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Abstract 

Chordomas are rare tumors of notochord remnants, occurring mainly in the sacrum and skull base. Despite of their 
unusually slow growth, chordomas are highly invasive and the involvement of adjacent critical structures causes 
treatment challenges. Due to the low incidence, the molecular pathogenesis of this entity remains largely unknown. 
This study aimed to investigate DNA methylation abnormalities and their impact on gene expression profiles in skull 
base chordomas. 32 tumor and 4 normal nucleus pulposus samples were subjected to DNA methylation and gene 
expression profiling with methylation microarrays and RNA sequencing. Genome-wide DNA methylation analysis 
revealed two distinct clusters for chordoma (termed subtypes C and I) with different patterns of aberrant DNA meth-
ylation. C Chordomas were characterized by general hypomethylation with hypermethylation of CpG islands, while I 
chordomas were generally hypermethylated. These differences were reflected by distinct distribution of differentially 
methylated probes (DMPs). Differentially methylated regions (DMRs) were identified, indicating aberrant methylation 
in known tumor-related genes in booth chordoma subtypes and regions encoding small RNAs in subtype C chor-
domas. Correlation between methylation and expression was observed in a minority of genes. Upregulation of TBXT 
in chordomas appeared to be related to lower methylation of tumor-specific DMR in gene promoter. Gene expres-
sion-based clusters of tumor samples did not overlap with DNA methylation-based subtypes. Nevertheless, they differ 
in transcriptomic profile that shows immune infiltration in I chordomas and up-regulation of cell cycle in C chordo-
mas. Immune enrichment in chordomas I was confirmed with 3 independent deconvolution methods and immuno-
histochemistry. Copy number analysis showed higher chromosomal instability in C chordomas. Nine out of eight had 
deletion of CDKN2A/B loci and downregulation of genes encoded in related chromosomal band. No significant differ-
ence in patients’ survival was observed between tumor subtypes, however, shorter survival was observed in patients 
with higher number of copy number alterations.
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Introduction
Chordomas are rare bone tumors originating from rem-
nants of the notochord [1]. They most commonly occur 
in the sacral spine (constituting approximately 50% of 
cases) and in spheno-occipital region (skull base chordo-
mas, about 30% of cases), and the remainder is distrib-
uted along the entire length of the spine. These tumors 
are diagnosed twice as often in men than in women 
[2]. Surgery remains the main modality of treatment of 
patients with skull base chordomas (usually via trans-
nasal endoscopy) while radiotherapy is often used as 
adjuvant treatment [3]. Chordomas grow slowly, but are 
highly invasive. Because of the location and growth pat-
tern, complete surgical removal is commonly unfeasible 
and relatively high resistance to chemotherapy character-
izes these tumors. Consequently, high percentage of local 
recurrences is observed in chordoma patients [3].

Due to the low incidence of chordomas the molecular 
pathogenesis of these tumors remains largely unclear. 
Although, significant progress has been made in that 
field over the recent years with a few important studies 
on the role of genomic mutations in chordomas [4–10]. 
They revealed genetic changes in known tumor-related 
suppressors and oncogenes such as PIK3CA, PTEN and 
CDKN2A as well as alterations in tissue-specific genes 
such as TBXT duplications and protein truncating muta-
tions in LYST gene [4, 10]. Importantly, the genetic 
changes were also found in genes encoding proteins 
involved in epigenetic regulation including recurrent 
mutations in PBRM1 and SETD2 [4, 5, 10].

Contrary to the role of genetic abnormalities lit-
tle attention was paid to the role of epigenetic changes. 
Although methods for analyzing DNA methylation pro-
file in humans have been available for years, only very few 
papers on the genome-wide DNA methylation have been 
published to date [11–14]. These studies showed changes 
in chordoma DNA methylation profile in comparison to 
their normal counterparts [12] and very recently a prog-
nostic relevance of genome-wide DNA methylation pat-
tern was shown [13, 14].

Moreover, some light has also been shed on the tran-
scriptomic definition of chordoma [15–17]. Some 
researchers were struggling to identify any subgroups 
within their populations [15], while others identified two 
gene expression-based clusters [18]. Comparisons of gene 
expression profiles of tumors with those of the nucleus 
pulposus (NP, central component of the intervertebral 
disc, a notochord remnant) samples have revealed differ-
ences in expression of brachyury (T) [15, 16], SAMD-5 
[16], and other genes associated with development [15]. 
A recent multi-omic study of chordoma cell lines identi-
fied CA-2 and THNSL2 as potentially druggable genes in 
chordoma [17].

The aim of this study was to investigate genome-wide 
DNA methylation changes and whole-transcriptome 
expression profile in skull base chordomas. To the best 
of our knowledge, this is the first research to examine 
the relationship between the DNA methylation and gene 
expression profiles of chordoma tumors.

