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Abstract

Background: Associations between epigenetic aging with cognitive aging and neuropsychiatric 

measures are not well-understood.

Objective: 1) To assess cross-sectional correlations between second-generation DNA 

methylation (DNAm)-based clocks of healthspan and lifespan (i.e., GrimAge, PhenoAge, and 

DNAm-based estimator of telomere length [DNAmTL]) and cognitive and neuropsychiatric 

measures; 2) To examine longitudinal associations between change in DNAm markers and change 

in cognition over 2 years.

Methods: Participants were members of VITAL-DEP (VITamin D and OmegA-3 TriaL- 

Depression Endpoint Prevention) study. From previously ascertained cognitive groups (i.e., 
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cognitively normal and mild cognitive impairment), we randomly selected 45 participants, 

aged ≥ 60 years, who completed in-person neuropsychiatric assessments at baseline and 

2 years. The primary outcome was global cognitive score (averaging z-scores of 9 tests). 

Neuropsychiatric Inventory severity scores were mapped from neuropsychiatric symptoms (NPS) 

from psychological scales and structured diagnostic interviews. DNAm was assayed using 

Illumina MethylationEPIC 850K BeadChip at baseline and 2 years. We calculated baseline partial 

Spearman correlations between DNAm markers and cognitive and NPS measures. We constructed 

multivariable linear regression models to examine longitudinal relations between DNAm markers 

and cognition.

Results: At baseline, we observed a suggestive negative correlation between GrimAge clock 

markers and global cognition but no signal between DNAm markers and NPS measures. Over 2 

years: each 1-year increase in DNAmGrimAge was significantly associated with faster declines in 

global cognition; each 100-base pair increase in DNAmTL was significantly associated with better 

global cognition.

Conclusion: We found preliminary evidence of cross-sectional and longitudinal associations 

between DNAm markers and global cognition.
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INTRODUCTION

Aging is the strongest known risk factor for dementia [1]. Variation in epigenetic aging 

has been associated with age-related morbidities including dementia [2, 3]; yet less is 

known about the interface between epigenetic aging and cognitive aging. Understanding 

the epigenetic mechanisms through which biological aging processes may affect cognitive 

function could yield advances in prevention and treatment of dementia.

The second-generation DNA methylation (DNAm)-based epigenetic clocks of healthspan 

and lifespan, such as PhenoAge [4], GrimAge [5], and DNAm-based estimator of telomere 

length (DNAmTL) [6], outperform former DNAm clocks (e.g., Horvath’s DNAmAge 

clock, Hannum’s clock) in predicting numerous age-related morbidities [7]. Few epigenetic 

studies have examined relations of second-generation DNAm markers to cognitive function 

(e.g., verbal memory, executive function/attention) in older adults [8–13]; data are limited 

regarding whether changes in second-generation DNAm markers can be associated with 

longitudinal changes in cognitive function among community-dwelling older adults. Filling 

these knowledge gaps could advance understanding of how different paths in biological 

aging relate to cognitive aging and decline.

Neuropsychiatric symptoms (NPS) are highly prevalent in the ADRD (Alzheimer’s disease 

and related dementias) spectrum and even appear in the pre-clinical and early stages [14, 

15]. Cognitive impairment accompanied by NPS versus without NPS may also relate to 

higher risk for worse cognitive outcomes [14]. While clinical-level behavioral symptoms 

or disorders have been significantly related to other aging biomarkers, such as telomeres 
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[16, 17], less is known about the association between epigenetic aging and NPS among 

persons across the ADRD spectrum. Additionally, data on genome-wide differences in 

DNAm at specific CpG sites (i.e., leading to differences in gene expression) that may 

underlie variations in MCI with versus without NPS or in MCI versus CN could yield novel 

mechanistic insights into the development of cognitive and neuropsychiatric phenotypes.

Thus, we conducted a pilot study of biological aging and cognition by leveraging high-

dimensional molecular and phenotypic data. Our study objectives were two-fold: 1) examine 

cross-sectional correlations between second-generation DNAm-based epigenetic markers 

and cognitive and neuropsychiatric measures; 2) examine longitudinal associations between 

changes in DNAm markers and changes in global and domain-specific cognitive functions 

over 2 years. Exploratorily, we assessed genome-wide differences in DNAm among persons 

with contrasting cognitive and neuropsychiatric phenotypes.

