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Abstract

Feedback on ventilation could help improve cardiopulmonary resuscitation quality and survival 

from out-of-hospital cardiac arrest (OHCA). However, current technology that monitors 

ventilation during OHCA is very limited. Thoracic impedance (TI) is sensitive to air volume 

changes in the lungs, allowing ventilations to be identified, but is affected by artifacts due to 

chest compressions and electrode motion. This study introduces a novel algorithm to identify 

ventilations in TI during continuous chest compressions in OHCA. Data from 367 OHCA patients 

were included, and 2551 one-minute TI segments were extracted. Concurrent capnography data 

were used to annotate 20724 ground truth ventilations for training and evaluation. A three-step 

procedure was applied to each TI segment: First, bidirectional static and adaptive filters were 

applied to remove compression artifacts. Then, fluctuations potentially due to ventilations were 

located and characterized. Finally, a recurrent neural network was used to discriminate ventilations 

from other spurious fluctuations. A quality control stage was also developed to anticipate segments 

where ventilation detection could be compromised. The algorithm was trained and tested using 

5 -fold cross-validation, and outperformed previous solutions in the literature on the study 

dataset. The median (interquartile range, IQR) per-segment and per-patient F1-scores were 89.1 

(70.8 – 99.6) and 84.1 (69.0 – 93.9), respectively. The quality control stage identified most 

low performance segments. For the 50% of segments with highest quality scores, the median 

persegment and per-patient F1-scores were 100.0 (90.9 – 100.0) and 94.3 (86.5 – 97.8). The 

proposed algorithm could allow reliable, quality-conditioned feedback on ventilation in the 

challenging scenario of continuous manual CPR in OHCA.
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Index Terms—

Adaptive filter; cardiac arrest; cardiopulmonary resuscitation (CPR); quality control; recurrent 
neural network (RNN); thoracic impedance; ventilation

I. INTRODUCTION

OUT-of-hospital cardiac arrest (OHCA) is a major cause of death in industrialized countries. 

Emergency medical services (EMS) assess about 350,000 cases each year in the US alone, 

and survival rates to resuscitation efforts are mostly low, around or below 10% [1]. A 

patient in cardiac arrest loses spontaneous circulation and breathing, leading to death within 

minutes if not treated. High-quality cardiopulmonary resuscitation (CPR), consisting of 

chest compressions and ventilations, maintains a minimum flow of blood and oxygen, 

and is critical to improve survival from OHCA [2], [3]. Thus, considerable effort has 

been made to improve the overall quality of CPR. Resuscitation guidelines [4]-[6] are 

periodically updated with the latest evidence-based recommendations for CPR delivery. 

Supportive technologies have also been developed, such as portable accelerometers to 

estimate the depth of compressions [7], and many algorithms have been proposed to extract 

CPR information from different biomedical signals [8]-[10]. When integrated into field 

equipment, these solutions enable realtime feedback to the rescuer, improving adherence to 

guideline recommendations [11]. When used retrospectively, they facilitate the annotation 

and analysis of large OHCA registries for either quality programs or research [12]. However, 

most technical advances in CPR monitoring, analysis and feedback have focused on chest 

compressions. The importance of measuring ventilation during resuscitation is strongly 

supported by evidence [13], but current technology to monitor ventilation in OHCA is 

limited, and the optimal ventilation strategy remains unclear [14], [15].

Ventilation in OHCA is typically assessed using end-tidal capnography, which monitors the 

partial pressure of CO2 in exhaled gases [16], [17]. However, capnography is not usually 

available until late phases of resuscitation, once an advanced airway is placed, nor does it 

provide information on insufflated air volumes. Thoracic impedance (TI) is sensitive to air 

volume changes in the lungs, and has been extensively used to monitor respiratory events 

[18], [19]. Most basic defibrillators acquire TI along with the electrocardiogram through 

the defibrillation pads, making it one of the earliest signals available in OHCA. Thus, it 

could be used in a range of scenarios, from monitoring ventilations early during compression 

pauses [20], to fine-tuning capnogram readings after patient intubation [16]. Moreover, the 

amplitude of the TI fluctuations due to ventilations correlates with tidal volume [21] and, 

while patient-dependent, could offer insights on the effectiveness of ventilation [22].

Impedance-based ventilation detection can be challenging, though. Ventilatory waves may 

adopt a wide range of amplitudes and durations [23]. The signal itself is very sensitive to 

electrode motion [24], [25], frequent in ambulatory scenarios such as OHCA. Moreover, 

during late phases of resuscitation, ventilations are delivered continuously, concurrently with 

chest compressions; these produce a large artifact which has to be removed for a reliable 

ventilation detection. Current solutions include harsh static filtering [26], and adaptive 
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filtering based on different compression reference signals, such as those from accelerometers 

[16], [23].