Materials and methods
Patients and tissue samples
Thirty-two patients with skull base chordoma were 
enrolled. They were treated with transnasal and/or tran-
soral endoscopic surgery at the Department of Neuro-
surgery, Maria Sklodowska-Curie National Research 
Institute of Oncology, Warsaw, in years 2014–2020. Each 
tumor sample was split and one part of the tissue was 
used for routine diagnostic procedures while the second 
one was snap frozen in liquid nitrogen and stored for 
molecular analysis. Histopathological diagnosis of a clas-
sical chordoma was confirmed according to WHO crite-
ria [19] was confirmed for all the tumor samples. Overall 
patients’ characteristics are shown in Table 1.

Four samples of nucleus pulposus (NP) were obtained 
from intervertebral disks, collected during discectomy 
of 4 patients, suffering from degenerative lumbar spine 

Table 1  Characteristics of skull base chordoma patients

Number of patients n = 32

Sex

Females 15/32 (47%)

Males 17/32 (53%)

Age [years; median (range)] 60 (23–76)

Skul base location

Clivus 21/32 (65.6%)

Clisvus and craniovertebral junction 11/32 (34.4%0

Surgery type

Endoscopic endonasal 31/32 (96.9%)

Craniotomy 1/32 (3.3%)

Gross resection rate

Complete 11/32 (34.4%)

Subtotal 16/32 (50%)

Partial 5/32 (15.6%)

Recurrence status

Newly diagnosed 22/32 (69%)

Recurrent 10/32 (31%)

Tumor size—max. diameter [mm; median (range)] 8,5 (1–17)

Histological type

Classical chordoma 32 (100%)

Death status

No 19/32 (59%)

Yes 13/32 (41%)

Follow up [months—median (range)] 38 (6–97)
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disorder. Nucleus pulposus samples were enzymatically 
digested for 4  h at 37  °C with 0.2% collagenase type II 
(Sigma–Aldrich) in a serum-free DMEM, according to 
a previously validated protocol [20]. The digested tissue/
cell suspension was filtered through sterile nylon fabric 
to remove remaining tissue debris. The cells were subse-
quently centrifuged at 300× g for 5 min and subjected to 
DNA and RNA isolation.

The study was approved by the local Ethics Committee 
of Maria Sklodowska-Curie National Research Institute 
of Oncology in Warsaw, Poland. Each patient provided 
informed consent for the use of the tissue samples for sci-
entific purposes.

Nucleic acid isolation
Genomic DNA and total RNA from tissue samples were 
isolated using AllPrep DNA/RNA/miRNA Universal Kit 
(Qiagen). The procedure included tissue homogeniz-
ing with rotor stator homogenizer Omni Tissue Master 
(Omni International). The concentration of nucleotides 
was measured both spectrophotometrically using Nan-
oDrop 2000 (Thermo Scientific) and with fluorescence-
based method using QuantiFluor Dye kit (Promega) and 
Quantus (Promega) instrument. Isolated total RNA was 
stored at − 80 °C, whereas genomic DNA was − 20 °C.

Genome‑wide DNA methylation profiling
DNA from 32 skull base chordomas and 4 NP samples 
were bisulfite converted with EZ-96 DNA Methylation 
kit (Zymo Research) and used for genome-wide DNA 
methylation profiling with Methylation EPIC (Illumina) 
BeadChip microarrays. Recommended protocol for 
Infinium MethylationEPIC Kit was used (Infinium HD 
Methylation Assay Reference Guide, Illumina). Labora-
tory procedures were performed by the Eurofins Genom-
ics service provider.

Whole transcriptome sequencing
Whole-transcriptome expression profile based on RNA 
sequencing (RNA-seq) was determined for 32 skull base 
chordoma and 4 NP samples. One μg of total RNA from 
each tissue sample was used for library preparation with 
NEBNext Ultra II Directional RNA Library Prep Kit for 
Illumina (New England BioLabs). NEBNext rRNA Deple-
tion Kit was applied for ribosomal depletion. The qual-
ity of libraries was assessed using the Agilent Bioanalyzer 
2100 system (Agilent Technologies, CA, USA). Libraries 
were then sequenced on an Illumina NovaSeq 6000 plat-
form, and 150-bp paired-end reads were generated. A 
minimum of 30 M read pairs per sample were generated. 
Sequencing was performed by the Eurofins Genomics 
service provider.

Immunohistochemical staining
Immunohistochemical staining (IHC) was performed 
on 4-μm FFPE tissue sections using Envision Detection 
System (DAKO/Agilent, Glostrup,), according to manu-
facturer’s protocol. Tissue sections were deparaffinized 
with xylene and rehydrated in a series of decreasing 
concentration ethanol solutions. Heat-induced epitope 
retrieval was performed in a 96 °C water bath, for 30 min 
in Target Retrieval Solution pH 9 (DAKO). Tissue sam-
ples were incubated with the primary antibodies against 
CD3 (clone F7.2.38; dilution 1:50; DAKO/Agilent) CD8 
(clone D8A8Y; dilution 1:200; Cell Signaling Technology) 
and CD4 (clone; dilution 1:500; Cell Signaling Technol-
ogy) for 1 h in RT. Color reaction product was developed 
using 3,3′-diaminobenzidine tetrahydrochloride as a 
substrate and nuclear counterstaining was obtained with 
hematoxylin.