METHODS

Source of participants and samples

Participants were members of VITAL-DEP (VITamin D and OmegA-3 TriaL-Depression 

Endpoint Prevention), a late-life depression prevention ancillary study to the VITAL trial; 

protocol details of VITAL and VITAL-DEP are published elsewhere [18, 19]. VITAL is a 

completed 2×2 factorial trial of vitamin D and/or marine omega-3 fatty acids (omega-3) 

supplements for prevention of cardiovascular disease and cancer in 25,871 men and women, 

aged 50 + and 55 + years, respectively. VITAL established a Clinical Translational Science 

Center (CTSC) sub-cohort of 1,054 men and women, all of whom were participants in the 

main trial, who presented for in-person health assessments at baseline and 2-year follow-up. 

Among these CTSC participants, VITAL-DEP established a subset of 1,046 participants 

who completed comprehensive neuropsychiatric assessments at baseline and 2 years, as 

described elsewhere [18]. Participants provided blood samples at baseline and follow-up 

CTSC visits.

Previously, we ascertained cognitive status in VITAL-DEP CTSC participants at baseline 

and 2 years. From previously ascertained cognitive groups (i.e., cognitively normal [CN] 

and mild cognitive impairment [MCI]), we randomly selected 45 VITAL-DEP CTSC 

participants [aged ≥ 60 years; 20 with CN status and 25 with MCI] who completed cognitive 

assessments and had at least 1 μg of extracted genomic DNA available for DNAm assay 

at baseline and 2 years; the sample was balanced by 10-year age groups and sex across 

cognitive groups. All participants provided written informed consent, and study approvals 

were obtained from the institutional review board of Mass General Brigham.

Ascertainment of cognitive function status, cognitive outcomes, and neuropsychiatric 
symptoms

We determined MCI status using the consensus diagnostic method similar to that of the 

Uniform Dataset protocol [20–22], as implemented by the Alzheimer’s Disease Research 

Center programs. VITAL enrolled generally healthy and high-functioning men and women; 

thus, as in prior work [23, 24], we applied the 1.5 standard deviation (SD) below-expected 
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mean cut-point criterion for cognitive test performance to define MCI status in this sample. 

CN status was determined among those who had no subjective cognitive concerns, had 

no objective evidence of cognitive impairment, and did not meet the consensus diagnostic 

criteria for MCI.

The VITAL-DEP CTSC protocol featured in-person detailed neuropsychiatric assessments 

at baseline and 2 years, as detailed elsewhere [18, 25]. The cognitive battery included nine 

tests assessing general cognition (Modified Mini-Mental State (3MS; range = 0–100) [26], 

immediate and delayed verbal memory [27, 28], category fluency [29], executive function 

and attention) [30]. The primary cognitive outcome was a global cognitive score (averaging 

z-scores of all tests). Secondary cognitive outcomes were general cognition (3MS score), 

verbal memory (averaging z-scores of 4 tests: immediate and delayed recalls of both a 

10-word list and the East Boston Memory Test), and executive function/attention [averaging 

z-scores of trail-making tests A and B and 2 category fluency tests (naming animals and 

vegetables)].

We identified neuropsychiatric symptoms (NPS) at baseline by leveraging both 

the self-reported psychological scales [e.g., Patient Health Questionnaire (PHQ)-9 

[31] for depressive symptoms; Generalized Anxiety Disorder (GAD)-7 [32] for 

anxiety symptoms] and item-level symptom features from the modules of the Mini 

International Neuropsychiatric Interview (MINI) [33]. We mapped these symptoms to the 

Neuropsychiatric Inventory-Questionnaire (NPI-Q) [34] and created an NPI severity score. 

The presence of NPS was determined using a cut-off of ≥ 2 points on the NPI severity score.

DNA methylation assay and analysis

Genomic DNA was extracted from peripheral blood leukocytes (buffy-coat cryotubes had 

been stored in the vapor phase of liquid nitrogen freezers at ≤–130°C for later use) 

using the QIAamp® DNA Blood Mini Kit (Qiagen Inc., Valencia, CA) and PicoGreen 

DNA quantitation was performed using a Molecular Devices 96-well spectrophotometer. 