This study introduces a novel solution for impedance-based ventilation detection during 

continuous chest compressions in OHCA. Inspired by a previous work on mechanical CPR 

[27], this study proposes an algorithm for the more general case of rescuer-delivered CPR, 

where compression artifacts are far more irregular and motion noise levels larger than in 

mechanical. A preliminary version of this study has been reported [28]. The present work 

comprises more than twice as many OHCA cases, and improves on its performance by 

introducing bidirectional adaptive filtering and time-series classification. A signal quality 

control stage is also presented, which anticipates segments where ventilation detection could 

be compromised.

II. DATA SOURCES AND PREPARATION

Study data included the de-identified files from 367 OHCA patients treated by EMS 

between March 2016 and November 2017 in the Dallas - Fort Worth area (Texas, US), 

all enrolled in the Pragmatic Airway Resuscitation Trial (PART, NCT02419573) [29]. Data 

collection was approved under US federal rules for Exception From Informed Consent 

for emergency research (21 CFR 50.24). The files were acquired using a HeartStart 

MRx monitor-defibrillator (Philips Medical Systems, Andover, MA, US), and included 

TI, capnography, chest force, and chest acceleration recordings. TI was recorded with a 

sampling rate of 200 Hz and a resolution of 2.5 mΩ. The capnogram was acquired using 

Microstream (sidestream) technology, and recorded with a sampling rate of 40 Hz and a 

resolution of 0.004 mmHg. Force and acceleration were acquired using a Q-CPR assist pad, 

and recorded with a sampling rate of 100 Hz and resolutions of 0.01 kgf and 0.01 ms−2, 

respectively. Fig. 1 shows an example of the signals involved in the algorithm development. 

All files were converted and processed using Matlab (MathWorks Inc., Natick, MA, US).

Ventilations were identified in the capnogram and used as ground truth to develop the 

impedance-based detection algorithm. Ventilations were first automatically annotated using 

a state-of-the-art solution [17], and then manually reviewed. Capnogram intervals that could 

not be reliably reviewed were deemed uninterpretable and excluded from the study. On the 

finally included intervals, the automatic pre-annotation showed a sensitivity of 91.1% and 

a positive predictive value of 95.6%. The time-delay of the capnogram was also manually 

corrected by aligning expiration upstrokes with TI fluctuations during compression-free 

intervals. A default time-delay of 3.5 s was considered when no clean fluctuations could be 

identified [16]. The observed mean (standard deviation, SD) time-delay was of 3.5 (0.3) s.

Impedance intervals suitable for the study design were then selected, which included 

concurrent recordings of acceleration, force, and interpretable capnogram as per the manual 

review. Chest compression pauses longer than 20 s were excluded, in order to consider 

mostly CPR artifacted TI. Abrupt TI excursions and other unusually large artifacts were also 

discarded. Given that ventilation rates are typically measured over one-minute periods [30], 

the intervals were sub-divided into non-overlapping 60 s segments, with additional 5 s of 

starting and ending signal padding, as shown in Fig. 1. The final dataset comprised 2551 
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one-minute segments and 20724 ventilations, median (interquartile range, IQR) of 6 (3 – 10) 

minutes and 45 (23 – 78) ventilations per patient. The 97.1% of ventilations were concurrent 

with chest compressions, thus reproducing the CPR conditions.

III. METHODS

A ventilation detection algorithm was developed using the three-block architecture 

introduced in previous works [27], [28]. Fig. 2 shows a block-diagram of this layout: 

First, the TI signal was preprocessed to remove chest compression artifacts and enhance 

the ventilation waveform. Then, impedance fluctuations potentially due to ventilations were 

identified at instants tp and characterized by a set of waveform features x. This stage was 

designed to over-estimate the number of ventilations, resulting in many false positives. 

Finally, fluctuation data were modeled as a time series, and fed to a recurrent neural 

network (RNN) to discriminate the actual ventilations. The algorithm was trained and tested 

using non-overlapping one-minute TI segments. An additional quality control stage was 

also considered to prevent erroneous feedback under low signal quality or heavy noise 

conditions.

A. Signal Preprocessing

First, the TI, force and acceleration signals were resampled to a common frequency of 

fs = 50 Hz. Slow baseline drifts and high frequency components were removed from all 

three signals using a 0.06 Hz – 5 Hz band-pass filter (Butterworth, 4th order) [23]. Then, 

an adaptive Kalman filter and smoother, with force and acceleration as reference signals, 

was applied to remove compression artifacts from the TI. Finally, the TI was smoothed 

using an order 100 finite impulse response lowpass filter; a cut-off frequency of 1 Hz was 

selected, which is frequently used for impedance smoothing in respiration-related studies 

[19], [25]. Both static filters were applied in a forward-backward configuration to avoid 

phase distortion and delay.

