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Abstract

Background: Associations between epigenetic aging with cognitive aging and neuropsychiatric
measures are not well-understood.

Objective: 1) To assess cross-sectional correlations between second-generation DNA
methylation (DNAm)-based clocks of healthspan and lifespan (i.e., GrimAge, PhenoAge, and
DNAm-based estimator of telomere length [DNAMTL]) and cognitive and neuropsychiatric
measures; 2) To examine longitudinal associations between change in DNAm markers and change
in cognition over 2 years.

Methods: Participants were members of VITAL-DEP (VITamin D and OmegA-3 TriaL-
Depression Endpoint Prevention) study. From previously ascertained cognitive groups (i.e.,
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cognitively normal and mild cognitive impairment), we randomly selected 45 participants,

aged = 60 years, who completed in-person neuropsychiatric assessments at baseline and

2 years. The primary outcome was global cognitive score (averaging z-scores of 9 tests).
Neuropsychiatric Inventory severity scores were mapped from neuropsychiatric symptoms (NPS)
from psychological scales and structured diagnostic interviews. DNAm was assayed using
Illumina MethylationEPIC 850K BeadChip at baseline and 2 years. We calculated baseline partial
Spearman correlations between DNAmM markers and cognitive and NPS measures. We constructed
multivariable linear regression models to examine longitudinal relations between DNAmM markers
and cognition.

Results: At baseline, we observed a suggestive negative correlation between GrimAge clock
markers and global cognition but no signal between DNAmM markers and NPS measures. Over 2
years: each 1-year increase in DNAmMGrimAge was significantly associated with faster declines in
global cognition; each 100-base pair increase in DNAmMTL was significantly associated with better
global cognition.

Conclusion: We found preliminary evidence of cross-sectional and longitudinal associations
between DNAmM markers and global cognition.
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INTRODUCTION

Aging is the strongest known risk factor for dementia [1]. Variation in epigenetic aging
has been associated with age-related morbidities including dementia [2, 3]; yet less is
known about the interface between epigenetic aging and cognitive aging. Understanding
the epigenetic mechanisms through which biological aging processes may affect cognitive
function could yield advances in prevention and treatment of dementia.

The second-generation DNA methylation (DNAmM)-based epigenetic clocks of healthspan
and lifespan, such as PhenoAge [4], GrimAge [5], and DNAm-based estimator of telomere
length (DNAmMTL) [6], outperform former DNAm clocks (e.g., Horvath’s DNAmMAge
clock, Hannum’s clock) in predicting numerous age-related morbidities [7]. Few epigenetic
studies have examined relations of second-generation DNAm markers to cognitive function
(e.g., verbal memory, executive function/attention) in older adults [8-13]; data are limited
regarding whether changes in second-generation DNAm markers can be associated with
longitudinal changes in cognitive function among community-dwelling older adults. Filling
these knowledge gaps could advance understanding of how different paths in biological
aging relate to cognitive aging and decline.

Neuropsychiatric symptoms (NPS) are highly prevalent in the ADRD (Alzheimer’s disease
and related dementias) spectrum and even appear in the pre-clinical and early stages [14,
15]. Cognitive impairment accompanied by NPS versus without NPS may also relate to
higher risk for worse cognitive outcomes [14]. While clinical-level behavioral symptoms
or disorders have been significantly related to other aging biomarkers, such as telomeres
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[16, 17], less is known about the association between epigenetic aging and NPS among
persons across the ADRD spectrum. Additionally, data on genome-wide differences in
DNAm at specific CpG sites (i.e., leading to differences in gene expression) that may
underlie variations in MCI with versus without NPS or in MCI versus CN could yield novel
mechanistic insights into the development of cognitive and neuropsychiatric phenotypes.

Thus, we conducted a pilot study of biological aging and cognition by leveraging high-
dimensional molecular and phenotypic data. Our study objectives were two-fold: 1) examine
cross-sectional correlations between second-generation DNAm-based epigenetic markers
and cognitive and neuropsychiatric measures; 2) examine longitudinal associations between
changes in DNAmM markers and changes in global and domain-specific cognitive functions
over 2 years. Exploratorily, we assessed genome-wide differences in DNAmM among persons
with contrasting cognitive and neuropsychiatric phenotypes.

