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High throughput single cell long-read
sequencing analyses of same-cell genotypes
and phenotypes in human tumors

Cheng-Kai Shiau 1,2,11, Lina Lu1,2,11, Rachel Kieser 3,11, Kazutaka Fukumura4,
Timothy Pan 1,2,5, Hsiao-Yun Lin1,2, Jie Yang 6, Eric L. Tong7, GaHyun Lee8,
Yuanqing Yan9, Jason T. Huse10 & Ruli Gao 1,2,5

Single-cell nanopore sequencing of full-length mRNAs transforms single-cell
multi-omics studies. However, challenges include high sequencing errors and
dependence on short-reads and/or barcode whitelists. To address these, we
develop scNanoGPS to calculate same-cell genotypes (mutations) and phe-
notypes (gene/isoform expressions) without short-read nor whitelist gui-
dance. We apply scNanoGPS onto 23,587 long-read transcriptomes from 4
tumors and 2 cell-lines. Standalone, scNanoGPS deconvolutes error-prone
long-reads into single-cells and single-molecules, and simultaneously accesses
both phenotypes and genotypes of individual cells. Our analyses reveal that
tumor and stroma/immune cells express distinct combination of isoforms
(DCIs). In a kidney tumor, we identify 924 DCI genes involved in cell-type-
specific functions such as PDE10A in tumor cells and CCL3 in lymphocytes.
Transcriptome-wide mutation analyses identify many cell-type-specific muta-
tions including VEGFA mutations in tumor cells and HLA-A mutations in
immune cells, highlighting the critical roles of different mutant populations in
tumors. Together, scNanoGPS facilitates applications of single-cell long-read
sequencing technologies.

Human tumors represent complex ecological systems of diverse cell
types with dynamic genetic evolution and phenotypic remodeling1–3.
However, there is a lack of robust methods for tracking both geno-
types (e.g., mutations) and phenotypes (e.g., gene expressions, iso-
forms) of individual cells to precisely trace the cellular and molecular
dynamics during tumor evolution and treatment response. Long-read
single-cell sequencing of full-length RNAs is transforming single-cell
multi-omics analysis through direct measurement of nucleotide

sequences of whole gene bodies without algorithmic
reconstructions4–7. Nowadays, high throughput long-read single-cell
sequencing methods take advantage of droplet barcoding systems
(commonly, 10× Genomics Chromium system) to barcode full-length
cDNAs of single cells and sequence them on ultra-high yield third-
generation sequencing (TGS) platforms5–8. Of note, the Oxford Nano-
pore Technology (ONT) platform, PromethION, can yield ~100 million
reads per flow cell, providing adequate coverage of thousands of
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single-cell transcriptomes. The PacBio system Sequel II system can
yield ~8 million high-fidelity reads, which can measure hundreds of
single-cell transcriptomes. However, the broad applications of this
powerful technology are computationally challenged due to the
complexity of calculating same-cell multi-omics from these long-read
data. Moreover, due to higher error rates in cell barcodes (CBs) and
unique molecule identifiers (UMIs) compared to next-generation
sequencing (NGS), previous methods rely on generating paralleled
NGS short-read data to guide the deconvolution of CBs and UMIs5,8,
which can drastically increase experimental costs and computational
complexity and often results in partial usage of data. Recently, two
methods called Sockeye (https://github.com/nanoporetech/Sockeye)
and BLAZE9 were released to detect CBs without the usage of paral-
leled NGS data. However, both methods relied on a theoretical bar-
code whitelist (10× Genomics states there are ~3.6 million unique
sequences for 3′ GEX with v3 chemistry). The whitelist dependence
makes both methods suboptimal because the manufactured barcodes
may deviate from theoretical random combinations, particularly, the
pool size reaches millions of molecules that are 2 edit-distance apart.
Further, different versions of protocols may have different whitelists,
and misusages of wrong whitelists are not easy to tell due to their
similarities. Therefore, a robust computational tool for analyzing high
throughput single-cell long-read data is still missing.

In this study, we developed a computational tool, scNanoGPS
(single cell Nanopore sequencing analysis of Genotypes and Pheno-
types Simultaneously), to perform completely independent deconvo-
lution of error-prone long-reads into single-cells and single-molecules
and calculate both genotypes and phenotypes in individual cells from

high throughput single cell nanopore RNA sequencing (scNanoRNA-
seq) data. In concert with this tool, we removed the NGS sequencing
steps and increased throughput to 3000–6000 transcriptomes per
flow cell (PromethION). We demonstrated the accuracy and robust-
ness of scNanoGPS and identified cell-type-specific isoforms and
mutations in addition to gene expression profiles, enabling synchro-
nous cell-lineage (genotype) and cell-fate (phenotype) tracing in
human tissues.

Results
Computational workflow of scNanoGPS in analyzing scNa-
noRNAseq data
The high throughput scNanoRNAseq data are generated through two
major steps: (i) barcoding full-length cDNAs of single cells/nuclei using
high throughput droplet barcoding system (10× Genomics), (ii) per-
forming high throughput long-read sequencing using PromethION
(Oxford Nanopore Technologies) (Fig. 1a, Online Methods). Accord-
ingly, the computational workflow of scNanoGPS begins with quality
control and scanning reads that have expected patterns of adapter
sequences, i.e., TruSeq R1 adapter on 5′-ends and TSO adapter on 3′-
ends of raw reads (Fig. 1a, b, Fig. S1, Online Methods). Next, we
developed an algorithm called integrated Crude Anchoring and
Refinery Local Optimization (iCARLO) to detect true CBs. In this
algorithm, a raw list of CBs is determined by searching for a crude
anchoring point through thresholding partial derivatives of the sup-
porting reads of individual CBs. The threshold is then extended from
the crude anchoring point by an empirical percentage (10%) to rescue
true CBs that have much fewer reads than others in the same

Fig. 1 | Schematic diagrams of scNanoRNAseq and scNanoGPSworkflows. a Experimental workflow and library structure of scNanoRNAseq. bComputational workflow
of scNanoGPS.
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experiment. Next, the CBs within two Levenshtein Distances (LDs) are
curated and merged to rescue misassigned reads due to errors in CB
sequences. CBs with less than 300 genes are filtered out by default.
iCARLO is implemented in the “Assigner” function, which outputs a list
of true CBs and then deconvolutes all qualified reads into single-cell
FASTQ files.

