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Abstract
Motivation: Graph representation learning is a fundamental problem in the field of data science with applications to integrative analysis of biolog-
ical networks. Previous work in this domain was mostly limited to shallow representation techniques. A recent deep representation technique,
BIONIC, has achieved state-of-the-art results in a variety of tasks but used arbitrarily defined components.

Results: Here, we present BERTwalk, an unsupervised learning scheme that combines the BERT masked language model with a network propa-
gation regularization for graph representation learning. The transformation from networks to texts allows our method to naturally integrate differ-
ent networks and provide features that inform not only nodes or edges but also pathway-level properties. We show that our BERTwalk model
outperforms BIONIC, as well as four other recent methods, on two comprehensive benchmarks in yeast and human. We further show that our
model can be utilized to infer functional pathways and their effects.

Availability and implementation: Code and data are available at https://github.com/raminass/BERTwalk.

Contact: roded@tauex.tau.ac.il

1 Introduction

Deep learning techniques are transforming the field of data
science and have become the state of the art in a range of
applications in biology and medicine (Ching et al., 2018).
A graph is a common and general data structure to express
relations between elements. Various shallow and deep
learning strategies were proposed for graph representation
learning. These include shallow or deep encoder–decoder
schemes (Grover and Leskovec, 2016; Kipf and Welling,
2016) to learn a latent embedding of the nodes, which mini-
mizes a graph reconstruction loss, graph neural networks
(GNNs) (Zhou et al., 2020) to relate between features of con-
nected entities, and hybrid methods that use GNNs for the
encoding.

Recently, such a hybrid technique called BIONIC was ap-
plied to analyze and integrate biological networks (Forster
et al., 2022), demonstrating state-of-the-art results in compar-
ison to the iCell (Malod-Dognin et al., 2019) matrix factoriza-
tion approach and shallow learning approaches, such as
mashup (Cho et al., 2016) and node2vec (Grover and
Leskovec, 2016), in co-annotation prediction, module detec-
tion and gene function prediction. Nevertheless, its encoder,
decoder and integration components were arbitrarily defined
and suffered from several shortcomings. Specifically, encoding
started from an arbitrary initialization of each node’s feature
vector, and cross-learning between nodes was performed by
neighborhood averaging using graph attention layers which
limits learning to nodes that are as far as the number of layers

used (2 in this case). Decoding was arbitrarily defined based
on inner product and as the input networks tend to be sparse,
this leads to high dimensional embedding. For integration,
each network uses its own encoding layers and the final em-
bedding is arbitrarily averaged over all networks.

To address these shortcomings, we developed a novel
deep learning method that tackles the graph representation
learning challenge by transforming the graph structure into a
text-like structure using random walks and employing a
state-of-the-art masked language model (BERT; Devlin et al.,
2019) to achieve the encoding. Importantly, the data trans-
formation allows seamless integration of networks by collect-
ing random walk information from all networks and
learning a joint embedding. The transfer of information from
distant nodes is achieved via the random walks and does not
require any additional parameters to learn. Propagation steps
during training smooth the embedding learned across the
networks.

We apply our model, which we call BERTwalk, to two
comprehensive benchmarks of yeast and human networks
and show that BERTwalk outperforms BIONIC and four
other previous methods in a range of clustering and classifica-
tion tasks. Importantly, Our BERTwalk model is trained us-
ing a masked language modeling strategy, enabling its use as
a pre-trained model for pathway-level downstream tasks that
involve a sequence of genes as input (rather than single genes
or gene pairs). We exploit this property to successfully infer
functional pathways and their effects.
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2 Methods

We introduce a new model, which we call BERTwalk, for
unsupervised learning of a graph structure for downstream
tasks. Let G ¼ ðV;E;wÞ be a graph on a set V of nodes and a
set E of edges whose weights are given by a function
w : E! R. Let A be the graph’s adjacency matrix such that
Aij ¼ wði; jÞ for any ði; jÞ 2 E, and Aij ¼ 0 otherwise. Finally,

let Dii ¼
P

j Aij be the corresponding diagonal degree matrix.