Data analysis
Data were analyzed, utilizing R statistical programming 
language (version 4.2.2). Code is freely available in a 
GitHub repository  (https://​github.​com/​SBalu​szek/​chord​
oma_​RNA_​met).

DNA methylation was analyzed using minfi [21]—all 
samples passed quality control. Methylation probes were 
filtered (SNP, probes that have failed in at least 25% of 
samples) and normalized, utilizing funnorm function. 
Top one percent probes with β-value standard deviation 
above 0.1 were utilized for gaussian mixture modelling-
based clustering [22], for cross-validation hierarchical 
clustering (euclidean distance and ward.D method, base 
R package) was utilized. Subsequently, probes differen-
tially methylated between clusters, nucleus pulposus, 
and chordoma were identified using minfi [21]; p-values 
lower than 9e−8 were considered significant [23]. The 
M-values distributions were tested in a linear model and 
related β-values were visualized with violin plots. Subse-
quently, differentially methylated regions (DMRs) were 
identified with comb-p [24].

Reads abundance on gene and transcripts levels were 
quantified using kallisto [25] on GRCh37 patch 13 cDNA 
sequences, downloaded from Ensembl genome database 
(http://​grch37.​ensem​bl.​org/​Homo_​sapie​ns/​Info/​Index). 
Differential gene expression and gene expression normal-
ization was performed, utilizing DESeq2 [26]. Clustering 
of genes most variable, selected by squared coefficient 
of variation [27], was performed with gaussian mixture 
modelling-based clustering [22], for cross-validation 
hierarchical clustering (euclidean distance and ward.D 
method) was used. Interaction between methylation and 
gene expression data was analyzed by means of Ken-
dall correlation of averaged M-values within 1500 bps 

https://github.com/SBaluszek/chordoma_RNA_met
https://github.com/SBaluszek/chordoma_RNA_met
http://grch37.ensembl.org/Homo_sapiens/Info/Index
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transcription start site (TSS) and scaled gene expression. 
Methylation-controlled genes were thusly identified. 
A similar approach was utilized for DMRs (with mean 
M-values as proxy for DMR methylation level).

Subsequently, differences in gene expression fold-
change were analyzed utilizing Fast Gene Set Enrich-
ment Analysis [28] with Gene Ontology and Reactome 
terms, downloaded from MSigDB [29, 30]. Furthermore, 
weighted correlation network analysis (WGCNA) [31] 
was utilized to obtain modules of genes, whose asso-
ciation with each methylation cluster was tested with 
U-Mann–Whitney test. Subsequently, selected modules 
were intersected with STRING a protein–protein inter-
action database [32]. Importance of genes in the network 
was inferred using WGCNA connectivity measure and 
authority centrality [33], provided by tidygraph package 
[https://​tidyg​raph.​data-​imagi​nist.​com].

The tumor microenvironment was deconvoluted from 
DNA methylation and RNA sequencing—utilizing Meth-
ylResolver [34] and immunedeconv [https://​github.​com/​
omnid​econv/​immun​edeco​nv], respectively. MCPcoun-
ter [35] and ESTIMATE [36] were implemented, using 
immunedeconv. The latter was also used in order to com-
pare chordoma clusters with the common human cancer 
types. Subsequently, non-parametric statistical tests were 
utilized, where appropriate.

DNA copy number changes were inferred in two-fold 
manner—conumee was run on the methylation data [37] 
and gsealm [38] with data for chromosome bands from 
MsigDB [29, 30]. Non-parametric statistical tests were 
utilized, where appropriate and Cox proportional-hazard 
model was utilized to test for the survival outcomes.

Results were validated by comparison with a dataset 
available from Gene Omnibus GEO (GSE205331) [14]. 
For reanalysis purposes, data were filtered and normal-
ized with funnorm as described previously. Authors of 
GSE205331 have utilized top 10 000 most variable probes 
to construct their clusters and those were combined 
with 3648 probes from our study. However, due to dif-
ferences between EPIC and 450 K methylation microar-
rays, only 10,010 probes were available in both datasets 
and those were utilized downstream. Hierarchical clus-
tering was utilized for unsupervised analysis. For global 
methylation 325,137 probes common in both assays 
with β-value standard deviation above 0.1 were utilized. 
U-Mann–Whitney-Wilcoxon was utilized for compari-
sons of probes of known significance in chordomas and 

MethResolver estimates, computed for the combined 
dataset. Uniform Manifold Association Projection was 
utilized for samples visualization in Additional File 5: Fig-
ure S5.

