
Gene expression

LSMMD-MA: scaling multimodal data integration for
single-cell genomics data analysis
Laetitia Meng-Papaxanthos 1,*, Ran Zhang 2,3, Gang Li 2,3, Marco Cuturi 4,5,†,

William Stafford Noble 2,6, Jean-Philippe Vert 4,7,*
1Google Research, Brain Team, Google, Brandschenkestrasse 110, Zurich 8002, Switzerland
2Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
3eScience Institute, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, United States
4Google Research, Brain Team, Google, 8 Rue de Londres, Paris 75009, France
5Apple ML Research, Apple, 7 Av. d’Iéna, Paris 75116, France
6Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA 98195, United States
7Owkin, Inc., 14/16 Bd Poissonnière, Paris 75009, France

*Corresponding authors. Google Research, Brain Team, Google, Zurich 8002, Switzerland. E-mail: lpapaxanthos@google.com (L.M.-P.); Google Research,
Brain Team, Google, Paris 75009, France. E-mail: jean-philippe.vert@owkin.com (J.-P.V.)
†Work done while at Google.

Associate Editor: Anthony Mathelier

Abstract
Motivation: Modality matching in single-cell omics data analysis—i.e. matching cells across datasets collected using different types of genomic
assays—has become an important problem, because unifying perspectives across different technologies holds the promise of yielding biological
and clinical discoveries. However, single-cell dataset sizes can now reach hundreds of thousands to millions of cells, which remain out of reach
for most multimodal computational methods.

Results: We propose LSMMD-MA, a large-scale Python implementation of the MMD-MAmethod for multimodal data integration. In LSMMD-MA, we
reformulate the MMD-MA optimization problem using linear algebra and solve it with KeOps, a CUDA framework for symbolic matrix computation
in Python. We show that LSMMD-MA scales to a million cells in each modality, two orders of magnitude greater than existing implementations.

Availability and implementation: LSMMD-MA is freely available at https://github.com/google-research/large_scale_mmdma and archived at
https://doi.org/10.5281/zenodo.8076311.

1 Introduction

Modality matching in single-cell genomics data analysis can en-
hance our understanding of the relationships between cellular
modalities and help us resolve cell states. In this problem,
single-cell measurements collected using two or more different
types of assays are projected into a shared space or are other-
wise matched across modalities, with the goal of achieving
insights into the joint multimodal dataset. Most existing multi-
modal models rely on learning cell representations in each mo-
dality in a joint low-dimensional space (Welch et al. 2019, Cao
et al. 2020, Jin et al. 2020, Stark et al. 2020, Gayoso et al.
2021, Hao et al. 2021, Raimundo et al. 2021, Cao and Gao
2022). MMD-MA (Liu et al. 2019, Singh et al. 2020) is one such
method that has shown promising results on datasets contain-
ing several thousand cells in each modality. However, thanks
to new single-cell technologies, the size of single-cell datasets
has increased significantly in the past 2 years, now reaching
several hundreds of thousands to millions of cells
(Papatheodorou et al. 2020, Hao et al. 2021, Rozenblatt-
Rosen et al. 2021). These datasets cannot be analysed by cur-
rent implementations of MMD-MA due to memory issues.

More precisely, MMD-MA (Liu et al. 2019) is a multimodal
approach that maps each cell in each modality to a shared,
low-dimensional representation space. The linear mappings
from the input spaces to the representation space are learned
by minimizing an objective function composed of several
terms: (i) a “matching” term based on the squared maximum
mean discrepancy (MMD) with a Gaussian radial basis func-
tion (RBF) kernel to ensure that the different modalities over-
lap in the representation space, (ii) two “noncollapsing”
penalties to prevent trivial solutions, and (iii) two “distortion”
penalties to ensure that as much information from the input
data as possible is captured in the shared representation.
More details about the method are provided Supplementary
Appendix Section A. However, current implementations of
MMD-MA (Liu et al. 2019, Singh et al. 2020) scale quadrati-
cally as a function of the number of cells in memory and run-
time, which is prohibitive for datasets with more than a few
thousand samples (see Supplementary Table SA4).