BERTwalk receives as input a collection of T networks
fG1;G2; . . . GTg on the same set of n nodes, and a number e
of desired embedding dimension; the goal is to learn a node
embedding matrix X 2 Rn�e. BERTwalk includes several
parts: (i) random walk sampling, (ii) node embedding propa-
gation, (iii) graph-transformer-based encoder, (iv) masked
language task learning and (v) node feature representation.
A high level description of the algorithm is given in Figure 1.
The different steps are described in detail below.

2.1 Random walk sampling and embedding via

propagation

To capture network structural information and to convert it
to a text-like structure, we encode paths in the network as
sentences using random walks as in Grover and Leskovec
(2016). The walk transitions from a node to one of its neigh-
bors with probability proportional to the weight of the edge
connecting them. Similarly to Grover and Leskovec (2016),
we perform random walks of length 10, repeating 10 times
for every node in every input network. To ensure robustness
of our results to the length of the walk used, we tested differ-
ent lengths ranging between 10 and 80 and evaluated the per-
formance of BERTwalk on each of the three yeast integration
tasks described below (Section 3). We observed that the
results were robust to the length used with all differences
insignificant (ANOVA p > 0:91).

To encode these walks, the model initiates an embedding
matrix x 2 Rn�e with n the size of the vocabulary (number of
nodes) and e is the desired embedding’s dimensionality. While
the input networks we consider are undirected, the walks are
directed, hence there is a need for incorporating the order of
the nodes into our model. A common way to achieve that is
by positional encoding of the nodes, where we use the follow-
ing scheme (Ashish et al., 2017):

PEðpos;iÞ ¼
sin

pos

10000i=e

� �
if i mod 2 ¼ 0

cos
pos

10000ði�1Þ=e

� �
otherwise

:

8>>><
>>>:

(1)

PEðpos;iÞ represents the ith coordinate of the position encoding
at position pos in the sequence. These values are concatenated
to the original input features (embedding matrix).

The embedding matrix and the decoder layer are initialized
uniformly at random. For the transformer layer, We utilized
Xavier’s initialization method (Devlin et al., 2019). These
parameters are updated by the model during training. The
first token of every sequence is always the classification token
([CLS]), and as other tokens, it has corresponding vector in
embedding matrix. The final hidden state of the first token of
a particular sequence is used as sequence representation
(aggregator) for sequence level tasks such as classification. To
further smooth the learned vectors according to the graph
structure, we propagate them every epoch of training using
one iteration of random walk with restart:

X0 ¼ ð1� aÞWX þ aX;

where W ¼ D�1=2AD�1=2 and X0 is the propagated embed-
ding used in the epoch. The propagation procedure at every

(a) (b) (c) (d)

Figure 1. A sketch of the proposed BERTwalk model. (a and b) Networks are fed into the model and every network is transformed into a collection of

node sequences, produced via random walks, and a special symbol [CLS] is added at the beginning of every sequence. (c) The resulting corpus is fed to a

transformer model, standard pre-model steps take place in order to numerically represent the data (tokenization and embedding), embedding is

propagated every epoch on one of the input networks (iterating over them) before it is fed to the transformer which learns a vector representation for

each input that can be used to predict the class of a walk (sequence of nodes) or the identity of masked nodes. (d) The model is trained by masking part

of the nodes and training the model to predict them. The end result is an embedding of the nodes, taken from the Embedding layer
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epoch can be considered as a way of regularization that
ensures smoothness of the embedding over the network.
Indeed, while the loss function is lower when not using the
propagation (Fig. 2c), the learned features are more informa-
tive for downstream tasks (Fig. 2a and b).