To identify true UMIs to accurately measure gene expression
levels, scNanoGPS first maps single-cell reads against reference gen-
ome GRCh3810 using MiniMap211 (Fig. 1b). Reads that map to the same
genomic regions (within <5 bp) are grouped into read clusters to
achieve batch computing. All reads belonging to the same read clus-
ters and having UMIs within two LDs are considered to be amplified
from the same RNA molecules. Thus, their corresponding UMIs are
curated to be identical. To overcome sequencing errors in single
molecule reads with identical UMIs are collapsed into consensus
sequences using SPOA12 for better detectionofpointmutations in gene
bodies. scNanoGPS then re-maps single-cell consensus reads to gen-
erate single-cell consensus BAM files. Lastly, to better facilitate scNa-
noRNAseq data analysis, we compiled existing long-read specific
tools13–15 into scNanoGPS to form a complete pipeline to calculate gene
expression, isoform expression, and point mutation profiles of indi-
vidual cells from single-cell consensus BAM files. Furthermore, single-
cell copy numbers can be calculated using our previously published
algorithm CopyKAT16. These data are being used to detect cell-type-
specific isoforms and mutations as well as gene expressions to
demonstrate the applications of scNanoGPS in investigating the
underlying mechanisms of human tumors.

To summarize, scNanoGPS achieves complete independence
through the iCARLO algorithm to detect true CBs and constructs
consensus molecules from reads with the same UMIs to call mutations
accurately and count RNA molecules. In contrast, both Sockeye and
BLAZE9 rely on a barcode whitelist to detect possible CBs (Supple-
mentary Table 1). By the time of submission, we noticed that BLAZE9

doesn’t support UMI detection. The UMI function in Sockeye depends
on high-quality reads that filter out large portions of data. Moreover,
scNanoGPS assembles variant detection pipelines together to call
mutations from consensus reads. Taken together, scNanoGPS pro-
vides a full spectrum of functional modules to analyze scNanoRNAseq
data from raw FASTQ data to same-cell multi-omics profiles of thou-
sands of cells.

Performance of scNanoGPS in processing high throughput
scNanoRNAseq data
To test the technical performance, we applied scNanoGPS to process
the scNanoRNAseq data of two cancer cell lines, A375 and H2030.
Strikingly, PromethION yielded 67.4 million reads of the A375 library
on one flow cell and 105.3 million reads of the H2030 library on
another flow cell. This resulted in averaged depths of 15,944 reads per
cell in A375 and 21,710 reads per cell in H2030, which were close to
NGS scRNAseq depths (Supplementary Table 2). The median read
lengths of both datasets were around 900bp, consistent with the
traces of pre-sequencing cDNAs (Fig. 2a, Fig. S2a, b). The scNanoGPS
results showed that most reads (A375: 86.80%, H2030: 87.31%) had the
expected pattern of adapter sequences. In total, we detected 3649 and
4212 cells with averaged coverages of 2688 and 3553 genes per cell,
respectively.We generated standardNGS 3′-scRNAseq (10×Genomics)
data from the same cDNA pools as previously described5,6. Since 3′-
scRNAseq (10× Genomics) was a widely used mature method and
sequenced on Illumina sequencer (NovaSeq 6000) that has very low
error rates in CBs andUMIs, we treated these data as the gold standard
to benchmark scNanoGPS barcode detection accuracy. Our analysis
showed that scNanoGPS achieved high concordance (92%) with the
standard 10×Genomics data in detecting true CBs (Fig. 2b), withminor
dis-concordance in thresholding low-quality cells that could be miti-
gated by secondary analyses (Fig. S3a, b, OnlineMethods). scNanoGPS

standalone achieved high accuracies in detecting true CBs, compar-
able to the performance of both whitelist-dependent approaches, i.e.,
BLAZE9 and Sockeye (Supplementary Table 3). We noted that without
the guidance of a whitelist or known CBs, scNanoGPS took longer to
scan and curate CBs. However, it consumed less memory when com-
pared to Sockeye and BLAZE9 (Supplementary Table 3). Lastly, we
recorded the time and space usages of each functional module of
scNanoGPS when analyzing the example dataset, A375, in Supple-
mentary Table 4 to provide guidance on the preparedness of com-
puting resources.

Next, we compared the number of UMIs detected by scNanoGPS
to standard 10× Genomics data. Our results revealed significantly high
correlations (A375: Pearson’s r =0.97, P-value < 2.2e−16; H2030: Pear-
son’s r =0.89, P-value < 2.2e−16) (Fig. 2c). The gene detection rates per
UMI were similar as well, although the numbers of UMIs per cell were
fewer in long-read data compared to 10× Genomics data (A375:
coef = 34%; H2030: coef = 56%) due to lower sequencing depths
(Fig. 2c, d). The combination of CBs, UMIs, and genes detected by
scNanoGPS reached up to 72% (SD: 2%) concordance on average with
the NGS approach, confirming the reliability of barcoding detection
results (Supplementary Table 5).

Further, we compared single-cell transcriptomes computed by
scNanoGPS to standard 10× Genomics 3′-scRNAseq data. Our results
again showed that scNanoGPS achieved high concordance (A375:
Pearson’s r =0.89, P-value < 2.2e−16; H2030: Pearson’s r = 0.91, P-
value < 2.2e−16) in measuring gene expression levels compared to
standard 10× Genomics data (Fig. 2e). Down-sampling analysis sug-
gested that ~15,000 long-reads per cell on average are needed to
robustly profile single-cell full-length transcriptomes (Fig. S4a–d).
There were only small fractions (A375: 0.92%; H2030: 0.79%) of
detected genes showing significantly different expression levels (FDR-
adjusted P-values < 0.05, |log2(Fold Changes)|≥ 1) between the two
approaches (Fig. 2e). Of note, 10× Genomics 3′-scRNAseq showed a
higher chance of detecting ribosomal genes, whereas scNanoGPS
detectedmore long noncoding RNA (lncRNA) genes and pseudogenes
(Fig. 2e-f). The lengths of scNanoGPS enriched genes were significantly
longer than NGS enriched genes (Fig. 2g. A375: P-value = 8.16 × 10−10;
H2030: P-value = 1.96 × 10−9), which we suspected was due to minor
fragmentation bias against longer genes in NGS library preparation as
previously reported17.