In order to set up the adaptive filter, the high-pass filtered TI signal s t  was assumed to be 

the sum of a component due to chest compressions scc t  and a component due to ventilations 

sv t , such that s t ≈ scc t + sv t . In addition, scc t  was modeled as a linear combination of the 

neighboring force and acceleration samples, so for a time instant tj:

scc tj = ∑
k = − M

M

ak tj sa tj + kT s + bk tj sf tj + kT s (1)

where T s = 1/fs is the sampling period, and sa t  and sf t  the downsampled and high-pass 

filtered force and acceleration signals. The slowly time-varying coefficients ak t  and bk t
were also assumed to follow gaussian processes with Ornstein-Uhlenbeck type covariances 

of length-scale λ−1 [31], [32]. The process equation for the Kalman recursion follows:

xj + 1 = Fj + 1, jxj + wj, (2)
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where the state vector xj is given by

xj = a−M tj , …, aM tj , b−M tj , …, bM tj , (3)

the transition matrix by Fj + 1, j = exp −λT s ⋅ I2M + 1, and wj follows a gaussian process with 

zero mean and covariance Qj = q 1 − exp −2λT s ⋅ I2M + 1. Similarly, the measurement equation 

follows:

yj = Hjxj + vj, (4)

with observation vector Hj given by

Hj = sa tj − MT s , …, sa tj + MT s ,
sf tj − MT s , …, sf tj + MT s

T ,
(5)

and vj ∼ N 0, R . Given these equations, the coefficients ak tj  and bk tj  were obtained using 

a Rauch-Tung-Striebel smoother, as described in [33]. The ventilation component of interest 

was finally estimated as s v tj = s tj − s cc tj , with s cc tj = Hjxj. Values of M = 10, λ = 0.1, 

q = 0.0015 and R = 1 were chosen after some initial experiments. In the following, the term 

sv t  is used to represent the output of the entire preprocessing stage.

B. Fluctuation Detection

Impedance fluctuations potentially due to ventilations were identified in sv t . First, the 

largest local maxima tp
i  with a minimum separation of 1.5 s were detected. Then, the start 

of the inflation phase, ts
i , and the end of the deflation phase, te

i , were determined for 

each fluctuation. Inflation and deflation durations between 0.45 s and 5.5 s were considered 

[27]. The procedure to determine te
i  and ts

i  was not critical for the overall performance 

of the algorithm. A detailed description of the heuristic used in this study is included as 

supplementary material.

C. Feature Extraction

Each fluctuation was characterized in terms of a vector x of 14 waveform features. As shown 

in Fig. 3, the first four features comprised the amplitudes Zu, Zd  and durations T u, Td  of the 

inspiration (or upwards, from ts to tp) and expiration (or downwards, from tp to te) phases of 

the fluctuation, given by:

Zu = sv tp − sv ts , T u = tp − ts
Zd = sv tp − sv te , Td = te − tp

(6)

The remaining 10 features consisted on the curve fit coefficients of each phase in terms 

of order m = 0, …, 4 Legendre polynomials Pm z . These polynomials form an orthogonal 

system in the z ∈ −1, 1  real domain, and can be recursively obtained through

Pm + 1 z = 2m − 1 zPm z − mPm − 1 z , (7)
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with P0 z = 1 and P1 z = z. Let su be a column vector containing the samples of sv t  within 

the inspiration phase ts, tp . Let also pm be another column vector, obtained from evaluating 

(7) over a finite set of points z, with as many points as samples in su, equispaced between −1 

and 1 . The curve fit coefficients of the inspiration phase cm, u were then computed using:

cm, u = su
Tpm

pm
2 ∀m ∈ 0, …, 4 (8)

An analogous procedure was followed to obtain the expiration phase coefficients cm, d.

D. Classification

For classification and evaluation purposes, each final fluctuation output by the previous 

stage was labeled as either actual ventilation yi = 1  or false detection yi = 0 , based on 

the ground truth annotations in the capnogram. As shown in Fig. 4, ventilations in the 

capnogram were annotated covering the full inspiration cycle, from inspiration onset or 

downstroke, at time tOI, to expiration onset or upstroke, at time tOE. A fluctuation i was 

labeled as yi = 1 when its peak position tp
i  fell within one of these inspiration cycles, with an 

extra tolerance margin of 1 s. When several fluctuations met this criteria for the same ground 

truth ventilation k, only the one with peak tp
i  closest to tOE

k  was labeled as yi = 1, and the rest 

as yi = 0.

Classification was performed over full one-minute segments, which could provide the 

classifier with comparative context on fluctuation shapes and relative positioning. Each 

segment was modeled as a time series, where each time-step n ∈ 1..60  represented a one-

second interval. As shown in Fig. 4, fluctuations i were mapped to time-steps n according 

to their peak position tp
i , such that n − 1 ≤ tp

i < n. Then, a feature time series X′ = xn
′

was constructed, which contained the waveform features xi of the individual fluctuations at 

mapped time-steps, and an all-zero feature vector at unmapped ones. A ground truth label 

series Y′ = yn
′  was constructed using the same procedure to train and evaluate the classifier. 

In this case, unmapped steps were assigned to the negative class yn
′ = 0 .

The classification task was performed using an RNN with a two-layer architecture: A 

bidirectional recurrent layer, comprising 20 gated recurrent units (GRU) [34], to which the 

time series were fed, and a single neuron output layer, activated by a sigmoid function to 

produce an output p between 0 and 1 . The network worked on a sequence-to-sequence 

configuration, so a different output pn
′ was obtained for each time-step. The outputs pi

associated to fluctuations were recovered from the previously mapped time-steps, and the 

fluctuations classified as true ventilations y i = 1  if pi ≥ 0.5, and as false detections y i = 0
otherwise.