2.2 Masked language modeling

Since the input nodes of the networks are unlabeled, we use a
masked language modeling (MLM) approach for training as
used by BERT (Devlin et al., 2019). The main model compo-
nent is a transformer encoder which receives a sequence of
vectors (representing tokens) and transforms them by apply-
ing a sequence of N ¼ 4 identical blocks. Each block consists
of a self-attention mechanism followed by feedforward neural
network, as detailed in Ashish et al. (2017). For completeness,
we describe the network structure briefly here. Let H ¼
½h1;h2; . . . ; hL� be an input sequence of L tokens, where each
token is represented by a d-dimensional vector. A self-
attention layer applies the following transformation:

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi

dk

p
 !

V ;

where Q ¼WqH;K ¼WkH and V ¼WvH for learnable
weight matrices Wq, Wk and Wv. The feed-forward layer fur-
ther is applied to each position separately and identically.
This consists of two linear transformations with a ReLU acti-
vation in between, transforms the result as follows:

FFNðxÞ ¼ ReLUðxW1 þ b1ÞW2 þ b2;

for learnable matrices W1;W2 and vectors b1;b2.
The MLM task in BERT involves randomly masking some of

the input tokens and then predicting the masked tokens based
on the remaining context. This task encourages the model to
learn contextual relationships between words and representa-
tions that capture information from both left and right context.
Specifically, we mask 20% of the tokens (representing nodes) in
each generated sentence and aim to identify the masked token
identity using cross-entropy as a loss function:

L ¼ �
XB

b¼1

XL

l¼1

XM
c¼1

1fb;l2maskg � yb;l;c log pb;l;c; (2)

where B is the batch size, L is the sequence length, M is the
number of classes, y a binary indicator which is 1 if node label

c is the correct classification for observation ðb; lÞ, and p is the
predicted probability of observation ðb; lÞ to be labeled c.

2.3 Data description and performance evaluation

In this study, we apply our model to six networks, including
three yeast networks and three human networks. The yeast
networks consist of correlated genetic interaction profiles net-
work of Costanzo et al. (2016), a co-expression network
derived from transcript profiles of yeast strains carrying dele-
tions of transcription factors of Hu et al. (2007) and a pro-
tein–protein interaction network obtained from an affinity-
purification mass-spectrometry assay of Krogan et al. (2006).
The human data, taken from Malod-Dognin et al. (2019), in-
clude a protein–protein interaction network from IID data-
base v.2016-03 (Kotlyar et al., 2016), a co-expression
network from COXPRESdb v.6.0 (Okamura et al., 2015) and
genetic interactions from BioGRID v.3.4.137 (Chatr-
Aryamontri et al., 2017). Overall, the yeast networks that we
analyze here result in 5232 unique nodes and a corpus of
52 320 sentences (walks) from which the embedding is de-
rived, and the human networks span 10 080 unique nodes
and a corpus of 100 800 sentences (walks). The number of
nodes and edges in each network are provided in Table 1.

In order to evaluate the computed embedding, we use the
recent benchmark of BIONIC (Forster et al., 2022), which fo-
cuses on three tasks: (i) gene co-annotation prediction; (ii)
gene module detection; and (iii) supervised gene function pre-
diction. As tasks (i) and (ii) are evaluated based on the same
categorization and due to the essentially identical goal of tasks
(i) and (iii), we focused here on (ii) and (iii) only. Functional
benchmarks were derived from IntAct protein complexes
(Orchard et al., 2014), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (Kanehisa and Goto, 2000) and
Gene Ontology biological processes (GO) (Ashburner et al.,
2000).

(a) (c)(b)

Figure 2. Effect of propagation during training. (a and b) The propagation procedure enhances performance in downstream tasks. (c) Cross-entropy
training loss as a function of the epoch for the masked language modeling task

Table 1. Statistics of the input networks

Network Organism No. of nodes No. of edges

Costanzo et al. (2016) Yeast 4529 33 056
Hu et al. (2007) Yeast 1101 14 826
Krogan et al. (2006) Yeast 2674 7075
Kotlyar et al. (2016) Human 13 310 164 152
Okamura et al. (2015) Human 13 063 156 820
Chatr-Aryamontri et al. (2017) Human 3111 10 266
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2.4 Implementation and runtime details

Our model was implemented in PyTorch. For training the
model we used Adam optimizer to update the weights of the
network and the embedding. BERTwalk average epoch time
when applied to the yeast dataset described above was
1.2 min (compared to 1.5 min for BIONIC) when executed on
NVIDIA TITAN GPU with 12 GB RAM. During training, we
used batch size of 64 sequences, which allows scalable train-
ing regardless of the number and size of the networks. We
learned node embeddings of size e ¼ 128.