To investigate whether long-read single-cell transcriptome data
could serve as a data source for inferring genome-wide DNA copy
number variations (CNVs), we ran CopyKAT16 on H2030, which was
known to have aneuploidy. As expected, our results showed that
H2030 had genome-wide CNVs including amplification on Chr2, 3q, 5,
6q, 7, 8q, 14, 15p and deletions on Chr 4, 11p (Fig. 2h). The averaged
pair-wised Pearson’s correlation between the two approaches reached
up to 94%, confirming the feasibility of inferring CNVs using scNa-
noRNAseq data.

To evaluate whether scNanoGPS can robustly detect major cell
types in human tumors, we performed scNanoRNAseq on 4 frozen
tumors collected from renal cell carcinoma (RCC1, RCC2) and mela-
noma (MEL1, MEL2) patients (Supplementary Table 2). We performed
unbiased clustering of all cells within each tumor (Fig. 3a) and anno-
tated epithelial cells having both aneuploidy and high expression
levels of known cancer-type-specific genes as tumor cells (Fig. S5a, b).
In consistencewith previous studies3,16,18,19, our data showed that tumor
cells outcompeted normal epithelial cells in all 4 tumors due to strong
fitness advantage. The non-tumor cell-type clusters were annotated
using known cell-type markers. For fair comparisons, we conducted
the same clustering and annotations on paralleled 10× Genomics data
(Fig. 3b). Our results confirmed high concordance between the two
approaches (Fig. 3c), except that scNanoGPS rescued more lympho-
cytes that expressed far fewer genes than other cells in the same
experiment.
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To summarize, our analyses showed that scNanoGPS reliably
deconvoluted long-reads into single-cells and single-molecules to
detect single-cell transcriptomes and dissect the tumor micro-
environment (TME) from scNanoRNAseq data.

scNanoGPS enables the detection of cell-type-specific splicing
profiles in human tumors
To assess the robustness of scNanoGPS in discovering splicing isoforms
of different cell types in the TME, we performed a detailed isoform
analysis of a frozen kidney tumor (RCC1). On average, we detected six
transcripts per gene by referring to all known transcripts in GENCODE
(v32)20. Comparisons with bulk RNAseq (NGS) data of the same tumor
revealed that up to47% isoformswereonlydetectedbyTGSapproaches
(Fig. S6a), while isoform expression levels showed moderate to high
concordance (median: 96%; mean: 68%; Fig. S6b). Further analyses
showed that each cell type tended to express a combination ofmultiple
isoforms, consistent with a recent study that reported isoform specifi-
city in mouse cortex21. To identify cell-type-specific preference of iso-
forms, we compared the relative compositions of different isoforms of
each gene among all 7 major cell types (Online Methods). Our analysis
identified 1014 genes that preferably expressed significantly different
combinations of isoforms (DCIs, Chi-sq test P-values <0.05 and |Pre-
valence Differences| ≥ 10%) among all cell types, including 499 DCI
genes in tumor cells, 122 in endothelial cells, 137 in fibroblasts, 90 in
myeloid cells, 38 in T &NK cells, 90 in plasma B cells and 38 in follicular
B cells (Fig. 4a–c, Supplementary Data 1–7). Of note, we detected 2–4

times more genes with DCIs in tumor cells compared to immune and
stromal cell types. The top-ranked tumor-cell-specific DCI genes were
PDE10A and NR4A2 involved in cAMP pathways. Additionally, we
observed that tumor-cell-specific isoforms had slightly more exons
(Fig. 4d, paired t-test P-value = 0.01), particularly in genes with more
than 20 exons such as NBPF10, VPS13C, and NBPF14 (Fig. 4e). Geneset
(MSigDB,GO:BP) analysis showed that cell-type-specificDCIgeneswere
commonly enriched in pathways related to cell-type-specific functions,
such as cAMP pathway and resistance associated glucuronidation
pathway in tumor cells, interferon-alpha production pathways in mye-
loid cells, lymphocyte proliferation pathway in lymphocytes, and
immunoglobin-mediated immune responses in B cells (Fig. 4f).

Notably, we observed that a large portion (mean: 83%, SD: 9.9%)of
cell-type-specific DCI genes were not detected as differentially
expressed genes (DEGs) in all cell types (Fig. 4b). Tumor-cell-specific
DCI genes preferably expressed different most-dominant-transcripts
(MDTs)22 regardless of their overall gene expression levels. For
instance, the proliferation gene PPDRPFL expressed MDTs,
ENST00000303202 in tumor cells and ENST00000399653 in normal
cells, although the overall expression levels of this gene in the two cell
types were not significantly different (Fig. S7a, b, Fig. 4g). On the other
hand, the organelle hook protein coding gene HOOK2 preferably
expressed ENST00000589134 in tumor cells and ENST00000593143
in normal cells and had significantly higher expression levels in tumor
cells compared to normal cells (Fig. 4g, Fig. S7b). In addition, we
observed a small fractionof cell-type-specificDCI genes that expressed

Fig. 2 | Performance of scNanoGPS in processing scNanoRNAseq data. a Length
distributionof raw readsof two cancer cell lines.b Intersectionof true cell barcodes
detectedby scNanoGPS and standardNGS approaches. c Pair-wised scatter plots of
UMI counts per cell detected by two approaches. ***, Pearson correlation P-
value < 2.2e−16. d Pair-wised scatter plots of gene detection versus UMI counts of
single cells. e Single-cell gene expression levels calculated by two approaches. ***,

Pearson correlation P-value < 2.2e−16. f Heatmap of genes with significantly dif-
ferent expression levels in two approaches. g Density plots of the length of genes
with significantly different expression levels in two approaches. h Heatmap of
single-cell copy number profiles of H2030 calculated by CopyKAT from matched
single-cell transcriptomes of two approaches. Source data are provided as a Source
Data file.
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the same MDTs, but their cellular fractions were different between
tumor and normal cells. One example was CYB5A which expressed
isoform ENST00000340533 in 60% of tumor cells but 91% of normal
cells. Another example was HMGN3 which expressed isoform
ENST00000620514 in 94% of tumor cells but 66% of normal cells
(Fig. 4h, Fig. S7c).