To increase the scalibility of MMD-MA, we introduce
LSMMD-MA, a reformulation and PyTorch implementation of

Received: March 24, 2022. Revised: June 25, 2023. Editorial Decision: June 26, 2023

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(7), btad420
https://doi.org/10.1093/bioinformatics/btad420

Advance access publication 8 July 2023

Applications Note

https://orcid.org/0000-0002-0521-621X
https://orcid.org/0000-0002-7630-1251
https://orcid.org/0000-0003-0759-9063
https://orcid.org/0000-0002-1934-0588
https://orcid.org/0000-0001-7283-4715
https://orcid.org/0000-0001-9510-8441
https://github.com/google-research/large_scale_mmdma
https://doi.org/10.5281/zenodo.8076311
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data


MMD-MA that overcomes the memory explosion issue. To
achieve this, we (i) reformulate MMD-MA’s optimization prob-
lem in the primal, which is beneficial when the number of cells
is larger than the number of informative features and (ii) im-
plement the MMD matching term with the CUDA-based
KeOps library for symbolic matrices (Charlier et al. 2021),
tailored to handle matrices that do not fit in RAM or GPU
memory. The resulting algorithm scales only linearly in mem-
ory with the number of cells and can handle up to a million
cells in each modality.

2 Materials and methods
2.1 Reformulating MMD-MA in the primal

Let X 2 R
nx�px (respectively, Y 2 R

ny�py ) be the data matrix
of the first (respectively, second) modality, where nx (respec-
tively, ny) is the number of cells in the first (respectively, sec-
ond) modality and px (respectively, py) is the number of
features in the first (respectively, second) modality. The goal
of MMD-MA is to learn two mappings from the input spaces
R

nx and R
ny to a shared representation space R

d. We focus
specifically on linear mappings, as in the original publications
(Liu et al. 2019, Singh et al. 2020), where mappings are pa-
rameterized with dual variables ax 2 R

nx�d and ay 2 R
ny�d

such that the embedding of the first (respectively, second) mo-
dality is XX>ax (respectively, YY>ay). Instead, we equiva-
lently parameterize the mappings by primal variables
Wx 2 R

px�d and Wy 2 R
py�d, such that the embedding of the

first (respectively, second) modality is XWx (respectively,
YWy). We can then rewrite the MMD-MA optimization problem
in the primal:

min
Wx;Wy

LprimalðWx;WyÞ ¼ min
Wx;Wy

½MMDðXWx;YWyÞ2

þk1ðpenðWxÞ þ penðWyÞÞ þ k2ðdisðX;WxÞ þ disðY;WyÞÞ�;
(1)

where k1 and k2 are hyperparameters. Under the assumption
that n� p� d for each modality, efficiently implementing
the primal loss (Equation 1) scales better than implementing
the dual loss, as shown in Supplementary Table A2. The pri-
mal loss does not require the computation and storage of the
linear kernel matrices XX> and YY>, which are O(n2) in time
and memory, and the penalty and distortion terms are not
O(n2) in runtime anymore. However, computing the MMD
term remains O(n2) in runtime and memory if we implement
it naively. A description of MMD-MA in the dual and a compar-
ison between the formulations of MMD-MA and LSMMD-MA are
available in Supplementary Appendix Sections A and B.

2.2 Using KeOps

To overcome the O(n2) memory burden of computing the
MMD term, we implement it using the CUDA-based Map-
Reduce scheme of KeOps (Charlier et al. 2021). This allows
us to compute the MMD term without instantiating the n� n
Gaussian RBF kernel in memory, using symbolic matrix com-
putation with O(n) memory complexity, as detailed in
Supplementary Appendix Section D. KeOps therefore opti-
mizes (Equation 1) with a linear memory complexity and also
improves runtime by a significant multiplicative factor when
the number of samples is >1000.

2.3 Implementation

We make four algorithms available, including LS-MMDMA and
three variants: primal formulation without KeOps, dual for-
mulation with KeOps, and dual formulation without KeOps
(an efficient implementation of the original algorithm). The
code is implemented in PyTorch (Paszke et al. 2019) and can
run on CPU or GPU. The package is open source with an
Apache license, available at github.com/google-research/
large_scale_mmdma. It is referenced on PyPI and can be
installed with the command: pip install lsmmdma.
Details about I/O, command line instructions and tutorials
are given in the Readme.md and in the examples folder.

3 Results and conclusion

We tested the scalability of the implementation of LSMMD-MA
(primal formulation with KeOps) against three comparison
partners (primal formulation without KeOps, dual formula-
tions with KeOps and dual formulation without KeOps) and
against the two original implementations (Liu et al. 2019,
Singh et al. 2020) which focus on the dual formulation in
TensorFlow (Abadi et al. 2016) and PyTorch (Paszke et al.
2019), respectively. Additionally, Singh et al. (2020) proposes
to use the linear time approximation of MMD for large num-
bers of samples (> 5000) (see Lemma 14 in Gretton et al.
2012).