Source of participants and samples

Participants were members of VITAL-DEP (VITamin D and OmegA-3 TriaL-Depression
Endpoint Prevention), a late-life depression prevention ancillary study to the VITAL trial,
protocol details of VITAL and VITAL-DEP are published elsewhere [18, 19]. VITAL is a
completed 2x2 factorial trial of vitamin D and/or marine omega-3 fatty acids (omega-3)
supplements for prevention of cardiovascular disease and cancer in 25,871 men and women,
aged 50 + and 55 + years, respectively. VITAL established a Clinical Translational Science
Center (CTSC) sub-cohort of 1,054 men and women, all of whom were participants in the
main trial, who presented for in-person health assessments at baseline and 2-year follow-up.
Among these CTSC participants, VITAL-DEP established a subset of 1,046 participants
who completed comprehensive neuropsychiatric assessments at baseline and 2 years, as
described elsewhere [18]. Participants provided blood samples at baseline and follow-up
CTSC visits.

Previously, we ascertained cognitive status in VITAL-DEP CTSC participants at baseline
and 2 years. From previously ascertained cognitive groups (i.e., cognitively normal [CN]
and mild cognitive impairment [MCI]), we randomly selected 45 VITAL-DEP CTSC
participants [aged = 60 years; 20 with CN status and 25 with MCI] who completed cognitive
assessments and had at least 1 pg of extracted genomic DNA available for DNAm assay

at baseline and 2 years; the sample was balanced by 10-year age groups and sex across
cognitive groups. All participants provided written informed consent, and study approvals
were obtained from the institutional review board of Mass General Brigham.

Ascertainment of cognitive function status, cognitive outcomes, and neuropsychiatric

symptoms

We determined MCI status using the consensus diagnostic method similar to that of the
Uniform Dataset protocol [20-22], as implemented by the Alzheimer’s Disease Research
Center programs. VITAL enrolled generally healthy and high-functioning men and women;
thus, as in prior work [23, 24], we applied the 1.5 standard deviation (SD) below-expected
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mean cut-point criterion for cognitive test performance to define MCI status in this sample.
CN status was determined among those who had no subjective cognitive concerns, had

no objective evidence of cognitive impairment, and did not meet the consensus diagnostic
criteria for MCI.

The VITAL-DEP CTSC protocol featured in-person detailed neuropsychiatric assessments
at baseline and 2 years, as detailed elsewhere [18, 25]. The cognitive battery included nine
tests assessing general cognition (Modified Mini-Mental State (3MS; range = 0-100) [26],
immediate and delayed verbal memory [27, 28], category fluency [29], executive function
and attention) [30]. The primary cognitive outcome was a global cognitive score (averaging
z-scores of all tests). Secondary cognitive outcomes were general cognition (3MS score),
verbal memory (averaging z-scores of 4 tests: immediate and delayed recalls of both a
10-word list and the East Boston Memory Test), and executive function/attention [averaging
z-scores of trail-making tests A and B and 2 category fluency tests (naming animals and
vegetables)].

We identified neuropsychiatric symptoms (NPS) at baseline by leveraging both

the self-reported psychological scales [e.g., Patient Health Questionnaire (PHQ)-9

[31] for depressive symptoms; Generalized Anxiety Disorder (GAD)-7 [32] for

anxiety symptoms] and item-level symptom features from the modules of the Mini
International Neuropsychiatric Interview (MINI) [33]. We mapped these symptoms to the
Neuropsychiatric Inventory-Questionnaire (NPI-Q) [34] and created an NP1 severity score.
The presence of NPS was determined using a cut-off of = 2 points on the NP1 severity score.

DNA methylation assay and analysis

Genomic DNA was extracted from peripheral blood leukocytes (buffy-coat cryotubes had
been stored in the vapor phase of liquid nitrogen freezers at <-130°C for later use)

using the Q1Aamp® DNA Blood Mini Kit (Qiagen Inc., Valencia, CA) and PicoGreen

DNA quantitation was performed using a Molecular Devices 96-well spectrophotometer.
DNA methylation assays on selected samples and quality controls (QCs) were conducted
using Hlumina Infinium MethylationEPIC BeadArray technology (Methyl850K chip) that
allows genome-wide DNA methylation analysis of 866,836 CpG sites; assay details are
described elsewhere [35]. To assess QC of the DNA methylation assays, we included

four blinded samples randomly placed on the plate, in duplicate for testing of QC

replicates, and one in-lab genotyping control. CpG methylation values in the 7= 4

pairs of QC replicates were highly correlated (r =0.95). All samples passed the QC
threshold, and biological sex (X, Y chromosome) was correctly identified. Regarding

DNA methylation analysis, we used the minfi Bioconductor package in R for processing
functions (performing background correction using negative control probe signal intensities,
as well as normalization and correction of dye imbalance) and analyzing the Illumina

