Wilcoxon rank-sum tests. All genomic data is in GRCh37 

genome build. Figures were generated by the ggplot 
package in R (V.3.6.1) or matplotlib in Python.

Patient and public involvement
Patients or the public were not involved in the design, 
or conduct, or reporting, or dissemination plans of our 
research.

RESULTS
Feature analyses pinpoint comprehensive feature sets
To understand the characteristics of CNVs in NDDs, we inves-
tigated the distribution of features between LP and control 
sets. In total, we observed 121 and 106 significant features 
at the threshold of p=0.05 in copy number loss and copy 
number gain models, respectively (online supplemental 
table S2). These findings demonstrated that a large spec-
trum of features has significant differences between sets.

Among these significant features, functional/genomic 
segment features ranked higher than the others. Most of 
the highly ranked features were related to histone modi-
fication markers (eg, H3K27me3, H3K27ac) and 3D 
chromatin-related features (eg, enhancers) (figure  2). 
This is as expected since non-coding regions account for 
98% of the human genome and CNVs can affect the gene 
function by interrupting the regulatory regions.

Comparisons among four algorithms reveal the superior 
performance of XGBoost
To find an optimal model for identifying pathogenic 
CNVs, we evaluated the predictive performance of Naïve 
Bayes, logistic regression, SVM and XGBoost on the test 
sets (figure 3). The XGBoost model showed the highest 

Figure 2  Comparisons of top three features between control and LP (likely pathogenic) sets. The top three significant features 
between control and LP sets in copy number loss (A) and copy number gain (B). The x-axis shows the types of significant 
features. Fun_level, function/genomic segment level. The y-axis displays the values of log- transformed feature matrices. 
Unpaired t-tests were applied and significant levels were. ****p<0.0001.
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performance (average precision (AP) and area under 
curve (AUC) were 0.82, 0.85 for copy number loss; AP 
and AUC were 0.80, 0.84 for copy number gain). There-
fore, we applied the XGBoost model to construct our 
neuroScoreCNV framework.

Accuracy assessments reveal better performance of 
neuroScoreCNV than SVScore
We evaluated the performance of neuroScoreCNV 
and SVScore by an independent set as described in 
the flow chart (figure  1). NeuroScoreCNV achieved 

Figure 3  Performances of Naïve Bayes, logistic regression, support vector machine (SVM) and XGBoost algorithms in 
evaluating CNVs. XGBoost showed superior performance demonstrated by precision-recall curves and receiver operating 
characteristic (ROC) curves for both copy number loss (A, B) and copy number gain (C, D). AP, average precision; AUC, area 
under curve; CNVs, copy number variants.

Figure 4  Performances of neuroCNVscore and SVScore in an independent set as described in the flow chart of figure 1. 
Precision-recall (A) and ROC (B) curves were calculated with copy number loss from the independent dataset; precision-recall 
(C) and ROC (D) curves were calculated with copy number gain from the independent dataset. CNV, copy number variants; 
ROC, receiver operating characteristic; SVs, structural variants.
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relatively better performance evaluated by both AP 
and AUC values compared with SVScore (figure  4). 
The different performances between models are in 
agreement with a previous study.13

Moreover, we investigated the biological validity and 
robustness from two aspects. It was shown that interrup-
tions at conserved regions could cause diseases since 
these regions are normally functional.27 Therefore, we 
first computed the CNV pathogenic scores generated with 
the new feature matrices in which a conservation score 
(ie, PhyloP46way, one of the commonly used conserva-
tion score that considering individual base conservation) 
was excluded. We observed that higher CNV patho-
genic scores (≥0.7) tended to have higher conservation 
scores, as indicated by the correlation between log

10
(Phy-

loP46way) and the new pathogenic scores (figure 5A,B). 
Then, we checked if our predicted scores were capable of 

prioritising CNVs with known NDD-associated genes. LP 
CNVs covered significantly (p<0.05) more NDD-related 
genes than the control group (figure 5B). Overall, our 
approach achieved higher performance in discrimi-
nating LP CNVs from control or benign CNVs.