We also observed isoform preference in immune and stromal cell
types, although fewer genes were involved compared to tumor cells.
For instance, myeloid and T cells both expressed HAVCR2, yet the
MDTs of this gene were distinct in the two immune cell types (Fig. 4g,
Fig. S7b). In contrast, the B cell-specific gene, IGHG1, expressed the
same MDT (ENST00000390549) in both follicular and plasma B cells,
but the cellularprevalenceof thisMDTwas significantlydifferent in the
two B cell subtypes (72% in follicular B cells, 99% in plasma B cells)
(Fig. 4h), indicating its relevance to sub-cell-type-specific functions.

In summary, we demonstrated the usage of scNanoGPS in study-
ing cell-type-specific splicing isoforms in tumors. Our results showed
that a larger portion of genes utilized different MDTs in both tumor
and immune cell types. Genes expressing the same MDTs may have
distinct cellular prevalence in different cell types regardless of overall
gene expression levels.

Transcriptome-widemutations of different cell types in the TME
To accurately detect transcriptome-wide mutations in single cells, we
built consensus sequences of single molecules and required at least 2
consensus reads supporting variants. In addition, we filtered out

mutations thatweredetected in less than 1%of cells over all cells or less
than 5% within individual cell types (Online Methods), which removed
most random errors (Supplementary Table 6). In total, we detected
6390 mutations from 3470 single nuclei transcriptomes of a frozen
kidney tumor (RCC1). Further, we classified these mutations into
germlinemutations thatwere detected in >90% of cells with coverages
and somatic mutations that were detected in a wide range of cells
across all cell types (Fig. S8). Our analysis showed that 90.6% of
germline mutations aggregated from scNanoGPS results were detec-
ted in pseudo-bulk long-read data (Fig. S9a). However, the con-
cordance between TGS with NGS was moderate (germline: 46.5% and
somatic: 39.8%), which were largely due to differences in gene body
coverages, e.g., NGS bulk RNAseq data had poorer uniform gene body
coverages (Fig. S9c). Among all mutations, 17.9% were in exonic
regions, while otherswere spreading across non-coding regions (35.8%
intronic, 28.8% intergenic, 3.7% 5′UTR, and 13.8% 3′UTR) (Fig. 5a).
Statistical analysis revealed that the odds of mutation detection were
significantly (Chi-sqP-values < 2.2e−16) increased in exonic (odds ratio:
7.8), 5′-UTR (odd ratio: 5.2) and 3′-UTR (odds ratio: 4.8) regions and
decreased in intergenic (odds ratio: 0.65) and intronic (odds ratio:
0.46) regions as expected. Of note, we observed 53.3% of exonic
mutations were nonsynonymous. Transition mutations were more
frequent (13–15%) than transversion mutation types (4–6%) (Fig. 5b),
consistent with a previous study23. The potential RNA editing (C >U)
events24 were not distinguishable from C>T transition (15.3%). These
transcriptome-wide mutations were distributed across all

Fig. 3 | Performance of scNanoGPS in dissecting cell types in the tumor
microenvironment. a UMAP projection of major cell types of four frozen tumors
using data processed by scNanoGPS. bUMAP projection of major cell types of four

frozen tumors using NGS data. c Concordance of cell typing results between
scNanoGPS andNGSapproaches. Only cells detected in both approacheswere used
for calculation.

Article https://doi.org/10.1038/s41467-023-39813-7

Nature Communications |         (2023) 14:4124 5



Fig. 4 | Profiling cell-type-specific isoforms in the tumor microenvironment.
aNumbers of genes with DCIs in seven cell types of a kidney tumor.b Stratification
of genes with DCIs based on the status of gene expression levels and most domi-
nant transcripts (MDTs). dMDT distinct among cell types, sMDT shared across cell
types. cHeatmap of the cellular frequencies of top cell-type-specificMDTs. d Violin
plot of numbers of exonsof tumorandnormal cell preferred isoforms.P-value: two-
sidedpaired t-test (n = 335). Boxes inside the violin plots are centered at themedian

andboundedby the first (Q1) and thirdquartile (Q3). e Pair-wised scatter plot of the
numbers of exons of expressed genes in tumor and normal cells. f Top gene
ontologies (MSigDB: GO: BP) of cell-type-specificDCI genes. P-values: Fisher’s Exact
t-test, adjusted with Benjamini and Hochberg method. g Examples of cellular fre-
quencies of isoforms of genes expressing different MDTs in different cell types.
h Examples of cellular frequencies of isoforms of genes expressing the sameMDTs
in different cell types. Source data are provided as a Source Data file.
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chromosomes except for Y-chromosome (Fig. 5c). Our data revealed
4 shared mutation hotspots on Chr2, 6, 14, and 22 in all 7 cell types,
whereChr6mutationhotspotwasknown to affectHLAgene clusters in
both tumor and normal development25 and Chr14 hotspot harbored
mutations in LncRNAs (Fig. S10a, b).