Given the primary interest on the positive class (yn
′ = 1, the actual ventilations), and the large 

number of negative class instances (mostly from unmapped time-steps), the models were 

optimized using the Dice coefficient loss [35], given by:
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DL yn
′, pn

′ = 1 − 2yn
′ pn

′ + 1
yn

′ + pn
′ + 1 . (9)

The training of the models was performed over 25 epochs, with a batch size of 32 segments, 

and using an Adam optimizer with initial learning rate of 0.005 . The entire classification 

stage was implemented in Tensorflow 2.0 [36].

E. Evaluation

Segments were partitioned patient-wise into training and test sets using a 5-fold cross-

validation (CV) strategy. Assignment was conducted in a balanced manner, such that 

approximately one-fifth (maximum deviation of 5%) of the patients, segments and ground 

truth ventilations were assigned to each fold. A total of 20 random CV partitions were 

generated to minimize any bias due to data partitioning.

For each one-minute segment, performance was assessed in terms of sensitivity (Se), 

positive predictive value (PPV) and F1-score, given by:

Se = TP
NGT

, PPV = TP
TP+FP, F1 = 2 Se ⋅ PPV

Se+PPV (10)

where TP and FP are the number of true positives (yi = 1, y i = 1) and false positives (yi = 0, 

y i = 1), respectively. Se was computed against the number of ground truth ventilations 

NGT , in order to account also for missed fluctuations(∄yi). Given the differences in 

the number of segments per patient, performance metrics were also computed patient-

wise, using aggregated data from all segments of each patient. Peformance scores from 

different partitions were mean-aggregated into a single value for each segment/patient. The 

distributions of segments and patients for different performance score bands were analyzed . 

Overall performances by segment/patient were assessed in terms of median (IQR).

1) Comparison with literature solutions: The performance of the proposed 

algorithm was compared to that of various similar solutions in the literature. Risdal et al. 

proposed an adaptive filter to remove compression artifacts, followed by a machine learning 

framework for ventilation segmentation [23]. Edelson et al. replaced the machine learning 

framework with a real-time fluctuation detector and a fixed rule-based discrimination of 

ventilations [16]. Finally, Alonso et al. proposed the use of static linear filters, and an 

adaptive rule-based discrimination, using dynamic thresholds based on previous detections 

[26]. The three methods were implemented in Matlab and trained and tested in the study 

dataset. Implementation details can be found in appendix I.

2) Feature importance: Permutation importance and recursive feature elimination were 

used to assess the contribution of the different waveform features to classification. First, 

the RNN models were train-tested on clean data and a mean F1 of reference (more robust 

to small differences than the median) was computed. Then, for each feature considered, its 

values along fluctuations were randomly shuffled and new predictions were obtained. The 
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feature whose permutation caused the smallest decrease in mean F1 was deemed the least 

important and was removed from the model. This process was repeated until a single feature 

remained.

In order to prevent data leakage, the importance analysis was conducted at each regular CV 

step, using an inner 4-fold CV loop over training data. Different feature rankings were thus 

obtained for each fold and partition.

F. Signal Quality Control

Impedance is sensitive to many noise sources, such as chest compressions and electrode 

motion, which may jeopardize the detection of ventilations. A signal quality control solution 

was designed, which could be integrated in the ventilation detection algorithm to anticipate 

the reliability of the detection.

The solution used the filtered TI signal sv t , downsampled to 5 Hz, to compute the following 

waveform features:

• The skewness of the sample distribution, which should be high for narrow, 

positive fluctuations, such as in Fig. 1.

• The first peak amplitude (FPA) of the normalized signal autocorrelation [37], 

which should be larger for regular ventilation rates and fluctuation shapes.

• SD12, a relational measure between short- and long-term variabilities [38], 

computed from the Poincaré plot of the first differences of the signal.

These features were used to fit a linear regression model where the F1 scores (scaled to unit 

range) of the ventilation detection algorithm worked as target variable. A logit link function 

was applied to produce outputs between 0 and 1. As in the feature importance analysis, an 

inner 4-fold CV loop (per regular CV step) was conducted on training data to obtain an F1

score for each training segment.

The regression models were applied to test data to obtain a quality score (QS), a rough 

estimate of F1, for each segment. Spearman's correlation was used to measure the ability of 

the QS to rank segments by F1. The performance of the ventilation detection algorithm was 

then reassessed for different segment inclusion rates; that is, when only the target fraction 

(inclusion rate) of segments with highest QS were evaluated.