The embeddings for all other integration methods were
taken from the BIONIC publication (Forster et al., 2022),
where implementation details of all methods are available.
The embedding size for each of these previous methods is
512.

3 Results
3.1 Overview

We developed a transformer-based model for network inte-
gration and representation learning. Our framework trans-
forms each input network into text-like sentences via random
walks; these sentences are concatenated across networks and
the resulting corpus is fed to a BERT transformer to embed
nodes for downstream clustering and classification tasks.
Unique to our approach is the use of network propagation
steps during learning to ensure smoothness over the network
of the learned embeddings. We benchmark BERTwalk using a
recent yeast network benchmark and compare to state-of-the-
art previous methods including BIONIC (Forster et al., 2022),
iCell (Malod-Dognin et al., 2019), a deep learning multi-
modal autoencoder deepNF (Gligorijevi�c et al., 2018),
Mashup (Cho et al., 2016) and a multi-network extension of
the node2vec model called multi-node2vec (Wilson et al.,
2021). We further assess the performance of our method on a
human benchmark.

3.2 A yeast benchmark

The first task in which we evaluate our approach is an unsu-
pervised task in which node embeddings are used to identify
gene modules. The results are evaluated based on several an-
notated collections of protein complexes, pathways and bio-
logical processes taken from IntAct, KEGG and GO,
respectively. The evaluation was done following Forster et al.
(2022) by hierarchically clustering the learned embedding us-
ing a variety of distance metrics, linkage methods and thresh-
olds and comparing the coherency of the resulting clusters
with the module-based standards according to an adjusted
mutual information (AMI) measure. AMI measures the simi-
larity between two clusterings while accounting for chance
agreement (see Forster et al., 2022 for full details).

Notably, a similarity measure between nodes used in this
task is cosine similarity which involves dot-product of their
feature vectors. Dot-products are the decoding operations
used by BIONIC and the algorithm is optimized using the
difference between those dot-products and the input gene net-
works. As the input networks are correlated with module
co-membership, the results may be biased in favor of
BIONIC’s training approach. Nevertheless, as shown in
Figure 3, BERTwalk compares favorably to BIONIC and to
other previous methods across all three collections.

The second task is a supervised one, where the goal is to
use node embeddings to predict gene function. We used

IntAct, KEGG and GO gene function prediction standards,
where terms with less than 10% frequency were filtered out
to allow proper stratification when splitting the data to
5-folds during cross-validation. The task here is multi-label
classification where each protein can have multiple, poten-
tially dependent labels. Thus, we used a random forest classi-
fier which is suited to this kind of tasks and can handle label
dependency. For each method, we used 5-fold cross-
validation to evaluate its embedding performance, measured
by the average over the 5-folds of the macro F1 score which
calculates the F1 score for each label separately and then takes
the average of these scores. The results are summarized in
Figure 4 and show that BERTwalk outperforms all other
methods across the three standards.

Importantly, when comparing the full integrative pipeline
to operating on each network separately, we observe the
power of data integration with superior performance in all
tested scenarios (Fig. 5).

3.3 Integration of human networks

After establishing the accuracy of our framework on the yeast
benchmark, we turned to examine its performance on an in-
dependent benchmark of network integration in humans.

