Skip to main content
. 2023 May 29;13(2):101–109. doi: 10.4103/jmss.jmss_158_21

Table 3.

The results of classification metrics obtained for the test dataset using deep transfer learning systems based on different architecture of pretrained convolutional neural networks and also proposed ensemble method

Micro precision Micro recall Micro F1-score Accuracy
EfficientNetB0 84.74 84.61 84.16 85.92
EfficientNetB1 68.75 71.17 69.34 74.29
EfficientNetB2 87.19 86.66 86.76 88.5
EfficientNetB3 86.06 85.64 85.67 86.84
EfficientNetB4 88.11 88.51 88.27 89.42
EfficientNetB5 73.52 73.1 72.73 77.43
ResNet50 78.89 74.87 75.68 80.01
NASNetLarge 91.18 90.29 90.68 91.27
NASNetMobile 85.51 84.89 84.96 86.47
DenseNet121 81.19 82.97 81.72 83.7
Inception_resnet_v2 87.96 86.99 87.35 88.87
InceptionV3 87.71 86.61 87.03 88.13
Xception 86.85 85.79 86.04 87.76
ResNext50 83.58 82.17 82.41 85.36
SeResnet50 85.84 87.67 86.61 87.58
Proposed Ensemble model 91.94 91.94 91.94 91.94