Finally, the reliability of the ventilation detection algorithm (combined with the quality 

control) in providing feedback on ventilation rate (VR) was analyzed. For each segment, the 

VR was computed as

VR = 60/Δtv
i   min−1 , (11)

where ventilation instants tv
i  were taken at ventilation peaks tp

i  for estimated VR, or at 

capnogram tOE
i  for ground truth VR. Errors and confidence intervals were assessed through a 

Bland-Altman plot.
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IV. RESULTS

The ventilation detection algorithm, evaluated per segment, achieved performance scores of 

93.3 (75.0–100.0) % for Se, 90.0 (68.5 – 100.0)% for PPV, and 89.1 (70.8–99.6) % for F1. 

When computed per patient, scores were 86.5 (71.6–95.1)% for Se, 85.4 (68.3–94.7)% for 

PPV, and 84.1 (69.0–93.9)% for F1. Fig. 5 shows the distributions of both segments and 

patients for different performance decile bands. In both cases, the distributions presented 

negative skew, with most samples corresponding to the highest performance band. There 

were many segments, though, for which performance was probably too low for practical use, 

mostly related to high noise levels and/or low-amplitude ventilations (see Fig. 6). As shown 

in Fig. 6b, pauses in chest compressions were also identified as a potential error source. 

Per-patient metrics, which aggregated information from several segments, were less likely to 

present extreme performance values.

Lower per-patient median performances were in part due to a higher number of segments for 

the patients with better overall performances (the 50% and 25% of patients with highest F1 s
comprised, respectively, the 56.6% and 26.6% of segments), but also due to within-patient 

variability: the 63.5% and 36% of patients included, respectively, one or more segments with 

F1 scores 10 and 20 points below the patienťs aggregate. Note that OHCA treatment may 

undergo important changes over the course of an episode, such as patient transportation or 

the placement of an advanced airway. Moreover, rescuers usually take turns delivering CPR, 

which may result in very different compression artifacts and motion noise levels.

Performance variation between partitions was minimal, with median per-segment and per-

patient F1 SDs of 0.1% and 0.2%, respectively. The variation among the 100 individual test 

folds was much larger, though, with median per-segment and per-patient F1 s ranging from 

82.4% to 91.1%, and from 74.1% to 89.5%, respectively. This was most likely due to the 

random assignment of patients with very different TI signal qualities.

A. Comparison with literature solutions

A previous version of this study [28] used a harmonic chest compression model [39], [40] 

and a least-mean-squares (LMS) filter to remove compression artifacts, and a Random 

Forest (RF) classifier [41] to individually discriminate fluctuations. As shown in Table I, 

the preprocessing and classification stages introduced in the present work outperformed 

that preliminary design. Replacing the Kalman smoother with the LMS filter from the 

preliminary study resulted in median per-segment and per-patient F1 s of 86.5% and 81.5%, 

respectively. Similarly, replacing the RNN with an RF classifier resulted in median per-

segment and per-patient F1 s of 85.8% and 81.0%, showing the benefits of a broader context 

on TI fluctuations.

The proposed algorithm also outperformed similar solutions in the literature, as 

implemented and tested in the study dataset (see Table I). The algorithm by Alonso et 

al. [26] achieved the highest Se, but produced many false positives (low PPV). The dynamic 

amplitude threshold was able to reject relatively small artifacts; however, its starting value 

was low ( > 0.1 Ω), rejecting only the smallest fluctuations, and adaptation failed or was 
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too slow under sustained noise. In the opposite end, the solution by Edelson et al. [16] 

imposed much more severe amplitude ( > 0.25 Ω) and, most importantly, slope > 0.2 Ωs−1

constraints. This resulted in a lower Se, as many of the lowamplitude ventilations in the 

dataset were missed (a Se of zero was obtained for 9.1% of the segments). The PPV 

did not improve much, as false positives were still frequent when noise levels exceeded 

the thresholds. The most elaborate solution, by Risdal et al. [23], did not substantially 

improve results either. The segmentation framework used a short window of 1.4 s to 

identify the inspiration (OI) and expiration (OE) onsets, which may had provided too little 

context to discriminate ventilations from other artifacts. The final decision ruleset was also 

rather simple, reliant on a correct segmentation, and did not include information of the 

expiration phase. When optimized for the study dataset, the algorithm was found to require 

a significant amplitude constraint > 0.3 Ω . Finally, the solution was also penalized by a 

2.3 Hz smoothing filter, which could have let too much noise and compression residuals 

through. Results were better with a more conservative 1 Hz cut-off (median F1 of 76.9% and 

71.8% for segments and patients, respectively), but still far behind those from the algorithm 

in this study.

B. Feature importance

As shown in Fig. 7, feature importance was very consistent across folds and partitions, 

with the exception of the two most important features, Zu and Zd, which were found on 

par. High order coefficients Cu, 4, Cd, 3, Cd, 4  could likely be removed from the model without 

affecting performance. All remaining features contributed to performance, although the 

RNN proved robust to less detailed information. A simplified model using the four most 

important features Zu, Zd, Cu, 0, Cu, 1  scored a median per-segment F1 of 88.6%. Similarly, a 

model including only the inflation amplitude Zu scored a median F1 of 87.1%. Note that this 

was possible due to the larger context managed by the RNN classifier. An optimal universal 

amplitude threshold (found at 0.25 Ω), used independently in all fluctuations, scored a much 

lower F1 of 78.3%, more in line with previous solutions in the literature.

