Table 4.
Summary of the binary logistic regression model.
| Variables | Estimate Coefficients (βi) | Standard Error | Odds Ratio (exp (βi)) | Average Marginal Effects | Z-Value | P-value |
|---|---|---|---|---|---|---|
| (Intercept) | −1.032 | 0.156 | 0.356 | – | −6.620 | 3.58 |
| Incident Clearance Time | 0.288 | 0.080 | 1.334 | 0.044 | 3.598 | 3.21 |
| Injuries | 0.667 | 0.270 | 1.978 | 0.101 | 2.469 | 0.02* |
| Cars | 1.168 | 0.152 | 3.214 | 0.177 | −9.188 | <2.00 |
| Only Shoulder Blocking (Y) | −1.397 | 0.099 | 0.247 | −0.231 | 11.678 | <2.00 |
| Safety Service Patrol (Y) | −0.785 | 0.192 | 0.456 | −0.115 | −4.089 |
Null deviance: 1,542.9 on 1,211° of freedom.
Residual deviance: 1,130.5 on 1,206° of freedom.
AIC: 1,142.5/Accuracy: 0.78/Sensitivity: 0.86/Specificity: 0.65.
Significant Level Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.