Feature importancy highlights the important role of regulatory 
regions in NDDs
We categorised model features into three groups: func-
tional/genomic level (Fun), gene level (Gen) and 
sequence level (Seq) and computed the feature impor-
tancy by permutation (figure  6, online supplemental 
table S3). The most important features were genes with 
haploinsufficiency scores (PHI) and triplosensitivity 
scores (PTS). PHI reflects the probability of one single 
functional copy to be sufficient to maintain function, 
whereas PTS suggests the probability of an additional copy 

Figure 5  Biological validation of neuroCNVscore. The plot (A) shows the comparisons between PhyloP scores 
(log10(PhyloP46way)) and pathogenic scores generated by excluding PhyloP46way from the original neuroCNVscore model, 
regions with higher pathogenic scores tend to have higher PhyloP scores. The number of NDD-related genes (B) between the 
predicted LP and control groups in both copy number loss and copy number gain models shows that more NDD-related genes 
are found in LP groups. For better presentation, log transformations were applied to PhyloP46way scores and the gene counts. 
*p<0.05. CNV, copy number variant; LP, likely pathogenic; NDD, neurodevelopmental disorder.

Figure 6  Top 20 features obtained from feature importance analyses. Highly important features of copy number loss model 
(A) and copy number gain model (B) are listed. All the feature names were colour-coded and formatted as following: feature 
type (Fun_/Gen_/Seq_feature names (original sources)_tissue type (if applicable). Fun: Function, in blue; Gen: Gene, in green; 
Seq: Sequence, in purple.
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of a gene for generating phenotypes. PHI and PTS are 
important parameters for evaluating the pathogenicity in 
clinical diagnoses based on the ACMG guidelines.28 This 
is also true in neuroCNVScore. In NDDs, several studies 
found pathogenic CNVs were sensitive to dosage.29

Additionally, we noticed several prominent phenotypes 
such as HPO: 000717 (autism associated genes), HPO: 
0002960 (autoimmunity associated genes) and HPO: 
0025031 (abnormality of the digestive system associated 
genes). It is known that immune system abnormalities 
and/or gastrointestinal symptoms can co-occur with 
ASD30 and schizophrenia.31 Compelling evidence has 
demonstrated the importance of autoimmune response 
in ASD.32 Purified IgG containing antibodies from 
the mothers of children with ASD can cause abnormal 
behaviours in animal models.33 34

Among the important features at the functional/genomic 
segment level, we observed several key players in 3D chro-
matin conformation including enhancers and topologi-
cally associated domains. Meanwhile, DNase-Seq which 
suggests active regulatory elements at open chromatin was 
also an important feature. The emerging evidence has high-
lighted the role of 3D chromatin conformation in relation 
to NDDs.23 35 Collectively, studying the interaction between 
CNVs and the higher order of chromatin conformation 
could provide novel insights into the aetiology of NDDs and 
explain the missing heredity of NDDs.

DISCUSSION
In this study, we have introduced a novel framework, 
neuroCNVscore, to evaluate the pathogenicity of CNVs in 
NDDs. NeuroCNVscore outperformed a commonly used 
tool SVScore on independent datasets from ClinVar and 
gnomAD. Importantly, neuroCNVscore has the unique 
ability to prioritise the functional, deleterious and patho-
genic CNVs derived from either NDD’s association studies 
or clinical diagnoses, which may provide biological insights 
into NDDs, especially at the three-dimensional genome level.

There are several factors contribute to the accu-
racy and robustness of neuroCNVscore. First, we used 
a high-quality set of germline CNVs from published 
NDD studies as the training set, ensuring the high reli-
ability of this model. Second, we validated our models 
by using an independent dataset associated with NDD, 
which outperformed a published tool, SVScore. Further-
more, we curated a comprehensive feature collection 
(N=189) at gene, functional genomic and sequence 
levels. Specifically, we incorporated a significant amount 
of tissue-specific functional genomic data, enabling the 
identification of disrupted genes and regulatory elements 
that act in a tissue-specific manner during development. 
This is especially important for the studies in NDD since 
brain tissue is normally hard to access.

While the neuroCNVscore performed well, it may be 
improved by incorporating expert-curated CNVs from 
WGS studies in NDDs and healthy controls. Along with the 
increased knowledge and functional genomics data on 

non-coding regions, additional informative features can 
be integrated into the model to better address the under-
lying mechanisms. Moreover, we developed neuroCNV-
score based on XGBoost, but it is worth exploring deep 
learning algorithms in future investigation.

In summary, our neuroCNVscore is a useful tool for 
generating hypotheses in genome-wide association 
studies in NDDs and could facilitate the understanding 
of genetic aetiology of NDDs.
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