C. Signal Quality Control

The quality control stage identified segments where ventilation detection was defective. The 

solution assigned a QS, an estimate of the F1, to each segment. A Spearman's correlation 

of ρ = 0.7 was measured between QS and F1 values, proving that the solution could reliably 

sort segments by performance. Ad-hoc QS thresholds could be defined, each with a different 

segment inclusion rate and expected performance range.

Fig. 8 shows the median (IQR) per-segment F1 for different segment inclusion rates 

considered for evaluation. Median and quartile scores showed monotonic growth as 

inclusion became more restrictive and less segments were considered. Moreover, the median 

F1 scores were close to those of an ideal QS (the F1 itself), reaching 100% for up to a 55% 

segment inclusion. First quartile values were lower, though, indicating that some segments 

with low F1 were not identified. For an inclusion rate of 50%, with F1 of 100.0 (90.9 – 

100.0)%, a 9.3% and 5.1% of segments with F1 below 80% and 70% were respectively 

selected. The causes did vary, but often involved a dominant segment section (due to 
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artifacts or larger ventilations) which governed the extraction of quality features. Likewise, 

7.8% of all segments with F1 of 100% were left out, mostly showing distorted fluctuations 

like in Fig, 6a.

Per-patient performances were notably lower, as many patients marginally contributed with 

relatively low F1 segments. A 50% segment inclusion comprised data from 73.2% of all 

patients, for a per-patient F1 of 94.3 (86.5 – 97.8)%. However, 21.7% of these patients were 

very partially included (less than 25% of each patienťs available data) and represented only 

the 6.4% of the segments considered. These showed, in general, lower performances, with F1

of 85.7 (61.7 – 93.4) %.

All the impedance features considered in the quality control model were statistically 

significant, (p < 0.01). The individual Spearman's correlations were 0.40 for FPA, 0.47 for 

Skewness, and −0.64 for SD12. The regression coefficients (using normalized features) were 

0.28, 0.27 and −0.59 , respectively, denoting SD12 as the most relevant feature. The quality 

control model was also implemented for the solutions in the literature. In all three cases, the 

model was effective at sorting segments by F1, but the relative importance of the features 

(as given by regression coefficients) varied. Note that quality features were computed on 

the filtered TI, which was different in most cases. Moreover, some solutions included harsh 

amplitude thresholds, whereas features were intentionally amplitude independent.

D. Feedback on Ventilation Rates

Finally, the reliability of the ventilation detection algorithm to provide VR feedback was 

assessed. Fig. 9 shows a Bland-Altman plot on VR, in which 90% levels of agreement (LoA) 

are depicted for the whole dataset, as well as 70% and 35% data inclusion in combination 

with the quality control. Errors were larger without quality control, with a partition-averaged 

global LoA of −3.8, 6.8 min−1. Overestimation was frequent for low to moderate rates, 

the median (IQR) ground truth VR being 8.4 6.1 − 11 min−1, whereas underestimation was 

prevalent for high rates > 12 min−1 . Errors were larger for extreme rates, probably affected 

by data imbalance; 90% of the segments were in the 4.1 − 16.2 min−1 range.

Quality control helped prevent many of the errors. Global LoA were −3.4, 3.9 min−1 and 

−2.0, 2.0 min−1 for 70% and 35% data inclusion, respectively. However, the improvement 

was highly biased, avoiding mostly overestimation errors in low to moderate VR segments.

V. DISCUSSION

This study presents a novel algorithm for impedance-based ventilation detection during 

continuous chest compressions in OHCA. Evaluated on ground truth annotations taken 

entirely in the capnogram, the algorithm achieved median F1 scores of 89.1% and 84.1% 

for one-minute segments and full patients, respectively, which represents about 4 points 

of improvement over its preliminary version [28]. Two main differences may explain this 

improvement: First, the Kalman smoother used in this study, with force and acceleration 

as reference signals, proved superior at removing chest compression artifacts compared to 
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the previous LMS approach and other unidirectional adaptive filters. And second, the RNN 

classifier was fed with combined information from all fluctuations within the one-minute 

segment, which provided added context to discriminate ventilations.

The proposed method also outperformed previous solutions in the literature [16], [23], 

[26] by more than 10 points of F1. For all of them, performance was lower in our 

study dataset than in the original study. In general, these solutions treated each potential 

ventilation independently, and relied ultimately in amplitude thresholding; this would 

require ventilation levels to be overall larger than noise ones, which may not be the case 

in our data or in a real setting. Only the solution by Alonso et al. [26] included some 

case-specific context, but adapted too slowly and produced many false positives in noisy 

scenarios. Differences in data sources could explain these performance disparities. All 

the data in Edelson et al. [16] as well as part of the data in Risdal et al. [23] came 

from an in-hospital setting, in which noise levels could have been lower. In contrast, 

our dataset was collected entirely out-of-hospital, and also included a 21.6% of segments 

acquired during transportation in which detecting ventilations was more difficult (median 