DNA methylation assays on selected samples and quality controls (QCs) were conducted 

using Illumina Infinium MethylationEPIC BeadArray technology (Methyl850K chip) that 

allows genome-wide DNA methylation analysis of 866,836 CpG sites; assay details are 

described elsewhere [35]. To assess QC of the DNA methylation assays, we included 

four blinded samples randomly placed on the plate, in duplicate for testing of QC 

replicates, and one in-lab genotyping control. CpG methylation values in the n = 4 

pairs of QC replicates were highly correlated (r ≥0.95). All samples passed the QC 

threshold, and biological sex (X, Y chromosome) was correctly identified. Regarding 

DNA methylation analysis, we used the minfi Bioconductor package in R for processing 

functions (performing background correction using negative control probe signal intensities, 

as well as normalization and correction of dye imbalance) and analyzing the Illumina 

850k methylationEPIC data [36, 37]. Probes with a mean detection p-value higher than 

0.05, cross-reactive probes, non-CpG probes, and probes bound to SNP (Single Nucleotide 

Polymorphisms) sites were excluded for downstream analysis. Beta values were normalized 

using Noob-normalization with the minfi package in R. We computed the second-

generation DNAm-based epigenetic markers of lifespan and healthspan—DNAmPhenoAge, 
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DNAmGrimAge, and DNAmTL—using an online age calculator developed by Horvath and 

colleagues (https://dnamage.genetics.ucla.edu/) [38]. DNAm-PhenoAge is a DNAm-based 

aging biomarker that utilizes 513 CpGs to predict multifactorial phenotypic age of an 

individual [4]. DNAmGrimAge, a composite of 12 sub-DNAm-measures that utilizes 1,030 

CpGs to predict lifespan and all-cause mortality [5]. DNAmTL uses 140 CpG sites to 

estimate telomere length in kilobase pairs [6]. Additionally, age-accelerated versions of 

these 3 clocks (i.e., AgeAccelPheno, AgeAccelGrim, DNAmTLadjAge) can be computed by 

regressing epigenetic age on chronological age.

Statistical analyses

Descriptive characteristics were shown in the total sample and by cognitive groups. For 

comparisons, we used Wilcoxon rank sum tests for continuous variables and Fisher exact 

tests for proportions. We computed Spearman rank correlations between second-generation 

DNAm markers and chronological age. We computed Spearman partial correlations between 

DNAm markers and global and domain-specific cognitive scores at baseline; estimates were 

adjusted by age, sex, estimated blood cell types [i.e., naïve CD8 + T cells, exhausted 

cytotoxic CD8 + T cells (defined as CD8 positive CD28 negative CD45 R negative), CD4 + 

T cells, plasma blasts, natural killer cells, monocytes, and granulocytes] [39, 40], body mass 

index (BMI), cigarette smoking, and Charlson-Deyo comorbidity index [41, 42]. Similarly, 

we computed partial Spearman correlations between DNAm markers and NPS measures 

(i.e., PHQ-9, GAD-7, NPI severity score). We performed multivariable linear regression 

analyses to determine the longitudinal associations between 2-year change in DNAm 

epigenetic markers and 2-year change in global and domain-specific cognitive scores; we 

used Δperformance (i.e., cognitive performance at follow-up – cognitive performance at 

baseline) as the outcome and ΔDNAm as the exposure. Of note, the slope coefficient 

estimating the magnitude of longitudinal change in primary DNAm clock markers and 

change in cognitive function (ΔDNAm → Δperformance) is identical to the slope coefficient 

estimating the magnitude of longitudinal change in age-accelerated versions of DNAm 

marker and change in cognitive function (ΔAgeAccelDNAm → Δperformance). For 

simplicity, we present only the regression estimates of longitudinal change in primary 

DNAm clock markers and cognitive change. Models were adjusted for chronological age, 

sex, estimated blood cell types, BMI, cigarette smoking, and Charlson-Deyo comorbidity 

index. Regression coefficients (β) and 95% confidence intervals (CIs) are presented.