850k methylationEPIC data [36, 37]. Probes with a mean detection p-value higher than
0.05, cross-reactive probes, non-CpG probes, and probes bound to SNP (Single Nucleotide
Polymorphisms) sites were excluded for downstream analysis. Beta values were normalized
using Noob-normalization with the minfi package in R. We computed the second-
generation DNAm-based epigenetic markers of lifespan and healthspan—DNAmMPhenoAge,
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DNAmMGrimAge, and DNAmMTL—using an online age calculator developed by Horvath and
colleagues (https://dnamage.genetics.ucla.edu/) [38]. DNAmM-PhenoAge is a DNAm-based
aging biomarker that utilizes 513 CpGs to predict multifactorial phenotypic age of an
individual [4]. DNAmMGrimAge, a composite of 12 sub-DNAm-measures that utilizes 1,030
CpGs to predict lifespan and all-cause mortality [5]. DNAMTL uses 140 CpG sites to
estimate telomere length in kilobase pairs [6]. Additionally, age-accelerated versions of
these 3 clocks (i.e., AgeAccelPheno, AgeAccelGrim, DNAmMTLadjAge) can be computed by
regressing epigenetic age on chronological age.

Statistical analyses

Descriptive characteristics were shown in the total sample and by cognitive groups. For
comparisons, we used Wilcoxon rank sum tests for continuous variables and Fisher exact
tests for proportions. We computed Spearman rank correlations between second-generation
DNAm markers and chronological age. We computed Spearman partial correlations between
DNAm markers and global and domain-specific cognitive scores at baseline; estimates were
adjusted by age, sex, estimated blood cell types [i.e., naive CD8 + T cells, exhausted
cytotoxic CD8 + T cells (defined as CD8 positive CD28 negative CD45 R negative), CD4 +
T cells, plasma blasts, natural Killer cells, monocytes, and granulocytes] [39, 40], body mass
index (BMI), cigarette smoking, and Charlson-Deyo comorbidity index [41, 42]. Similarly,
we computed partial Spearman correlations between DNAm markers and NPS measures
(i.e., PHQ-9, GAD-7, NPI severity score). We performed multivariable linear regression
analyses to determine the longitudinal associations between 2-year change in DNAm
epigenetic markers and 2-year change in global and domain-specific cognitive scores; we
used Aperformance (i.e., cognitive performance at follow-up — cognitive performance at
baseline) as the outcome and ADNAm as the exposure. Of note, the slope coefficient
estimating the magnitude of longitudinal change in primary DNAm clock markers and
change in cognitive function (ADNAmM — Aperformance) is identical to the slope coefficient
estimating the magnitude of longitudinal change in age-accelerated versions of DNAmM
marker and change in cognitive function (AAgeAcceDNAmM — Aperformance). For
simplicity, we present only the regression estimates of longitudinal change in primary
DNAm clock markers and cognitive change. Models were adjusted for chronological age,
sex, estimated blood cell types, BMI, cigarette smoking, and Charlson-Deyo comorbidity
index. Regression coefficients (B) and 95% confidence intervals (CIs) are presented.

Post-hoc analyses

First, we computed Spearman-rank correlations between second-generation DNAmM markers
and cognitive outcomes according to baseline cognitive status. Second, we used general
linear models of response profiles to relate baseline DNAm markers with cognitive change
over 2 years. Third, as in prior work [35], we conducted an exploratory analysis of genome-
wide differences in DNAm in these contrasting groups: 1) MCI versus CN; 2) MCI without
NPS versus MCI with NPS; 3) CN with NPS versus CN without NPS; 4) NPS versus

no NPS; * DMPFinder function in the minfi R package was used. Over-representation
analysis was conducted, and annotation was performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) [43].
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Results of secondary cognitive outcomes or post-hoc analyses were not adjusted for multiple
hypothesis testing; findings from these analyses are considered exploratory and interpreted
with caution. A two-tailed p-value<0.05 was used for statistical significance. All statistical
analyses were performed with SAS version 9.4 (SAS, Cary, NC) and R.

Baseline characteristics

Participants’ mean age (standard deviation) was 69.8 (5.5) years and 48.9% were females.
Of the n= 45 sample participants, there were 39 non-Hispanic white, 3 Black, and 3 Asian
participants. Descriptive characteristics in the total sample and by cognitive groups are
shown in Table 1. At baseline, participants with MCI, compared to CN, had significantly
lower body mass index (BMI) and lower global and domain-specific cognitive scores. No
differences were observed in DNAm-based epigenetic markers by cognitive phenotypes.
PHQ-9, GAD-7, and NPI severity scores appeared similar in MCI and CN groups. The
prevalence of NPS (=2 NPI severity score) was 28.9% in this sample. Distributions of
estimated blood cell types were similar in both groups except for naive CD8 + T cells,
Plasma blasts, and granulocytes. Figure 1 shows the scatterplot data and Spearman rank
correlations between chronological age and second-generation DNAmM-based epigenetic
markers. DNAMGrimAge had the strongest positive correlation with chronological age
[Spearman rho (0)=0.84, p < 0.001], followed by DNAmPhenoAge [p=0.65, p < 0.001].
There was a significant negative correlation between DNAMTL and chronological age
[0=—0.57, p<0.001].