All visualizations were performed with ggplot2 R 
library [https://​ggplo​t2.​tidyv​erse.​org].

Results
Chordoma genome‑wide DNA methylation profile
Following quality control, a set of 834,918 array probes 
(excluding SNP regions and probes with probe detec-
tion p value above 0.05) were analyzed in all 32 samples 
of skull base chordoma and 4 NP samples. Subsequently, 
top 3648 most variably methylated probes (top one per-
cent of variable probes from set of probes with standard 
deviation of β-values above 0.1) were clustered with two 
independent clustering methods i.e. hierarchical clus-
tering and gaussian modelling-based clustering. Both 
methods revealed presence of three separate clusters: 
one containing 4 NP samples and two clusters composed 
of chordoma samples. The larger one (23 samples) was 
called chordoma I and the smaller one (9 samples) chor-
doma C [13] (Fig. 1a). Interestingly, results of hierarchical 
clustering indicate that chordoma I samples were more 
similar to NP than to chordoma C samples.

Genome-wide DNA methylation was notably lower 
in chordoma C than in NP. However, this was most 
prominent in probes located in the Open Sea regions as 
depicted by methylation pattern of top variably methyl-
ated probes (Fig. 1a). This initial observation was further 
investigated in a broader set of variable probes (364,784 
probes with standard deviation of β-values above 0.1; 
Fig.  1b, c). This confirmed that general hypomethyla-
tion in cluster C chordomas was most pronounced in 
the Open Sea regions. Hypomethylation was less appar-
ent in CpGs closer to CpG islands (CGIs) (including CGI 
shelves and shores) while the probes in CGIs were hyper-
methylated in comparison to NP. In turn, chordoma I 
cluster was globally only slightly hypermethylated; how-
ever, this effect is more pronounced in CGIs and Shore 
regions (Fig. 1b). When relation of DNA methylation to 
genes was considered, a more nuanced image emerged—
chordoma I samples clearly displayed hypermethylation 
in promoters, whereas chordoma C samples varying lev-
els of hypomethylation. In both gene bodies and inter-
genic regions, chordomas from C cluster were clearly 
hypomethylated (Fig. 1b).

(See figure on next page.)
Fig. 1  Results from EPIC DNA methylation arrays a Heatmap of scaled methylation M-values of 3648 most variable probes, split in rows, according 
to CpG relation to CGI and clustering of samples. b Beta values of 364,784 probes with standard deviation of β-values above 0.1, split according 
to CpG relation to CGI and gene. c Quantification of differences in overall methylation levels using a linear model of M-values. d Distribution 
of differentially methylated probes classified according to their position regarding CGI and genes. e Differentially methylated regions, depicted 
on Manhattan plots (genomic position on x-axis), gene names for most significant and biologically interesting DMRs are captioned

https://tidygraph.data-imaginist.com
https://github.com/omnideconv/immunedeconv
https://github.com/omnideconv/immunedeconv
https://ggplot2.tidyverse.org
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Fig. 1  (See legend on previous page.)
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In order to quantify these observations, a linear model 
on M-values was built. Its results, depicted in Fig.  1c, 
warrant explanation: e.g. methylation levels were com-
pared with nucleus pulposus using Open Sea samples/
probes as reference. Based only on that, hypomethylation 
in chordoma C and CGIs would be expected. However, 
as described earlier, this was not the case, and therefore 
the effect estimation for combination of chordoma C 
and Island was strongly positive. As chordoma I samples 
were generally more methylated, this combination esti-
mate had lower value. Similar but slightly weaker effect 
was seen in probes relation to genes—probes located 
on 5’ end (5’UTR, TSS1500, TSS200 and 1st exon) were 
globally hypomethylated, as were chordoma C samples. 
However, this combination effect was positive, translat-
ing into methylation levels comparable to NP in these 5’ 
end probes. This model provides formal evidence to the 
previously made claims and demonstrates that similar 
hypermethylation of promoters, relative to the intergenic 
regions, occurred in chordoma C samples, however, 
the effect size was smaller and consequently globally 
hypomethylated pattern dominates at promoters in this 
cluster.

Subsequently, differentially methylated probes (DMPs) 
between two chordoma clusters, as well as between 
chordomas and NP were identified (listed in Additional 
File 7: Table  S1, summarized in Table  2). Accordingly 
with results showing higher global DNA methylation in 
chordoma I than chordoma C subtype, vast majority (9 
to 4892) of DMPs identified in comparison of two sub-
types of tumors were the probes hypermethylated in I 
chordomas. More detailed designation of DMPs, accord-
ing to their location in relation to the CGIs and genes is 
depicted in in Fig. 1d—even though chordoma C hyper-
methylation was most pronounced in the promoters 
and islands, majority of DMPs was found in the Open 
Sea and gene bodies. This probably can be explained by 

the general distribution of probes in the EPIC array and 
discrepancy in cluster size (as cluster I is bigger, more 
probes, differing in chordoma versus NP comparison, 
pass the significance threshold). Furthermore, a gen-
eral pattern of global hypermethylation of chordoma I 
is reflected by the number of hypermethylated probes in 
chordoma C in comparison with nucleus pulposus.