Post-hoc analyses

First, we computed Spearman-rank correlations between second-generation DNAm markers 

and cognitive outcomes according to baseline cognitive status. Second, we used general 

linear models of response profiles to relate baseline DNAm markers with cognitive change 

over 2 years. Third, as in prior work [35], we conducted an exploratory analysis of genome-

wide differences in DNAm in these contrasting groups: 1) MCI versus CN; 2) MCI without 

NPS versus MCI with NPS; 3) CN with NPS versus CN without NPS; 4) NPS versus 

no NPS; ‘DMPFinder’ function in the minfi R package was used. Over-representation 

analysis was conducted, and annotation was performed using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) [43].
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Results of secondary cognitive outcomes or post-hoc analyses were not adjusted for multiple 

hypothesis testing; findings from these analyses are considered exploratory and interpreted 

with caution. A two-tailed p-value<0.05 was used for statistical significance. All statistical 

analyses were performed with SAS version 9.4 (SAS, Cary, NC) and R.

RESULTS

Baseline characteristics

Participants’ mean age (standard deviation) was 69.8 (5.5) years and 48.9% were females. 

Of the n = 45 sample participants, there were 39 non-Hispanic white, 3 Black, and 3 Asian 

participants. Descriptive characteristics in the total sample and by cognitive groups are 

shown in Table 1. At baseline, participants with MCI, compared to CN, had significantly 

lower body mass index (BMI) and lower global and domain-specific cognitive scores. No 

differences were observed in DNAm-based epigenetic markers by cognitive phenotypes. 

PHQ-9, GAD-7, and NPI severity scores appeared similar in MCI and CN groups. The 

prevalence of NPS (≥2 NPI severity score) was 28.9% in this sample. Distributions of 

estimated blood cell types were similar in both groups except for naïve CD8 + T cells, 

Plasma blasts, and granulocytes. Figure 1 shows the scatterplot data and Spearman rank 

correlations between chronological age and second-generation DNAm-based epigenetic 

markers. DNAmGrimAge had the strongest positive correlation with chronological age 

[Spearman rho (ρ)=0.84, p < 0.001], followed by DNAmPhenoAge [ρ=0.65, p < 0.001]. 

There was a significant negative correlation between DNAmTL and chronological age 

[ρ=−0.57, p < 0.001].

Cross-sectional relations of DNAm markers with cognitive and neuropsychiatric outcomes

Table 2 shows the partial Spearman rank correlations between second-generation DNAm-

based epigenetic markers and cognitive outcomes after adjusting for chronological age, 

sex, estimated blood cell types, BMI, cigarette smoking, and Charlson-Deyo comorbidity 

index. We observed a signal of negative partial correlation between DNAmGrimAge and 

global cognitive score (ρ=−0.36; p = 0.04); partial correlations were similar between 

AgeAccelGrim and global cognitive score (ρ=−0.40; p = 0.02). There were no signals for 

partial correlations of DNAmPhenoAge, DNAmTL or their age-accelerated versions with 

global cognitive score.

Regarding secondary cognitive outcomes, we observed a signal of negative partial 

correlations between DNAmGrimAge and executive function/attention (ρ=−0.32; p = 0.07); 

the estimate was similar between AgeAccelGrim and executive function/attention (ρ=−0.38; 

p = 0.03). There were no signals for cross-sectional associations between PhenoAge and 

DNAmTL clock measures with verbal memory and executive function/attention. In this 

sample, second-generation DNAm markers were not correlated with PHQ-9, GAD-7, and 

NPI severity scores (Supplementary Table 1).

Longitudinal relations of change in DNAm markers and change in cognitive outcomes

We observed significant longitudinal associations between changes in DNAm markers and 

changes in global cognition (Fig. 2). Each 1-year increase in DNAmGrimAge over 2 
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years was significantly associated with a faster 2-year decline in global cognitive score 

[adjusted β (95% CI): −0.09 (−0.15, −0.02); p = 0.02]. Furthermore, each 100-base pair 

increase in DNAmTL over 2 years was significantly associated with better global cognitive 

score over 2 years [adjusted β (95% CI): 0.15 (0.03, 0.28); p = 0.02]. There were no 

significant longitudinal associations between DNAmPhenoAge with global cognitive score. 