Cross-sectional relations of DNAmM markers with cognitive and neuropsychiatric outcomes

Table 2 shows the partial Spearman rank correlations between second-generation DNAm-
based epigenetic markers and cognitive outcomes after adjusting for chronological age,
sex, estimated blood cell types, BMI, cigarette smoking, and Charlson-Deyo comorbidity
index. We observed a signal of negative partial correlation between DNAmMGrimAge and
global cognitive score (o=-0.36; p = 0.04); partial correlations were similar between
AgeAccelGrim and global cognitive score (0=—0.40; p=0.02). There were no signals for
partial correlations of DNAmMPhenoAge, DNAMTL or their age-accelerated versions with
global cognitive score.

Regarding secondary cognitive outcomes, we observed a signal of negative partial
correlations between DNAmMGrimAge and executive function/attention (0=—0.32; p=0.07);
the estimate was similar between AgeAccelGrim and executive function/attention (0=-0.38;
p=0.03). There were no signals for cross-sectional associations between PhenoAge and
DNAMTL clock measures with verbal memory and executive function/attention. In this
sample, second-generation DNAm markers were not correlated with PHQ-9, GAD-7, and
NPI severity scores (Supplementary Table 1).

Longitudinal relations of change in DNAmM markers and change in cognitive outcomes

We observed significant longitudinal associations between changes in DNAm markers and
changes in global cognition (Fig. 2). Each 1-year increase in DNAMGrimAge over 2
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years was significantly associated with a faster 2-year decline in global cognitive score
[adjusted B (95% CI): —0.09 (-0.15, —0.02); p = 0.02]. Furthermore, each 100-base pair
increase in DNAMTL over 2 years was significantly associated with better global cognitive
score over 2 years [adjusted B (95% CI): 0.15 (0.03, 0.28); p=0.02]. There were no
significant longitudinal associations between DNAmMPhenoAge with global cognitive score.
In secondary analyses, we observed variable, weak signals between changes in DNAm
markers and changes in verbal memory and executive function/attention (Table 3).

Post-hoc analyses

First, results of partial correlations between second-generation DNAm markers and
cognitive function scores stratified by baseline cognitive status are shown in Supplementary
Table 2; there were modest signals of negative partial correlations of GrimAge clock
markers with global cognition and verbal memory in the MCI group but not in the CN
group. There were relatively stronger signals of positive correlations of DNAMTL with
global cognition and executive function/attention scores in the MCI group but not in the

CN group. Second, baseline second-generation DNAmM markers were not associated with
change in global and domain-specific cognitive function scores over 2 years (Supplementary
Table 3). Third, preliminary results from exploratory analyses of genome-wide differences
contrasting cognitive and neuropsychiatric phenotypes are included in Supplementary Tables
4 and 5; no CpGs surpassed the threshold for genome-wide significance (o< 5%10 ~8) in all
comparisons. Exploratory results of potential biologic pathways underlying contrasts of MCI
versus CN and MCI with versus without NPS are provided in the Supplement.

DISCUSSION

In this pilot study, chronological age was strongly correlated with DNAmMGrimAge and
moderately correlated with DNAmPhenoAge and DNAmMTL. At baseline, we observed
negative correlations between GrimAge clock measures with global cognition and executive
function/attention. There were no signals for correlations between second-generation DNAmM
markers and their age-accelerated versions with PHQ-9, GAD-7, or NP1 severity scores.
Regarding DNAm-global cognition associations over 2-year follow-up: 1) each 1-year
increase in DNAmMGrimAge was significantly associated with faster decline in global
cognition; 2) each 100-base pair increase in DNAmMTL was significantly associated with
better global cognitive scores. Secondarily, we observed a signal for longitudinal association
between increase in DNAmMGrimAge and faster declines in executive function/attention over
2 years. Exploratory genome-wide DNAm analysis revealed potential differences comparing
MCI versus CN and MCI with versus without NPS.