Figure 3. Module detection performance on yeast benchmark measured

using the adjusted mutual information (AMI) measure. T-test P-values for

performance differences between BERTwalk and the second-best

method (BIONIC) appear above the bars

Figure 4. Gene function prediction performance on yeast benchmark

evaluated by Macro F1 which is the average per-class F1 score (harmonic

mean of precision and recall). T-test P-values for performance differences

between BERTwalk and the second-best method appear above the bars
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We integrated three human molecular interaction networks as
detailed in Table 1 and learned a global embedding for each
protein using BERTwalk. In order to evaluate the learned
embeddings, we followed the yeast evaluation and built an
analogous benchmark of functional annotations using the
GO, KEGG and IntAct resources as well as the CORUM col-
lection of protein complexes (Giurgiu et al., 2019). For com-
parison purposes, we trained BIONIC with their
recommended parameter setting for humans. As in the yeast
case, the node embeddings were fed to a random forest classi-
fier to predict the functional class. The results are summarized
in Figure 6 and show that BERTwalk outperforms BIONIC
across the four annotation standards.

3.4 Supervised pathway prediction

One advantage of BERT-like models is the sentence represen-
tation they learn in the form of the [CLS] token embedding
that can be used for downstream tasks, such as sentiment
analysis in NLP. Here, we demonstrate the power of using
this representation in the biological domain for pathway
learning. We use a broad definition of a pathway as a chain
of interacting proteins leading from a mutated protein to an
affected protein. Specifically, we synthesize protein pathways

using the PPI network of Krogan et al. (2006) and knockout
gene expression data from Kemmeren et al. (2014). We con-
sider as pathways those paths that start with a deleted mutant
and end in a differentially expressed gene (Yeang et al.,
2004). Such a pathway is labeled 1 if the gene is upregulated
and �1 if it is downregulated. All other paths are labeled 0. In
total, we constructed 26 740 paths, 18% of which are non-
zero. The input path is represented as single sequence, and the
final hidden vector corresponding to the first token ([CLS])
serves as an input to a multi-label (1/0/�1) classifier. For clas-
sification, we used random forest which we train using the
pathway data in a cross-validation setting. For comparison
purpose, we also devised a layman approach in which
BIONIC node features are averaged over the path and the
resulting vector serves as input for the classifier. The classifi-
cation results in a 5-fold cross-validation setting are depicted
in Figure 7, with BERTwalk outperforming the layman

(a) (b)

Figure 5. Comparison of BERTwalk integration to analyzing each network separately

Figure 6. Human gene function prediction performance evaluated by

Macro F1 which is the average per-class F1 score (harmonic mean of

precision and recall). T-test P-values for performance differences between

BERTwalk and BIONIC appear above the bars

0 0.2 0.4 0.6 0.8 1

Figure 7. Pathway prediction performance. Pathway representations

were derived from BERTwalk and BIONIC layman and used to train a

classifier of pathway category (–1/0/1). Shown are the resulting macro-

averaged one-class versus rest ROC curves
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approach and attaining an area of 74% under the curve, com-
puted by macro-averaging one-class versus rest ROC curves.

In order to assess the biological relevance of the synthesized
paths from knockout to an effect, we compared the functional
enrichment of 0-labeled paths against paths that are labeled 1
or �1. For each path, we computed a hypergeometric P-value
for its enrichment with a GO term (taking the minimum over
all terms). Subsequently, we performed a Wilcoxon rank sum
test to compare the obtained P-values between the two path
categories. Our analysis revealed a significantly higher enrich-
ment of the 61-labeled paths (P< 0.043).

4 Conclusions

We have developed a novel deep learning framework,
BERTwalk, for integrative analysis of biological networks.
Our framework transforms network data into text-like docu-
ments via random walks and uses the BERT transformer to
embed nodes for downstream clustering and classification
tasks. We show the superiority of our method over the state-
of-the-art BIONIC encoder–decoder scheme using both yeast
and human benchmarks. We further demonstrate its utility in
predicting pathway-level properties. The ability to embed
whole pathways could be potentially used to discover novel
signaling pathways and annotate their functional properties.