The DMPs were aggregated into differentially methyl-
ated regions (Fig. 1e and Additional File 6, which allows 
reader to interactively explore all DMRs). There were far 
more hypermethylated DMRs in chordoma I than chor-
doma C samples both in direct comparison of two sub-
types of the tumors and in comparison of each subtype 
with NP. DMRs with most significant difference between 
groups of samples and DMRs located in the neighbor-
hood of known cancer-related genes were marked in 
Fig.  1e. Comparison of two chordoma subtypes showed 
that most significant DMRs are located on chromosome 
14 and 19 regions containing microRNA clusters as well 
as on chromosome 17 region coding for KRT15, KRT19 
and JUN. These regions are hypermethylated in chor-
doma I, when compared to chordoma C.

DMR identified in comparison of chordoma and NP 
were located in genes with known role in tumor biology, 
including TERT, BLM, CDH11, CDH4, DLC1, OPCML, 
HIF1A, YWHAQ, MGMT, TP63, MTOR, MUPCDH, 
RIPK4, EGFR or TBC1D16. Most of these DMRs are sig-
nificantly more hypermethylated in chordoma I (Fig. 1e, 
Additional File 6). Chordoma-specific DMRs were also 
found in location of homeobox domain genes (e.g. DMRs 
in HOXA4, HOXA5, HOXD3, HOXD4 MNX1, and NFIX) 
especially on chromosome 2 at HOXD cluster. Moreo-
ver, DMR was also identified in TBXT (T) that encodes 
brachyury—a notochord-specific transcription factor 
that plays developmental role. DMR in TBXT was hypo-
methylated in both chordoma clusters as compared to 
NP.

Table 2  The numbers of differentially methylate probes and regions as wells as differentially expressed genes for each chordoma of 
nucleus pulposus sample group

First group Second group Differentially Methylated 
Probes

Differentially Methylated 
Regions

Differentially 
Expressed Genes

WGCNA 
modules

Chordoma I Chordoma C 4892 13622 1128 4

Chordoma C Chordoma I 9 180 170 0

Chordoma I Nucleus pulposus 22676 15705 5078 12

Nucleus pulposus Chordoma I 1261 1208 4052 11

Chordoma C Nucleus pulposus 1532 2825 3426 8

Nucleus pulposus Chordoma C 1502 3245 3426 9

All chordomas Nucleus pulposus 18064 11670 5293 13

Nucleus pulposus All chordomas 1383 1083 4252 13
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Gene expression in chordoma DNA methylation clusters
Gene expression profile was determined in each chor-
doma and NP sample based on RNA-seq data. An average 
41,315,537 reads per sample were obtained with average 
79.65% reads pseudoaligned to UCSC hg19 cDNA tran-
scriptome. The sequencing reads were quantified on 
39,293 human transcripts. Of those, 23,013 passed the fil-
tering criteria (at least 5 reads in at least 10 samples) for 
normalization and differential expression analysis. Num-
ber of differentially expressed genes for each condition is 
presented in Table 2.

Based on squared coefficient of variation model [27], 
4275 most variable genes were selected and hierarchical 
clustering was performed. One major chordoma expres-
sion cluster, including 30 samples, was observed with 
the remaining 3 samples and NP in two remaining sepa-
rate clusters (Fig. 2a). No apparent relation to the meth-
ylation cluster was observed. Nonetheless, to investigate 
further, entanglement between DNA methylation- and 
gene expression-bases clusters was measured. The result-
ing of entanglement 0.22 indicates that, despite general 
differences between methylation and expression-based 
clustering, clustering structures are not entirely dissimi-
lar, pointing to more discrete correlations at few-sample 
level (Additional File 1: Figure S1). Furthermore, fraction 
of genes, remaining under methylation control was deter-
mined (Fig. 2b). Gene was classified as methylation-con-
trolled, when correlation of mean promoter methylation 
and gene expression was significant and negative, as it is 
commonly done [39]. In general, 2.9% of genes fulfilled 
these criteria. However, this fraction was significantly 
higher in genes differentially expressed in chordoma 
(Fig. 2b). This indicates that DNA methylation pattern in 
chordomas influences gene expression on a global scale.