Our data showed that the mutated transcripts were detected in
15–25% of cells of each cell type (Fig. S8a), indicating the dependency
of mutation detection rates on gene expression levels and transcript
capture efficiency in single-cell RNA sequencing technology3,26–28. The
number of total mutations in individual cells varied across cell types
from 1119 SNVs in tumor cells to 758 in endothelial cells, 506 in
fibroblasts, 703 in myeloid, 461 in lymphoid, 484 in plasma cells, and
501 in follicular B cells on average (Fig. S11). To mitigate the false
positive detection of mutations due to ambient RNAs, we ran SoupX29

to de-noise the data and removed mutations that either landed on
ambient RNAs or mapped to non-coding regions (Fig. S12). Next, we
compared the cellular frequencies of mutations among different cell
types to identify mutations that were differentially expanded
(deMuts). Our results showed that tumor cells had the largest number
(N = 609) of deMuts, followed bymyeloid cells (N = 99), plasma B cells
(N = 63), endothelial cells (N = 57), follicular B (N = 29), lymphocytes

(N = 26), and fibroblasts (N = 1) (Fig. 5d, Supplementary Data 8–14).
Observation of lower mutation burden in normal cell types is con-
sistent with prior knowledge of spontaneous mutation accumulation
in normal organs throughout life time30. Tumor-cell-specific deMuts
included many COSMIC genes, such as VEGFA, NEAT1, MALAT1,
HILPDA, etc. (Fig. 5e). Further, we detected several genes that were
both mutated and differentially spliced in the same cell types, such as
HMGN3 andUBE2G2 in tumor cells,CD74 and IFI30 inmyeloid cells, and
RPS2 in endothelial cells indicating their important roles in tumor-
igenicity. Additionally, we observed several cell-type-specific deMuts
involved in the spliceosome gene set (GSEA: KEGG pathway), such as
SRSF3 and HNRNPC mutants in tumor cells and DDX5 mutants in
endothelial cells (Fig. S11b).

In summary, we demonstrated that scNanoGPS could robustly
detect cell-type and cell-state-specificmutations. Our data highlighted
the importance of identifying population-specific mutations to
understand their functional roles in cancer progression.

Discussion
In this study, we develop a computational tool called scNanoGPS to
facilitate high throughput single-cell long-read sequencing data

Fig. 5 | Transcriptome-wide mutation profiling of different cell types in the
tumor microenvironment. a Pie chart of relative fractions of all mutations in
different gene regions. b Pie chart of mutation types of all mutations. c Number of
mutations in different chromosomes. d Heatmap of cell-type-specific somatic

deMuts in all cells. eUMAPprojections of single cells labeledwith eight examplesof
tumor-cell-specific deMuts after SoupX. Source data are provided as a Source
Data file.
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analysis. scNanoGPS achieves independent deconvolution of raw data
without the guidance of short-reads or barcode whitelists and calcu-
lates genotypes-phenotypes of thousands of individual cells, addres-
sing the major computational challenges of the emerging
scNanoRNAseq technology.

Two previous methods, called Sicelore5 and scNapBar8, are
developed to deconvolute raw reads. However, both rely on the gui-
dance of paralleled NGS data. An experimental method called
scCOLOR-seq7 is developed to reduce error rates in barcodes by
designing bi-nucleotide repeats in barcode sequences7, but it relies on
prior knowledge of true barcodes to curate errors and requires cus-
tomized synthesis of gel-beads to adapt to the droplet system. Two
other NGS-independent barcode deconvolution tools, Sockeye and
BLAZE9 rely on the comparison of long-reads data with a barcode
whitelist. This is worrisome when barcode manufacturing products
deviate from theoretic lists, or the wrong version of the whitelist is
used. In comparison, scNanoGPS achieves high accuracy in detecting
true CBs directly from long-read data using a multi-step algorithm,
iCARLO, without the guidance of NGS data or barcode whitelist.

Dysregulation of transcript isoforms plays a critical role in tumor
progression22,31–33. Previous studies show that only ~20–40% of tran-
scriptional isoforms could be reconstructed from NGS bulk RNAseq
data34–36. Long-read single-cell sequencing technologies enable in-
depth annotation of splicing isoforms at single-cell levels. scNanoGPS
provides a robust computational tool to achieve this goal. Our analysis
of a frozen kidney tumor reveals that all major cell types in the tumor
commonly express a combination of different isoforms instead of one
canonical isoform. Another important finding is that tumor cells pre-
ferably express different MDTs of tumor suppressors, although their
overall gene expression levels are not significantly different from
normal cells. Our results imply that the discovery of cancer-specific
genes using gene expression levelsmay only be revealing the tip of the
iceberg of transcriptional diversities in cancer.

scNanoGPS provides a powerful approach for synchronic tracing
of cell lineage and cell fate by measuring both plastic phenotypic
markers (genes, isoforms) and stable genetic markers (mutations,
copy numbers) of the same cells to study tumor evolution and ther-
apeutic responses. scNanoGPS detects transcriptome-wide point
mutations with accuracy by building consensus sequences of single
molecules and performing consensus filtering of cellular prevalence,
which removes most false calls due to random sequencing errors.
However, our consensus approach does not address errors in calling
small indels that represent the major type of Nanopore sequencing
errors. We expect that later versions of sequencing chemistry and
nucleotide calling algorithms could address this limitation.

One potential confounding factor of our analyses would be the
false discoveries associated with ambient RNAs that may not be fully
addressed by SoupX29; particularly, it’s challenging to correct the bias
in isoformquantifications due to ambient RNAs in low-quality samples.

In addition to what we have demonstrated in this study, scNa-
noGPS has broad applications in many other genomic research areas,
such as measuring single-cell gene fusions, tandem repeats, splicing
velocities, repetitive genes, or long non-coding genes to investigate
diverse mechanisms of human diseases including but not limited to
cancer.

Methods
Cancer cell line and tumor tissue samples
All research activities of this study comply with relevant ethical reg-
ulations of Northwestern University Institutional Biomedical Review
Board. The A375 cell line was provided by Dr. Michael A. Davies at MD
Anderson Cancer Center, and H2030 was obtained from the Antibody
and Bioresource Core Facility at Memorial Sloan Kettering. The cell
lines are standard commercialized cancer lines. The four frozen
tumors (RCC1, RCC2, MEL1, MEL2) were obtained from UT MD

Anderson Cancer Center. The tumor tissues were collected with writ-
ten consent under IRB approval at UTMDAnderson Cancer Center. All
materials were transferred under the approval of theMaterial Transfer
Agreement between institutions.