In secondary analyses, we observed variable, weak signals between changes in DNAm 

markers and changes in verbal memory and executive function/attention (Table 3).

Post-hoc analyses

First, results of partial correlations between second-generation DNAm markers and 

cognitive function scores stratified by baseline cognitive status are shown in Supplementary 

Table 2; there were modest signals of negative partial correlations of GrimAge clock 

markers with global cognition and verbal memory in the MCI group but not in the CN 

group. There were relatively stronger signals of positive correlations of DNAmTL with 

global cognition and executive function/attention scores in the MCI group but not in the 

CN group. Second, baseline second-generation DNAm markers were not associated with 

change in global and domain-specific cognitive function scores over 2 years (Supplementary 

Table 3). Third, preliminary results from exploratory analyses of genome-wide differences 

contrasting cognitive and neuropsychiatric phenotypes are included in Supplementary Tables 

4 and 5; no CpGs surpassed the threshold for genome-wide significance (p < 5×10 ‒8) in all 

comparisons. Exploratory results of potential biologic pathways underlying contrasts of MCI 

versus CN and MCI with versus without NPS are provided in the Supplement.

DISCUSSION

In this pilot study, chronological age was strongly correlated with DNAmGrimAge and 

moderately correlated with DNAmPhenoAge and DNAmTL. At baseline, we observed 

negative correlations between GrimAge clock measures with global cognition and executive 

function/attention. There were no signals for correlations between second-generation DNAm 

markers and their age-accelerated versions with PHQ-9, GAD-7, or NPI severity scores. 

Regarding DNAm-global cognition associations over 2-year follow-up: 1) each 1-year 

increase in DNAmGrimAge was significantly associated with faster decline in global 

cognition; 2) each 100-base pair increase in DNAmTL was significantly associated with 

better global cognitive scores. Secondarily, we observed a signal for longitudinal association 

between increase in DNAmGrimAge and faster declines in executive function/attention over 

2 years. Exploratory genome-wide DNAm analysis revealed potential differences comparing 

MCI versus CN and MCI with versus without NPS.

The second-generation DNAm-based biomarkers of aging were developed recently with the 

objective of serving as biomarkers for healthspan and lifespan. While second-generation 

DNAm clocks have been associated with cognitive function and cognitive phenotypes [8–

13, 44–46], this study provides new data regarding how changes in these DNAm markers 

are associated with changes in global and domain-specific cognitive function scores over 

time among community-dwelling older adults. Recently, a large prospective study found 

non-significant associations between accelerated second-generation DNAm with incident 
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MCI and dementia [45]. However, differences in sample characteristics (MCI versus no 

MCI in the baseline sample), and the outcome under study (incident MCI versus cognitive 

change) limit comparisons between findings from the previous study and our current study.

In this pilot study, we observed accelerated cognitive decline in relation to a per-year 

increase in DNAmGrimAge and better cognitive change in relation to a per 100-base pair 

increase in DNAmTL; these results indicate significant correlations between changes in 

biological indicators of healthspan and lifespan and changes in cognitive function over 

time. For instance, epigenetic modifications are a prominent mechanism for controlling 

telomerase activity and regulating the TERT gene [47]. Additionally, experimental evidence 

suggests that early stages of age-related degenerative phenotypes could be reversed 

following the reactivation of endogenous telomerase activity [48]. Speculatively, it is 

possible that an increase in measured telomere length could reactivate telomerase activity 

through epigenetic modifications, thus, improving longitudinal cognitive function.

We observed no preliminary signals between second-generation DNAm markers and NPS 

measures in this sample. This pilot study included long-term trial participants who were 

generally healthy and high-functioning at baseline, and there was a relatively narrow 

range in PHQ-9, GAD-7, and NPI severity scores. It is also possible that peripheral blood 

methylation levels may not capture all epigenetic changes that might be related to complex 

neuropsychiatric manifestations; integration of brain tissue and cerebrospinal fluid could 

provide additional epigenetic information. Together, these issues may affect the ability to 

detect significant signals, as there was less variation in the sample than what might be seen 

in a larger or primarily clinical population. Finally, the exploratory analyses of genome-wide 

differences in DNAm in MCI versus CN and MCI with versus without NPS suggested some 

biological pathways (i.e., folate metabolism) reported in previous literature: e.g., altered 

one-carbon metabolism may impair DNA repair and methylation processes and contribute 

to microtubule-associated tau protein hyperphosphorylation – mechanisms implicated in the 

early stages of cognitive dysfunction [49, 50].