Volcano plots of differentially expressed genes between 
chordoma and nucleus pulposus samples are shown in 
Fig. 2c and between chordoma I and chordoma C samples 
in Fig. 2d. Genes marked on the volcano plot were either 
implicated earlier in chordoma biology (e.g. keratins—
KRT8, KRT18, KRT19, TBXT, LMX1A, and EGFR) or 
identified by outstanding p-value (e.g. IL11, CD24), high 

absolute fold-change (e.g. GABRA1) or DMR result (e.g. 
MNX1). Genes demonstrated on this plot tend to belong 
to three general categories: immune response-related 
(e.g. IL11, ICAM4, CXCL5), involved in notochord devel-
opment (e.g. TBXT, MNX1, HOXA9, SOX9), and epithe-
lial or connective tissue-specific (keratins, SDC4, PRG4). 
In the case of comparing clusters with each other, over-
lap with existing chordoma cluster markers was less 
striking—only KIT and CDKN2A were overexpressed 
in chordoma I. Other genes, related to this cluster, were 
skewed towards immune infiltration (HLA proteins, leu-
kocyte markers, cytokines) and high KIT expression can 
be also considered to be related to immune cell signal-
ing. CDKN2A loss was previously described in chordoma 
[40] and evidence of this phenomenon was also seen in 
further analysis in chordoma C cluster (see section DNA 
copy number changes in two epigenetic subtypes of chor-
domas and Fig. 5). Furthermore, higher expression levels 
of homeobox-containing genes were observed in chor-
doma C.

The relation between DMRs and DEGs was examined 
and is presented in Fig.  2e, which also illustrates our 
investigative process. Out of 13,662 and 180 hypermeth-
ylated DMRs, 5933 and 144 were located in gene-anno-
tated region in chordoma I and chordoma C respectively. 
In both cases, most of them did not correlate with gene 
expression. Of those that did, positive correlation was 
associated with DMRs located in the gene body—this 
is not surprising, given that gene body methylation is 
associated with gene transcription [41]. Negative corre-
lation of methylation and gene expression was observed 
in more promoter-adjacent regions and of 512 and 39 
genes negatively correlating with a DMR 39 and 17 were 
DEGs in chordoma I and chordoma C. Five such genes 
from each group, with highest τ correlation coefficient 
are shown on Fig. 2e and PTPRCAP was investigated fur-
ther (Fig. 2g, h). Detail results of this DMR-gene expres-
sion correlation analysis are available in Additional File 7: 
Table S7.

Similar correlation analysis was performed for DEGs 
and DMRs that were found in comparison of chordoma 

Fig. 2  Analysis of genes expression and its relation to the DNA methylation profile. (a) Heatmap of 4275 top most variably expressed genes 
and their clustering showing lack of clear overlap between methylation and expression-based chordoma clusters (b) Fraction of genes differentially 
expressed between chordoma subtypes as well as chordomas and nucleus pulposus that are under DNA methylation control (as defined 
by significant correlation of mean promoter methylation with gene expression), the blue dot-and-dash line indicates the level of methylation 
control of the genome in general (c) Volcano plot of differentially expressed genes identified in chordoma—nucleus pulposus comparison 
(d) Volcano plot of differentially expressed genes found in chordoma I—chordoma C comparison (e) DMR relation to DEGs in chordoma I—
chordoma C comparison, height of the bars represents number of genes/DMRs (f) Role of DNA methylation in TBXT (brachyury) gene. Difference 
in the methylation levels of CpGs at TBXT locus with DMPs labeled with *(for adj.p < 0.05), **(for adj.p < 0.001) or ***(for p-value <9*10−8) (left 
panel), difference in TBXT expression of (middle panel) and correlation between TBXT promoter methylation and expression levels (right panel); 
p-values are shown for chordoma-nucleus pulposus comparison (g) Difference in the methylation levels of CpGs at PTPRCAP locus with DMPs 
labeled with *(for adj.p < 0.05), **(for adj.p < 0.001) or ***(for p-value < 9*10−8) (left panel), difference in PTPRCAP expression of (middle panel) 
and correlation between PTPRCAP promoter methylation and expression levels (right panel) (h) Position of TBXT (brachyury) and PTPRCAP genes 
on their chromosomes, along with EPIC methylation probes position and DMR

(See figure on next page.)
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and NP samples. It showed that expression of 1033 DEGs 
is correlated corelated with methylation level of total 
1543 DMRs. Mainly negative methylation/expression 
correlation was found as it was observed in case of 755 of 
expression-related DMRs.

For genes with at least moderate correlation (correla-
tion coefficient > 0.3) between DNA methylation and 
expression level we ran overrepresentation analysis with 
Gene Ontology and Reactome databases to investigate 
if there are specific pathway enrichment of the methyl-
ation-controlled DEGs. When analyzing methylation-
correlated genes that are differentially expressed in 
chordoma I and C subtypes we found the enrichment in 
particular terms, related basically to immune inflamma-
tion and signaling by Rho GTPases. Overrepresentation 
analysis of DEGs with a corresponding DMR found in 
comparison of chordoma versus NP showed the enrich-
ment of terms related mainly to extracellular structure 
organization, cellular junction, epithelial/mesenchymal 
transition. The significantly enriched terms are listed in 
Additional File 7: Table S7.