Preparation of single nucleus suspension
Single nucleus suspensions of two cancer cell lines were prepared by
following the 10X Genomics protocol (CG000365 Rev C). Single
nucleus suspensions of frozen tumor tissues were prepared according
to themethod aspreviously described27. Frozen tissuewas cut into tiny
pieces in a 10-cm Petri dish with 500 µl-2ml NST-DAPI buffer for 10-
15minutes and filtered through a 40mm Flowmi into 1.5ml LowBind
Eppendorf tube and centrifuged at 4 °C 300g for 5min. The resulting
nuclei pellet was washed three times with cold Nuclei Wash and
Resuspension Buffer. After cell counting, the nuclear suspension was
centrifuged again and resuspended in the appropriate volume
depending on the nuclei counting results. Preparation of NST-DAPI
buffer:Mix 800mlofNST solution (146mMNaCl, 10mMTris-base (pH
7.8), 1mM CaCl2, 21mM MgCl2, 0.05% (wt/vol) BSA and 0.2% (v/v)
Nonidet P-40) with 200ml of DAPI solution (106mMMgCl2 and 10mg
of DAPI). The solution is filter-sterilized and is stored at 4 °C in the dark
for up to 1 year. Preparation of Nuclei Wash and Resuspension Buffer:
1× PBS with 1.0% BSA and 0.2 U/μl RNase Inhibitor.

Preparation of barcoded full-length cDNAs of single nuclei
Single nucleus suspensions were loaded onto 10× Genomics Chro-
mium Controller (iX) with Chip J to capture 3000–6000 single nuclei.
The full-length mRNAs and/or pre-mRNAs were barcoded with cell
barcodes (CBs) and uniquemolecular identifiers (UMIs) through cDNA
amplification using 10× Genomics protocol. We modified the cDNA
amplification protocol by extending the elongation time to 3min to
enrich longer molecules as previously described5.

The barcoded full-length cDNA transcripts (10 ng) were amplified
for five cycles with the following two customized primers synthesized
by Integrated DNA Technologies (Coralville, IA): 1) 5′-biotinylated
TruSeq Read 1 forward primer 5′-/5Biosg/AA AAA CTA CAC GAC GCT
CTT CCG ATC T -3′ (25 nM); 2) 3′ partial TSO reverse primer 5′-NNN
AAG CAG TGG TAT CAA CGC AGA GTA CAT-3′. The amplified single-
cell cDNA transcripts were subjected to 0.8× SPRIselect reagent
(Beckman Coulter, CA) clean-up to remove unbound and excess bio-
tinylated primers, where the bound cDNA was eluted off the bead
matrix in 45 µL of Qiagen Buffer EB (Qiagen; Valencia, CA). The eluted
cDNA was further purified through the binding of the biotinylated
template to Dynabeads™ M-270 Streptavidin beads (Invitrogen; Wal-
tham, MA). Prior to the selection of the cDNA template, 15 µL of the
Dynabeads™M-270 Streptavidin beads werewashed in 1mLof 1× SSPE
solution (UltraPure™ 20× SSPE Buffer (Invitrogen) freshly prepared
with nuclease-free water). A magnetic stand was used to separate the
streptavidin beads from the initial wash solution. The streptavidin
beadswere thenwashed three timeswith 15 µL of 1× SSPEwith removal
from the magnet and resuspension of the beads in a fresh wash solu-
tion with each repeat wash. Following the final wash, the streptavidin
beads were resuspended in 10 µL of 5× SSPE solution, and the bioti-
nylated cDNA template was added to the washed beads. This mixture
was placed on a tube rotator at room temperature for 15minutes. Post
incubation on the rotator, with the biotinylated cDNA template bound
to the washed streptavidin beads, the sample was placed back on the
magnetic stand for separation. The cDNA-bound beads were washed
twice with 100 µL 1× SSPE solution and a final wash with 100 µL Buffer
EB. The use of the biotinylated forward primer and subsequent pur-
ification with the Dynabeads™ M-270 Streptavidin beads allowed for
the selective depletion of cDNA missing the terminal poly(A)/
poly(T) tail.

The streptavidin beads containing bound biotinylated cDNAwere
then resuspended in 100 µL of PCR master mix for a secondary
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amplification for five cycles with regular PCR primers: (1) TruSeq read 1
forward primer 5′-NNN CTA CAC GAC GCT CTT CCG ATC T-3′ and 3′
partial TSO reverse primer 5′-NNN AAG CAG TGG TAT CAA CGC AGA
GTA CAT-3′. The PCR amplified product was purified with 0.8× SPRI-
select reagent into a final elution of 51 µL in Buffer EB to allow for
adequate template/volume for the necessary assessment of quality
control (QC) metrics and PromethION library preparation.

The KAPA Biosystems HiFi HotStart PCR Kit (Roche; Basel, Swit-
zerland) was used to prepare all PCR amplification mixtures for
Nanopore library preparations. The following PCR conditions were
followed for amplification: initial denaturation, 3min at 95 °C; 5 cycles
of denaturation for 30 s at 98 °C, annealing for 15 s at 64 °C, and
extension for 5min at 72 °C; followed by a final extension for
10min at 72 °C.

Nanopore sequencing library preparation for full-length cDNAs
Based on the sample molarity and average cDNA transcript length
derived from the QCmetrics, the sample input volume was calculated
and used to progress into nanopore library preparation. The SQK-
LSK110 ligation sequencing kit (Oxford Nanopore) was used to gen-
erate PromethION long-read cDNA libraries. The final sequencing was
run on PromethION flow cell (v9.4.2) with one sample per flow cell by
the DNA technology core at UCDavis. The output data was base-called
live during the runusing base-caller guppy (v5.0.12) in a super-accurate
base-calling model.

Generating benchmarking data with paralleled NGS sequencing
of fragmentized cDNAs
The same aliquot (25% volume) of barcoded full-length cDNAs was
fragmented and subjected to next-generation sequencing library pre-
paration by following the 10× Genomics Next GEM Single Cell Gene
Expressionprotocol. Thefinal librarieswere sequencedon the Illumina
Novaseq 6000 sequencer at the NUcore at Northwestern University.
The sequencing data were processed using 10X Genomics software
CellRanger ARC (v2.0)28.