F1 of 84.0%, versus 90.3% for non-transport segments). Similarly, endotracheal intubation 

may have been the norm in hospital data [42], whereas our dataset included a 13.1% of 

segments with no advanced airway, and a 56.5% with laryngeal tubes, which have been 

shown to produce lower TI amplitudes [43]. Risdal et al. reported a median (IQR) patient 

average inflation amplitude of 1.0 0.8 − 1.3 Ω, while our dataset, considering only flawlessly 

classified segments, showed a much lower 0.4 0.3 − 0.7 Ω. Our results show that, in these 

circumstances, a universal amplitude threshold alone is not feasible; a broader context on 

the surrounding fluctuations and/or a more detailed characterization is needed to reliably 

identify ventilations.

Despite the improved performance, we still identified many TI segments where ventilation 

detection was unreliable. This is in contrast with our previous study on mechanical CPR 

[27], in which noise levels were found minimal and capnographygrade performance was 

obtained. Thanks to the quality control we introduced, we could anticipate low-performance 

segments and prevent erroneous feedback. While different approaches such as template 

matching [25] or convolutional networks [37] could be explored in the future, our linear 

regression solution proved robust enough while being highly interpretable, computationally 

cheap, and easy to integrate in the detection algorithm. No fixed binary quality labels, 

but the continuous F1 scores of the detection algorithm were used to fit the model, so 

ad-hoc quality threshold could easily be defined according to performance requirements. All 

the quality features were also amplitude-independent. Given the high correlation between 

the quality and F1 scores, our detection algorithm would probably be able to identify low-

amplitude ventilations as long as not significantly distorted.

The impact of ventilation therapy in the outcome of cardiac arrest patients has been 

documented, but little is known about the details of ventilation during OHCA because 

it has not been adequately measured either in research studies or in practice [13]. Our 

ventilation detection algorithm could be used in two main scenarios: a) to provide real-time 

feedback on ventilation during OHCA treatment, and b) for the retrospective analysis of 
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ventilation effectiveness in large datasets. Notice that real-time solutions could analyze 

overlapping segments to increase the frequency of readings. Other modifications could 

also be considered, such as performing filtering and fluctuation detection in shorter sub-

segments to reduce memory requirements, or optimizing the signal padding to minimize 

delay. Whatever the application mode, a complete solution should also include logic 

to identify isolated large artifacts, which were manually excluded in this study. As a 

concrete application, the algorithm could be used to detect specific ventilation patterns, 

such as potentially harmful hyper-ventilation events [44]. Notice that the RNN in this 

study was trained using all data available, with no further considerations. This may have 

caused performances to be lower for minority ventilation patterns, and could be potentially 

alleviated using oversampling or data augmentation techniques. In the context of ongoing 

studies on ventilation effectiveness [22], the algorithm could also be used to provide TI 

amplitude measures as air volume surrogates. Given its ability to detect low amplitude 

ventilations, diverse enough study data could be selected and reliably analyzed with minimal 

human effort.

A. Limitations

This study has some limitations. First, all data came from a single device model, the Philips 

HeartStart MRx. Moreover, the algorithm relied on force and acceleration data, acquired 

with an external Q-CPR pad that may often not be available and may not be compatible 

with other manufacturers' devices. Different filters should be explored to broaden the 

applicability of the solution. Second, the evaluation was carried out with a cross-validation 

strategy, with all data coming from a single resuscitation site. Thus, the algorithm could be 

overfitted to specific ventilation patterns, which could be different for other EMS agencies. 

Further validation should be conducted on an independent dataset, preferably from different 

agencies and, if possible, different devices. Third, the evaluation was also limited to episode 

intervals with a capnogram readable enough to annotate the ground truth ventilations. 

Although we observed no correlation between end-tidal CO2 levels in the capnogram and 

ventilation amplitudes in the TI (Pearson's R of −0.11), other relationships may have existed 

between the two signals that resulted in a selection bias. And fourth, the algorithm was 

designed for continuous chest compression CPR. In early resuscitation stages, however, 30:2 

CPR is usually practiced, where ventilations are delivered during pauses. Other solutions 

could be more appropriate for this scenario [20].

VI. CONCLUSIONS

This study introduces a novel algorithm for the detection of ventilations in TI during 

continuous chest compression CPR in OHCA. The algorithm improves on previous solutions 

through the use of an enhanced filtering of compression artifacts and a recurrent neural 

network to leverage on signal context. The study also introduces a quality control solution 

to anticipate TI segments where ventilation detection could be defective. The algorithm 

could be used to facilitate research on ventilation effectiveness, and potentially integrated in 

resuscitation equipment to provide real-time feedback on ventilation.
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APPENDIX I

IMPLEMENTATION OF LITERATURE SOLUTIONS

In this section we highlight the details of our implementation of the algorithms proposed by 

others. Missing information might have conditioned our implementation and thus resulted in 

suboptimal performance metrics.