Funding

This work was supported, in part, by a fellowship from the
Edmond J. Safra Center for Bioinformatics at Tel-Aviv
University. R.S. was supported by a research grant from the
Zimin Institute for Engineering Solutions Advancing Better
Lives and by a grant from the United States—Israel Binational
Science Foundation (BSF), Jerusalem, Israel.

Conflict of interest

None declared.

References

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of bi-
ology. The Gene Ontology Consortium. Nat. Genet., 25, 25–29.

Ashish,V. et al. (2017) Attention is all you need. Adv. Neural Inf.
Process. Syst., 30, 5988–6008.

Chatr-Aryamontri,A. et al. (2017) The biogrid interaction database:

2017 update. Nucleic Acids Res., 45, D369–D379.
Ching,T. et al. (2018) Opportunities and obstacles for deep learning in

biology and medicine. J. R. Soc. Interface, 15, 20170387.

Cho,H. et al. (2016) Compact integration of multi-network topology for

functional analysis of genes. Cell Syst., 3, 540–548.e5.
Costanzo,M. et al. (2016) A global genetic interaction network maps a

wiring diagram of cellular function. Science, 353, aaf1420.
Devlin,J. et al. (2019) Bert: pre-training of deep bidirectional transform-

ers for language understanding. In: Proceedings of the 2019

Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), pp. 4171–4186. Association for

Computational Linguistics, Minneapolis, Minnesota.
Forster,D.T. et al. (2022) BIONIC: biological network integration using

convolutions. Nat. Methods, 19, 1250–1261.

Giurgiu,M. et al. (2019) Corum: the comprehensive resource of mam-

malian protein complexes—2019. Nucleic Acids Res., 47,

D559–D563.
Gligorijevi�c,V. et al. (2018) deepNF: deep network fusion for protein

function prediction. Bioinformatics, 34, 3873–3881.
Grover,A. and Leskovec,J. (2016). node2vec: scalable feature learning

for networks. In: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, KDD ’16, pp. 855–864. Association for Computing

Machinery, New York, NY, USA.
Hu,Z. et al. (2007) Genetic reconstruction of a functional transcrip-

tional regulatory network. Nat. Genet., 39, 683–687.
Kanehisa,M. and Goto,S. (2000) KEGG: Kyoto Encyclopedia of Genes

and Genomes. Nucleic Acids Res., 28, 27–30.
Kemmeren,P. et al. (2014) Large-scale genetic perturbations reveal regu-

latory networks and an abundance of gene-specific repressors. Cell,

157, 740–752.
Kipf,T.N. and Welling,M. (2016) Variational graph auto-encoders. In:

Proceedings of the NIPS Workshop Bayesian Deep Learning, pp.

1–3.
Kotlyar,M. et al. (2016) Integrated interactions database: tissue-specific

view of the human and model organism interactomes. Nucleic Acids

Res., 44, D536–D541.
Krogan,N.J. et al. (2006) Global landscape of protein complexes in the

yeast Saccharomyces cerevisiae. Nature, 440, 637–643.

Malod-Dognin,N. et al. (2019) Towards a data-integrated cell. Nat.

Commun., 10, 1–13.

Okamura,Y. et al. (2015) Coxpresdb in 2015: coexpression database

for animal species by DNA-microarray and RNAseq-based expres-

sion data with multiple quality assessment systems. Nucleic Acids

Res., 43, D82–D86.

Orchard,S. et al. (2014) The MIntAct project—IntAct as a common

curation platform for 11 molecular interaction databases. Nucleic

Acids Res., 42, D358–D363.

Wilson,J.D. et al. (2021) Analysis of population functional connectivity

data via multilayer network embeddings. Net. Sci., 9, 99–122.

Yeang,C.-H. et al. (2004) Physical network models. J. Comput. Biol.,

11, 243–262.

Zhou,J. et al. (2020) Graph neural networks: a review of methods and

applications. AI Open, 1, 57–81.

6 R.Nasser and R.Sharan


	Active Content List
	1 Introduction
	2 Methods
	3 Results
	Conflict of interest
	References