Among the aberrantly methylated and expressed genes, 
special focus was placed to two genes—TBXT (brachy-
ury, with official symbol T) and PTPRCAP. Brachyury 
is already recognized as a chordoma diagnostic marker. 
According to our data, its expression is correlated with 
methylation in the promoter (Fig.  2f ). CGIs best differ-
entiating chordoma from nucleus pulposus flank the 
TBXT gene promoter and two DMRs were identified up- 
and downstream to the promoter (Fig. 2h, which serves 
as a genomic map of probes and DMRs). On the other 
hand, PTPRCAP is only one of many immune-related 
genes, characteristic of chordoma I. It was selected, due 
to its high promoter methylation-expression correla-
tion (Fig. 2g). All probes, overlapping with the gene were 
identified as DMR (Fig. 2h).

Gene set enrichment and weighted correlation network 
analyses
To characterize functional differences between the two 
chordoma clusters and NP, gene set enrichment analysis 
(GSEA) with terms from Gene Ontology (GO, Fig.  3a, 
Additional File 7: Table  S4) and Reactome (Additional 
File 7: Table  S4) databases was performed. The results 
displayed remarkable difference between clusters I and 

C—genes overexpressed in chordoma I were enriched in 
terms associated with immune response, with terms asso-
ciated with adaptive immune response on the very top of 
the list. Genes sets, characterizing cluster C, were more 
heterogenous and included terms related to cell cycle 
and proliferation with keratinization process, and devel-
opmental pathways (Fig.  3a). The top terms from gene 
set enrichment analysis of DEGs is presented in Fig. 3b. 
Probably stemming from the characteristic of chordoma 
I cluster (which outnumbered chordoma C cluster 23 to 
9), the main difference between chordoma and nucleus 
pulposus were associated with immune system terms. 
Terms associated with cartilage and connective tissue dif-
ferentiation characterized NP samples, possibly pointing 
to deficiency of those processes in chordoma.

Subsequently, weighted correlation network analy-
sis (WGCNA) was undertaken in order to disentangle 
gene–gene correlations and operate on fewer, easier to 
understand modules. Fifty-six such modules were identi-
fied (Fig. 3c, Additional File 2: Figure S2). Modules were 
clustered and differences between chordoma methylation 
clusters and between each of them and NP were tested 
(see Table 1 for summary). A cluster of modules 2, 27, 29, 
31, and 48 had consistently higher eigenvalues in chordo-
mas while cluster of modules 3, 21, and 35 was associated 
with chordoma I. Modules 2 and 3 had lowest p-value and 
log2 fold-change in respective comparisons. In order to 
validate this finding, clusters were overlapped with pro-
tein–protein interactions in STRING database. Notably, 
TBXT was found in module 2 and PTPRCAP in module 
3. Both modules were significantly enriched in protein–
protein interactions (p < 1e−16). Genes, treated as nodes 
in network were assigned centrality measures (centrality 
measures indicate how important is the gene for the net-
work; see methods for details) and WGCNA connectivity 
scores, which answer a question of how much intra- ver-
sus extramodular correlations each gene has. Due to a 
large number of genes in modules (2690 in module 2 and 
2109 in module 3) only genes with high centrality or con-
nectivity scores are shown in Fig. 2d and e. Genes central 
in module 3 were immune response-related (e.g. CD247, 
CD3E, CD8A, IL2RG, and ITGAL). Genes central for 
module 2 (and thus probably important for function-
ing of chordomas in both clusters) were either responsi-
ble for cell division and DNA repair process (e.g. ATM, 

(See figure on next page.)
Fig. 3  Functional analysis of the RNA sequencing results (a) Top 20 terms of gene set enrichment analysis on gene ontology terms (chordoma I–
chordoma C comparison) (b) Differentially expressed genes and terms from gene set enrichment analysis. Due to number of terms and genes top 
hits, basing on p-value, were selected (c) Weighted gene co-expression network analysis, presented on heatmap; samples are shown in columns, 
WGCNA modules in rows, significance of tests is shown in the panel on the left (d) WGCNA module 3 (with significantly higher score for chordoma 
I samples) intersected with STRING database; genes to plot were selected based on top connectivity (importance for the module) and centrality 
(best connected within module); gene names in bold were also differentially expressed in chordoma I, compared with chordoma C (e) Analogous 
for module 2, higher in chordoma versus nucleus pulposus, DEGs for chordoma—NP comparison are shown in bold
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CHEK, BMI1, MDM2) or parts of inhibitors of apoptosis 
cascade (e.g. CASP2, CASP8, SIRT2).