The original MC-RAMP filter by Risdal et al. [23] used, on top of force and acceleration, 

the ECG common-mode channel, which was not available in the study dataset and was 

therefore ignored. Moreover, the training of the algorithm used OI and OE annotations taken 

directly on the filtered TI, which had to be derived from the capnogram: First, the largest 

TI local maxima, with minimum separation of 1.5 s, were located, and annotated as OE 

when they fell within 0.5 s of a capnogram tOE. Then, for each OE, an OI was searched 

within 1 s of the corresponding tOI. For each possible OI point, straight lines were fitted to 

the 0.5 s TI sections before and after the point; the OI was finally selected as the point with 

largest positive angle change between both lines. A window of 1.4 s and five hidden nodes 

were used, as found optimal in the original study. Given possible inaccuracies in OI and 

OE points, a duration of 0.2 – 5 s was considered; this was specified in the original work 

for a rule-based solution of reference. The decision thresholds on minimum amplitude and 

segmentation outputs gOI, gOE  were optimized through a grid search to maximize the median 

per-segment F1.

The study by Edelson et al. [16] missed key information on both static and adaptive filters, 

so the same TI preprocessing as in Risdal et al. was applied. No procedural definition 

was given for the potential start/end times of a ventilation, so they were defaulted to local 

minima. No validity ranges were given either for the expiration duration and the expiration/

inflation ratio, so no related checks were performed.

Finally, Alonso et al. [26] introduced a dynamic amplitude threshold, based on information 

from previous detections. Amplitude measures were saved and applied between consecutive 

segments from the same patient, but the average case duration was about five times shorter 

than in the original study. This may have prevented a successful long run adaptation.
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Fig. 1. 
Example of a one-minute segment, with all the signals used in the algorithm functioning 

and development: (a) the raw thoracic impedance (TI); (b) and (c), chest force and 

acceleration, used as references to remove compression artifacts from the TI; (d) sv t , the 

ventilation component of the TI, obtained after the preprocessing stage of the algorithm; 

and (e) the time-aligned capnogram, used as ground truth for training and evaluation. The 

ventilations annotated in the capnogram are shaded in blue, and closely match the inflation 

of fluctuations in sv t . Additional 5 s of padding (blurred, outside the green box) were 

included at both ends to allow the full characterization of fluctuations taking place near the 

edges.
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Fig. 2. 
Block diagram of the ventilation detection algorithm. The raw impedance signal s t  is 

first filtered to obtain the ventilation component sv t . Then, fluctuations potentially due 

to ventilations are located at instants tp
i, and characterized by a waveform feature vector 

xi. Finally, a recurrent neural network jointly classifies fluctuations as ventilations (y i = 1, 

shaded in green) or false positives (y i = 0, shaded in red). A discretionary signal quality 

control block allows to identify impedance segments where ventilation detection could be 

compromised.
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Fig. 3. 
Example of two sv t  fluctuations, as identified by the fluctuation detection stage. The 

amplitude Zu  and duration T u  of the upwards or inspiration phase (from ts to tp, in blue), 

and the amplitude Zd  and duration Td  of the downwards or expiration phase (from tp to te, 

in red) were computed to characterize each fluctuation.
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Fig. 4. 
Example of the fluctuation labeling and time-series composition procedures. Fluctuations 

were labeled as ventilations (yi = 1, shaded in green) if their peak position tp
i fell within the 

bounds (extended by up to 1 s) of a capnogram ground truth ventilation k, and as yi = 0 (in 

red) otherwise. Fluctuation data were then used to compose the 60-step feature X′  and label 

Y′  time series used in classification. Each time-step in the series represented a one-second 

interval; fluctuations were mapped to time-steps according to their peak position tp
i.
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Fig. 5. 
Distributions of both segments (left) and patients (right) for different sensitivity (Se), 

positive predictive value (PPV), and F1 score bands.
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Fig. 6. 
Examples of error-prone ventilation impedance waveforms. Intervals of 20 s are presented, 

along with their corresponding ground truth capnogram waveform. The unfiltered 

impedance signal, depicted in the brackground in gray, is scaled (scale shown top-left of 

each figure) so fluctuations are highlighted. True positives (TP), false positives (FP) and 

false negatives (FN) are indicated.
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Fig. 7. 
Probability of selecting a given feature in a simplified M-feature model, computed as 

the proportion of training folds and partitions for which the feature was selected through 

recursive feature elimination.
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Fig. 8. 
Median (IQR) per-segment F1 scores for increasing segment inclusion rates. Segments 

considered for evaluation were selected according to the proposed quality score (QS), 

and performance compared to an ideal QS (the F1 itself). Median and IQR values were 

averaged between partitions. Median F1 scores are also shown for the different solutions in 

the literature, with quality control optimized for each case.
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Fig. 9. 
Bland-Altman plot, comparing estimated VRALG  and ground truth VRGT  ventilation rates. 

The 90% levels of agreement (LoA) were computed for different VRGT intervals (interval 

width of 3 min−1 and step of 0.5 min−1) and segment inclusion rates (according to quality 

control results). Individual VRALG and LoA values were averaged partition-wise.
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