Study strengths include a well-characterized sample, cross-sectional and longitudinal 

study design within an experimental framework, state-of-the-art MethylationEPIC 850K 

technology, in-person detailed neuropsychiatric assessments, and administration of validated 

psychiatric and behavioral symptom measures.

Our study results should be interpreted in light of several limitations. First, although we 

identified signals for possible cross-sectional and longitudinal associations between second-

generation DNAm epigenetic markers and global and domain-specific cognition, caution 

is needed given the exploratory nature of our work and the potential for chance findings. 

Similarly, results of partial correlations between epigenetic clocks and cognitive outcomes 

by baseline cognitive status (MCI versus CN) should be interpreted with caution. Second, 

to avoid statistical overfit in this small pilot sample, we used a limited set of covariates, 

and ancestry measures (e.g., principal components from the SNP array) were not included 

in the models. Third, our results regarding telomere length (TL) were obtained using 

an epigenetic clock, not a direct measurement of relative or absolute TL, so our results 

cannot be compared with previous studies of actual TL [51]. Fourth, we cannot exclude 
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the possibility of reverse causation bias in observed signals of longitudinal associations 

between epigenetic aging and cognitive aging, i.e., lower cognitive performance is a cause 

rather than an effect of accelerated biological aging. Fifth, the sample had limited racial and 

ethnic diversity; studies with larger numbers of participants from diverse racial and ethnic 

backgrounds are necessary to improve generalizability of findings.

In conclusion, chronological age was strongly correlated with DNAmGrimAge, followed 

by DNAmPhenoAge and DNAmTL. Results from this study suggested that, even in the 

context of small sample size, second-generation DNAm-based clocks of healthspan and 

lifespan, especially GrimAge, were cross-sectionally and longitudinally related to cognitive 

aging. Exploration of genome-wide DNAm differences in contrasting cognitive and 

neuropsychiatric phenotypes raised possible epigenetic mechanisms involved in cognitive 

aging. Future research is needed to validate our results in larger cohorts and to provide 

further explorations of mechanistic relationships between newer epigenetic aging markers 

and cognitive aging. If confirmed, epigenetic aging biomarkers could inform development of 

targets in prevention studies of dementia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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the comprehensive outcomes, covariate and blood-based biomarker data collected during the 

trial, and will encourage the submission of collaborative studies that include investigators 

from other departments and institutions. We will also maintain our strong commitment to 

communicate important study results to participants and the scientific community through 

the regular VITAL study newsletters, published manuscripts, presentations at national 

meetings, and interviews for lay publications. The data generated from this research will be 

made available to affiliated investigators through secure databases. Only investigators with 

specific IRB approval will have access to any identifiable data. For de-identified datasets, 

investigators can contact Dr. Olivia I. Okereke (olivia.okereke@mgh.harvard.edu) and Dr. 
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Fig. 1. 
Spearman rank correlations between chronological age and second-generation DNAm 

markers at baseline. DNAm, DNA methylation. aDNAmPhenoAge is a validated novel 

epigenetic clock that predicts varying aging outcomes, including all-cause mortality, 

cancers, healthspan, physical functioning, and Alzheimer’s disease [4]. bDNAmGrimAge 

is a validated novel DNAm biomarker which predicts lifespan and all-cause mortality [5]. 
cDNAmTL is a DNA methylation measurement of telomere length (unit is per 100-base 

pairs) [6].
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Fig. 2. 
Association between 2-year change in DNAm marker and 2-year change in global cognition 

(n = 45). DNAm, DNA methylation; CI, confidence interval aRegression estimates and 95% 

CIs showed in the figures; models were adjusted by chronological age, sex, blood cell 

proportions, body mass index, cigarette smoking, and Charlson-Deyo comorbidity index.
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