We ran all algorithms on simulated datasets of different
sizes where the latent space is shaped as a branch (see
lsmmdma/data/data_pipeline.py in GitHub and Supplementary
Appendix Section G for more details). All algorithms were run
for 500 epochs and a low-dimensional representation of dimen-
sion d ¼ 10. A V100 GPU (16GB) was used for the experi-
ments. We observe that LSMMD-MA, using the primal
formulation and KeOps, scales to one million cells in each mo-
dality, whereas the original implementations runs out of mem-
ory for >14 000 cells (Fig. 1). In the same figure, we can also
notice that our dual implementations are faster than the origi-
nal implementations irrespective of the number of samples. We
also show that LSMMD-MA obtains good accuracies, as mea-
sured by the Fraction Of Samples Closer than The True Match
(FOSCTTM) (Liu et al. 2019), on a selection of the simulated
datasets (see Supplementary Appendix Section E). MMD-MA and
LSMMD-MA have the same optimal objective values as LSMMD-
MA is a reformulation of MMD-MA. Furthermore, we show that
both algorithms obtain similar FOSCTTM performance on 12
synthetic datasets with varying numbers of features and sam-
ples (see Supplementary Appendix Section B).

As a proof of principle, we also ran LSMMD-MA on a real-
world CITE-seq dataset containing 90 261 human bone
marrow mononuclear cells, with 13 953 gene IDs for the gene
expression modality and 134 proteins for the protein marker
modality (Luecken et al. 2021). We obtain an FOSCTTM of
0.22 after 100 000 epochs (10.3 h) with LSMMD-MA, which
would have been infeasible with previous versions of MMD-
MA. More details about the preprocessing of the dataset and
the hyperparameters are available in Supplementary
Appendix Section G. We additionally compared LSMMD-MA
with baselines such as Procrustes superimposition (with and
without aligned data) (Gower 1975), LIGER (PyLiger) (Liu
et al. 2020, Lu and Welch 2022) and Harmonic alignment
(Stanley et al. 2020) and show that LSMMD-MA is competitive
(see Supplementary Appendix Section H for detail).

2 Meng-Papaxanthos et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data


These results suggest that an optimized implementation,
exploiting the primal formulation and taking advantage of
the KeOps library, are key to building a multimodal model
that scales to the size of current single-cell datasets.

Acknowledgements

The authors thank the anonymous reviewers for their valu-
able suggestions.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This work was supported by the NIH award UM1
HG011531.

Data availability

The simulations used in this article are available in GitHub at
https://github.com/google-research/large_scale_mmdma and
the CITE-seq dataset is available from NCBI GEO under acces-
sion GSE194122.

References

Abadi M, Agarwal A, Barham P et al. TensorFlow: large-scale machine

learning on heterogeneous systems. [Computer software]. arXiv pre-

print arXiv:1603.04467, 2016. https://www.tensorflow.org.
Cao K, Bai X, Hong Y et al. Unsupervised topological alignment for

single-cell multi-omics integration. Bioinformatics 2020;36:i48–56.

https://doi.org/10.1093/bioinformatics/btaa443.
Cao Z-J, Gao G. Multi-omics integration and regulatory inference for

unpaired single-cell data with a graph-linked unified embedding

framework. Nat Biotechnol 2022;40:1458–66.
Charlier B, Feydy J, Glaunès JA et al. Kernel operations on the GPU,

with autodiff, without memory overflows. J Mach Learn Res 2021;

22:1–6.

Gayoso A, Steier Z, Lopez R et al. Joint probabilistic modeling of single-

cell multi-omic data with totalVI. Nat Methods 2021;18:272–82.

https://doi.org/10.1038/s41592-020-01050-x.

Gower JC. Generalized procrustes analysis. Psychometrika 1975;40:

33–51.
Gretton A, Borgwardt KM, Rasch MJ et al. A kernel two-sample test.

J Mach Learn Res 2012;13:723–73.
Hao Y, Hao S, Andersen-Nissen E et al. Integrated analysis of multi-

modal single-cell data. Cell 2021;184:3573–87.e29.