The second-generation DNAm-based biomarkers of aging were developed recently with the
objective of serving as biomarkers for healthspan and lifespan. While second-generation
DNAm clocks have been associated with cognitive function and cognitive phenotypes [8—
13, 44-46], this study provides new data regarding how changes in these DNAmM markers
are associated with changes in global and domain-specific cognitive function scores over
time among community-dwelling older adults. Recently, a large prospective study found
non-significant associations between accelerated second-generation DNAmM with incident
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MCI and dementia [45]. However, differences in sample characteristics (MCI versus no
MCI in the baseline sample), and the outcome under study (incident MCI versus cognitive
change) limit comparisons between findings from the previous study and our current study.

In this pilot study, we observed accelerated cognitive decline in relation to a per-year
increase in DNAmMGrimAge and better cognitive change in relation to a per 100-base pair
increase in DNAMTL,; these results indicate significant correlations between changes in
biological indicators of healthspan and lifespan and changes in cognitive function over
time. For instance, epigenetic modifications are a prominent mechanism for controlling
telomerase activity and regulating the TERT gene [47]. Additionally, experimental evidence
suggests that early stages of age-related degenerative phenotypes could be reversed
following the reactivation of endogenous telomerase activity [48]. Speculatively, it is
possible that an increase in measured telomere length could reactivate telomerase activity
through epigenetic modifications, thus, improving longitudinal cognitive function.

We observed no preliminary signals between second-generation DNAm markers and NPS
measures in this sample. This pilot study included long-term trial participants who were
generally healthy and high-functioning at baseline, and there was a relatively narrow

range in PHQ-9, GAD-7, and NPI severity scores. It is also possible that peripheral blood
methylation levels may not capture all epigenetic changes that might be related to complex
neuropsychiatric manifestations; integration of brain tissue and cerebrospinal fluid could
provide additional epigenetic information. Together, these issues may affect the ability to
detect significant signals, as there was less variation in the sample than what might be seen
in a larger or primarily clinical population. Finally, the exploratory analyses of genome-wide
differences in DNAm in MCI versus CN and MCI with versus without NPS suggested some
biological pathways (i.e., folate metabolism) reported in previous literature: e.g., altered
one-carbon metabolism may impair DNA repair and methylation processes and contribute
to microtubule-associated tau protein hyperphosphorylation — mechanisms implicated in the
early stages of cognitive dysfunction [49, 50].

Study strengths include a well-characterized sample, cross-sectional and longitudinal

study design within an experimental framework, state-of-the-art MethylationEPIC 850K
technology, in-person detailed neuropsychiatric assessments, and administration of validated
psychiatric and behavioral symptom measures.

Our study results should be interpreted in light of several limitations. First, although we
identified signals for possible cross-sectional and longitudinal associations between second-
generation DNAm epigenetic markers and global and domain-specific cognition, caution
is needed given the exploratory nature of our work and the potential for chance findings.
Similarly, results of partial correlations between epigenetic clocks and cognitive outcomes
by baseline cognitive status (MCI versus CN) should be interpreted with caution. Second,
to avoid statistical overfit in this small pilot sample, we used a limited set of covariates,
and ancestry measures (e.g., principal components from the SNP array) were not included
in the models. Third, our results regarding telomere length (TL) were obtained using

an epigenetic clock, not a direct measurement of relative or absolute TL, so our results
cannot be compared with previous studies of actual TL [51]. Fourth, we cannot exclude
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the possibility of reverse causation bias in observed signals of longitudinal associations
between epigenetic aging and cognitive aging, i.e., lower cognitive performance is a cause
rather than an effect of accelerated biological aging. Fifth, the sample had limited racial and
ethnic diversity; studies with larger numbers of participants from diverse racial and ethnic
backgrounds are necessary to improve generalizability of findings.

In conclusion, chronological age was strongly correlated with DNAmMGrimAge, followed

by DNAmMPhenoAge and DNAMTL. Results from this study suggested that, even in the
context of small sample size, second-generation DNAm-based clocks of healthspan and
lifespan, especially GrimAge, were cross-sectionally and longitudinally related to cognitive
aging. Exploration of genome-wide DNAm differences in contrasting cognitive and
neuropsychiatric phenotypes raised possible epigenetic mechanisms involved in cognitive
aging. Future research is needed to validate our results in larger cohorts and to provide
further explorations of mechanistic relationships between newer epigenetic aging markers
and cognitive aging. If confirmed, epigenetic aging biomarkers could inform development of
targets in prevention studies of dementia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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made available to affiliated investigators through secure databases. Only investigators with
specific IRB approval will have access to any identifiable data. For de-identified datasets,
investigators can contact Dr. Olivia I. Okereke (olivia.okereke@mgh.harvard.edu) and Dr.
Vyas (cvyas@partners.org). Consent for such data sharing was integral to enrollment in the
VITAL study, and our participants have been generous in their willingness to have their data
shared to advance health research.
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