QC of scNanoRNAseq data
The raw FASTQ files were processed by the scNanoGPS ‘NanoQC’
function to scan the distribution of raw read lengths, which generated
a PNG plot named ‘read_length.png’ and a tab-separated table named
‘read_length.tsv’. The first and last 100 nucleotides of raw reads were
extracted for sequencing quality analysis with FastQC (v0.12.0)37.

Scanning long-reads with expected adapter patterns
The raw FASTQ files were processed by scNanoGPS ‘Scanner’ function
to scan the expected adapter patterns using the parameters (match: 2,
mismatch: −3, gap opening: −5, gap extension: −2, sequence identity ≥
70%) equivalent to NCBI Basic Local Alignment Tool (BLAST) algo-
rithm. Raw reads with an insert length of less than 200bp was exclu-
ded from scanning. After ‘Scanner’, a compressed file containing
parsed raw CBs named ‘barcode_list.tsv.gz’ and a filtered read
sequence file named ‘processed.fastq.gz’ were generated.

Deconvolution of long-reads into single cells
The raw reads that passed QC and pattern filtering steps were
demultiplexed into single cells using scNanoGPS ‘Assigner’ function.
Another inputwas the parsedbarcode lists generated by ‘Scanner’. The
true list of CBs was retrieved through an integrated algorithm called
iCARLO. This algorithm included 4 steps. First, all CBs were ordered
decreasingly by the number of supporting reads. The number of sup-
porting reads and the order index were transformed into a log10 scale
(Fig. 1b step 3 Assigner). The raw list of true CBs was estimated by
thresholding the maximal partial derivatives of supporting reads
against the rankofCBs. Tobuffer the changes,we smoothed thepartial
derivatives within each 0.001 window of log10-scaled CB ranks.

Let X be the number of supporting reads of CBs, i be the rank
order of all CBs, and w be the 0.001 smoothing windows as defined in
Eq. (1).

8X , i,w 2 1, 2, 3, . . . ,Nð Þ ð1Þ

Each window w contains a set of CBs, allowing empty, according
to their rank order i in log10 scale per 0.001 tick as shown in Eq. (2).

0:001×w< log10i<0:001 × ðw+ 1Þ ð2Þ

The partial derivatives were calculated for each CB and then
smoothed by taking amedian average of all values within eachwindow
w as shown in Eq. (3). The crude anchoring point was defined as a
threshold cutoff where a smoothing window w had maximal partial
derivative. We defined the raw number of CBs (Cr) at this crude
anchoring point as follows:

Cr = 10
0:001× argw maxmedi

log10Xi+ 1�log10X
log10 i+ 1ð Þ�log10 i

h i
ð3Þ

We then extended this crude anchoring point by an empirical
percentage (10%) to an external boundary (N =Cr2) of true CBs to
rescue as many CBs as possible. In the third step, we exhaustively
computed pair-wised LD distances of all Cr2 CBs. CBs within 2 LD were
merged back one directionally to the CB harboring more supporting
reads and obtained a collapsed list of true CBs (N =Cr3). Lastly, we
retrieved the final list of true CBs (N =Cr4) by removing CBs that cover
less than 300 genes. According to this final list of true CBs, the master
FASTQfile resulting from ‘Scanner’was split into single-cell FASTQ files
stored in a temporal folder holding all the meta files for further usage.

Curation of sequencing errors in single molecules
Detection of the true list of UMIs and curation of sequencing errors in
singlemoleculeswasperformedbyusing scNanoGPS ‘Curator’ function.
To detect true UMIs, deconvolution of the single-cell FASTQ files was
first aligned to the reference genome (GRCh38) usingMiniMap2(v2.26)11

under the splicing mode (-ax splice). Reads mapped to the same
genomic regions (coordinates within 5 bp) were grouped into batches.
The batch calculation was conducted by paralleled computing cores.
For the reads that belong to the same clusters and have UMI within two
LDs were considered reads of the same molecules. These UMI sequen-
ces were curated to be identical. To curate errors in gene bodies, the
reads with the same curated UMIs were collapsed into consensus
sequences of single molecules using SPOA(v.4.0.7)12. Finally, the con-
sensus reads were re-mapped against the reference genome (GRCh38)
using MiniMap211 under splicing mode (-ax splice) to generate con-
sensus BAM files for all downstream analyses.

Benchmarking CB detection function of scNanoGPS with BLAZE
and Sockeye
We compared CBs detection results of scNanoGPS to BLAZE9 (v1.1.0)
and Sockeye (v0.4.0). To evaluate the accuracies of CB detection
results, the CB list extracted from matched 3’scRNAseq data with
CellRanger ARC (v2.0) (10X Genomics) short read sample with Cell-
Rangerwas treated as ground truth. The FASTQ files of scNanoRNAseq
data of two cell lines (A375, H2030) were used as input for scNanoGPS,
BLAZE, and Sockeye. To run BLAZE and Sockeye, we downloaded the
right CB whitelist version (‘737k-arc-v1.txt.gz’) from the 10× Genomics
website and used default parameters (2-LD) to run both tools. The CB
lists extracted from scNanoGPS, BLAZE, and Sockeye were then com-
pared to the CB list extracted fromCellranger ARC. The CBs existed in
the CellRanger list were treated as ‘true positive’ detection, whereas
CBs that were not extracted by CellRanger were considered as ‘false
positive’ detection. The computing time and memory usage in CB
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detection steps were also recorded accordingly, except Sockeye,
which does not execute this step separately.