Jin S, Zhang L, Nie Q. scAI: an unsupervised approach for the integrative

analysis of parallel single-cell transcriptomic and epigenomic profiles.

Genome Biol 2020;21:1–19. https://doi.org/10.1186/s13059-020-1932-8.
Liu J, Huang Y, Singh R et al. Jointly embedding multiple single-cell omics

measurements. In: 19th International Workshop on Algorithms in

Bioinformatics (WABI 2019), volume 143 of Leibniz International

Proceedings in Informatics (LIPIcs) Niagara Falls, NY, USA, Vol. 10,

p.1–10, 2019. https://doi.org/10.4230/LIPIcs.WABI.2019.10.

Liu J, Gao C, Sodicoff J et al. Jointly defining cell types from multiple

single-cell datasets using liger. Nat Protoc 2020;15:3632–62.

Lu L, Welch JD. Pyliger: scalable single-cell multi-omic data integration

in python. Bioinformatics 2022;38:2946–8.

Luecken MD, Burkhardt DB, Cannoodt R et al. A sandbox for predic-

tion and integration of DNA, RNA, and proteins in single cells. In: J.

Vanschoren and S. Yeung (eds.), Proceedings of the Neural

Information Processing Systems Track on Datasets and

Benchmarks, Vol. 1. Curran, 2021.
Papatheodorou I, Moreno P, Manning J et al. Expression atlas update:

from tissues to single cells. Nucleic Acids Res 2020;48:D77–83.
Paszke A, Gross S, Massa F et al. Pytorch: an imperative style, high-

performance deep learning library. In: H. Wallach, H. Larochelle, A.

Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, Vancouver, Canada Vol.

32. Curran Associates, Inc., 2019, 8024–35.
Raimundo F, Meng-Papaxanthos L, Vallot C et al. Machine learning for

single-cell genomics data analysis. Curr Opin Syst Biol 2021;26:

64–71.
Rozenblatt-Rosen O, Shin JW, Rood JE et al.; Human Cell Atlas

Standards and Technology Working Group. Building a high-quality

human cell atlas. Nat Biotechnol 2021;39:149–53.
Singh R, Demetci P, Bonora G et al. Unsupervised manifold alignment

for single-cell multi-omics data. In: Proceedings of the 11th ACM

International Conference on Bioinformatics, Computational
Biology and Health Informatics, p.1–10, 2020. https://doi.org/10.

1101/2020.06.13.149195.
Stanley JS III, Gigante S, Wolf G et al. Harmonic alignment. In:

Proceedings of the 2020 SIAM International Conference on Data

Mining, p.316–24. SIAM, 2020.
Stark SG, Ficek J, Locatello F et al.; 12 Tumor Profiler Consortium.

SCIM: universal single-cell matching with unpaired feature sets.

Bioinformatics 2020;36:i919–27. https://doi.org/10.1093/bioinfor

matics/btaa843.

Welch JD, Kozareva V, Ferreira A et al. Single-cell multi-omic

integration compares and contrasts features of brain cell identity. Cell
2019;177:1873–87.e17. https://doi.org/10.1016/j.cell.2019.05.006.

Figure 1. (A) Fastest MMD-MA variant as a function of the number of samples and the number of features. The black region in the top right corner means

that all variants ran out of memory. (B) Runtime as a function of number of cells for different implementations of MMD-MA, when the dimension p of the

input data varies. The black and green dotted lines with cross markers correspond to the original implementations of MMD-MA as written by Liu et al.

(2019) (black) and Singh et al. (2020) (green). The runtime for different values of p, from 100 to 10 000, is shown in Supplementary Appendix Fig. A1.

LSMMD-MA 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data
https://github.com/google-research/large_scale_mmdma
https://www.tensorflow.org
https://doi.org/10.1093/bioinformatics/btaa443
https://doi.org/10.1038/s41592-020-01050-x
https://doi.org/10.1186/s13059-020-1932-8
https://doi.org/10.4230/LIPIcs.WABI.2019.10
https://doi.org/10.1101/2020.06.13.149195
https://doi.org/10.1101/2020.06.13.149195
https://doi.org/10.1093/bioinformatics/btaa843
https://doi.org/10.1093/bioinformatics/btaa843
https://doi.org/10.1016/j.cell.2019.05.006
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad420#supplementary-data

	Active Content List
	1 Introduction
	3 Results and conclusion
	Acknowledgements
	Data availability
	References