Calculation of same-cell multi-omics from consensus reads
The consensus BAM files of single cells were used as input to calculate
single-cell transcriptomes, isoforms, and point mutations using scNa-
noGPS ‘Reporter’ functions. The single-cell gene expression profiles
were calculated using FeatureCount13 from the Subread package38,39

that supports long-read gene level counting. The single-cell isoforms
were calculated using LIQA14, a method designed to calculate isoforms
from long-read data of spliced mRNAs. We used default parameters
(weight of bias correction: 1, maximal distance: 20 bp) when running
LIQA. The single-cell point mutation detection was conducted using a
robust long-read variant detection tool, LongShot15. We benchmarked
the LongShot results in terms of the number of SNVswith different cell
prevalence anddifferent numbersof supporting reads (Suppl. Table 1).
With the elbowmethod, we required that each alternative allele should
be supportedbyat least twoconsensus reads. The resultingVCFfiles of
single cells were merged using BCFtools (v1.15)40. A final list of muta-
tions of all cells was obtained by consensus filtering, where all variants
detected in less than 1% of the cells were considered random errors
and removed from the analysis. To differentiate between true wild
types and missing values, we re-scanned the read depths of all loci in
the final list by Samtools (v1.15)40. Loci with 0/0 genotypes with sup-
porting reads >0were defined as true wild types, otherwise, asmissing
values if no supporting reads were found. The final mutation loci were
annotated using ANNOVAR41, which included dbSNP (v150)42 and
COSMIC (v96)43 as references. The single-cell copy numbers were cal-
culated using our previously published method, ‘CopyKAT’ (v1.0.6)16,
with default parameters. In all final output matrices, features/genes
were put in rows, while CBs were in columns.

Single-cell gene expression data analysis: QC and definingmajor
cell types
The gene expression matrices of NGS-based 3’-scRNAseq data were
processed using CellRanger ARC28 (10X Genomics) and sent for
downstream analysis using the ‘Seurat’ R package (v4.1.1)44. In 4 tumor
samples, doublets were removed using R package ‘DoubletFinder’
(v2.0.3)45 with assumed doublet rates of 0.8% per 1000 cells. Cells with
more than 10,000 genes, or more than 100,000 UMIs, considered as
doublets, were removed as outliers and suspected doublets. Cells with
less than 300 genes were filtered out due to low gene coverage. Fur-
thermore, cells with higher fractions of mitochondrial genes were fil-
tered out using arbitrary outlier cutoffs (5% in RCC1 and RCC2; 20% in
MEL1 and MEL2). UMI count matrices were normalized using the
‘LogNormalize’ method in the ‘NormalizeData’ function and scaled
across cells using the ‘ScaleData’ function in ‘Seurat’. The top 2000
highly variable genes were selected with the ‘FindVariableFeatures’
function based on ‘vst’ method and used for Principal Component
Analysis (PCA). Next, we performed PCA and uniform manifold
approximation and projection (UMAP) for dimension reduction with
the top 30 PCs. ‘FindNeighbors’ function based on the top 30 PCs and
‘FindClusters’ functions were applied to perform unbiased clustering
of cells. In all the samples, we defined a cluster of low-quality cells that
did not express known cell type markers and had much fewer genes
and UMIs compared to other cells in the same experiments. Final
clustering analyses were reperformed without these low-quality cells.
To identify the tumor cells, we used the UMI count matrix as input to
infer chromosomal CNA profiles using the R package ‘CopyKAT’
(v1.0.6)16. Cells with genome-wide CNAs were labeled as tumor cells.

Analyses of cell-type-specific splicing isoforms
Cell-type-specific splicing isoform analyses started from single-cell
isoform expression matrices that summarized the expression levels of
all known isoforms based on GENCODE (v32)20 in single cells. For

pairwise two-group (cell type) comparisons, we filtered out spor-
adically expressed genes, which were detected in less than 5% of cells
in both comparison groups. Additionally, genes with only one isoform
were excluded from this analysis. To mitigate false discoveries driven
by dropouts, the isoform expression levels of a given gene were
aggregated across all cells within each comparison group. The aggre-
gated counts of expressed molecules of all isoforms of a given gene in
both comparison groupswere sent for Chi-square tests to testwhether
the relative composition of different isoforms of a given gene was
significantly different in the two comparison groups or not. P-values
were adjusted using Benjamin–Hochberg (BH) correction for multiple
testing with a 5% false discovery rate. The relative frequency of all
isoforms of a given gene and the differences in the two comparison
groups were also calculated. Finally, the genes expressing significantly
different combinations of isoforms (DCIs) were defined as having FDR-
adjusted. P-values < 0.05, and at least one isoform had different cel-
lular prevalence in two comparison groups ≥10%. Gene ontology (GO)
biological process (BP) enrichment analysis of each gene module was
performed using DAVID (https://david.ncifcrf.gov).

Detection of cell-type-specific SNVs
To further remove random errors, we filtered out the called positions
that were detected in less than 5% of cells in each cell type or in com-
paring groups. Next, we generated a count matrix that included the
number of wild-type cells (expressed only reference alleles) and the
number of mutated cells (expressed variant alleles) of all candidate
SNVs in both groups that were under comparison.We performed a Chi-
square test to measure whether a candidate SNV had significantly dif-
ferent cellular frequencies. We adjusted P-values using BH correction
for multiple testing with a false discovery rate of 5%. This analysis was
only performed using data from cells that had read coverages. Cells
without read coverages were not included in calculating the cellular
frequencies ofmutations.Wedetermined the candidate SNVswith FDR-
adjusted P-value <0.05 and the differences in cellular frequencies >0.1
as population-specific differentially expanded SNVs (deMuts).

Summary of statistical methods
We applied Chi-sq tests to compare the relative frequencies of iso-
forms or mutations in two comparison groups. P-values were adjusted
using the BH method to adjust for multiple test errors with a false
discovery rate of 5%. We applied Pearson’s correlation and P-value to
measure the similarity of gene expression profiles and the total counts
of UMIs per cell between scNanoGPS and NGS approaches. A paired-
two-sided t-test was performed to compare the number of exons of
different isoforms of the same genes between tumor and normal cells.
All significance cutoffs used in this study were set at 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data and processed data generated in this study
have been deposited in the Gene Expression Omnibus (GEO) database
under accession code GSE212945. Source data are provided in
this paper.

Code availability
Software is available at GitHub [https://github.com/gaolabtools/
scNanoGPS]46. Codes of statistical tests are provided in the Supple-
mentary Note.
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