Immune infiltration in chordomas
Since GSEA, following differential expression analy-
sis, clearly indicated difference in the immune response 
between the chordoma clusters, the content of immune 
cells in chordoma samples was imputed. Deconvolu-
tion methods, based on genome-wide DNA methyla-
tion data and gene expression profiles were used for this 
purpose independently. The results of both approaches 
consistently indicated notable, higher content of immune 
infiltrating cells in chordomas I than in chordomas C. 
Chordoma I samples had lower tumor purity in Meth-
ylResolver deconvolution (median 0.65 vs median 0.82, 
p = 3.4e−5, Fig.  4a). Specifically, this was reflective 
of a higher estimated infiltration of cytotoxic T-cells 
(p = 1.4e−4, p = 3.0e−4), B-cells (p = 6.4e−4, 4.8e−6) 
and macrophages (p = 0.001, p = 0.006) in both Methyl-
Resolver and MCPcounter approaches (Fig.  4a). A rela-
tively high inter-method scores correlation was observed, 
i.e. inter-method correlation of abovementioned popula-
tions signatures were high (Kendall Τ 0.73, 0.60, and 0.29 
respectively; see Fig. 4b). The results, obtained for cyto-
toxic T-cells in both methods are shown on Fig. 4c.

The difference of immune status of two chordoma 
clusters was verified by microscopic analysis. Ten sam-
ples, including 5 chordoma I and 5 chordoma C tumors, 
with various immune scores, estimated with deconvo-
lution method, were subjected to IHC staining against 
CD3, CD4 and CD8 (markers of T cell populations). This 
showed a higher content of immune cells in chordoma 
I samples, with higher immune score in comparison to 
chordoma C tumors and a chordoma I sample with low 
immune score. Representative staining results are shown 
in Fig.  4d, while staining results of all the samples are 
shown in Additional File 4: Figure S4. Chordoma micro-
environment was further analyzed in the wider context of 
other neoplasms. Data from The Cancer Genome Atlas, 
deconvoluted with ESTIMATE method, were down-
loaded and scores generated by ESTIMATE method on 
our expression data were compared to them. Both stro-
mal and immune scores were significantly higher in chor-
doma I than in chordoma C (Mann–Whitney p: 6e-5 and 

0.022, respectively). Comparison with other cancer types 
revealed amounts immune score in chordomas I com-
parable to glioblastoma, bladder and colorectal cancer, 
while chordomas C have median immune score remark-
ably lower than other human cancers, as visualized in 
Fig. 4e.

DNA copy number changes in two epigenetic subtypes 
of chordomas
EPIC DNA methylation array allows the evaluation of 
large, unbalanced, structural chromosomal genomic 
amplifications and deletions (Copy Number Alterations, 
CNAs). Copy number analysis was applied to chordoma 
samples and with a cut-off of 0.3 for absolute copy num-
ber change; 261 copy number events were identified in all 
samples (Fig. 5a). The mean number of segments was 7.19 
with quantile distribution of [0, 1, 2.5, 11.25, 34]. Moreo-
ver, CNAs were more common in chordoma C cluster as 
compared to chordoma I (median 14 vs 1, p = 0.02).

The main difference in CNAs between two chordoma 
clusters were chromosomic losses in chromosome 9 
region, containing CDKN2A/B, affecting chordoma C 
cluster. This loss was found in 9 of 10 tumors from chor-
doma C cluster while it was observed only in 1 out of 23 
tumors of cluster I, with CNA score cut-off at 0.3 (exact 
Fisher test p = 7.95e−5). This difference is also significant 
when comparing conumee scores for this region (Fig. 5b). 
In order to verify the functional consequences of chro-
mosome 9 deletions, expression levels of genes across 
chromosomal bands was examined. Expression of genes 
within 9p21 band (containing CDKN2A) was the most 
significantly different and lower in chordoma C (Fig.  5c 
and 5d, Additional File 3: Figure S3). As mentioned ear-
lier, CDKN2A was overexpressed in chordoma I cluster 
(Fig. 5e).

Prognostic factors in chordomas
Various features, including methylation cluster, immune 
infiltration scores, WGCNA modules, and CDKN2A loss 
were tested for effect on overall survival. However, only 
the total number of CNAs showed a significant associa-
tion with survival—patients with more variations had a 
higher risk of death (Fig. 5f ). This effect was seen in both 
uni- and multivariate analysis (Table 3).

Fig. 4  Cell type deconvolution of RNA-seq and DNA methylation data (a) heatmap presenting scores from two independent methods—
MethylResolver (utilizing EPIC DNA methylation data, upper panel) and MCPcounter (utilizing RNA-seq data, lower panel) both point to higher 
immune infiltration in chordoma I cluster, significant differences in U-Mann–Whitney test are marked with * (b) Correlation matrix of immune 
signatures from both methods (Kendall correlation); coefficients are shown in the middle of each cell, significant ones are black (c) Plot presenting 
signature correlation for cytotoxic T-lymphocytes from both methods, correlation coefficient: 0.73, adjusted p value: 2.8e−142, cluster differences 
adjusted p values: 0.0012 and 0.0003 for MethylResolver and MCPcounter, respectively (d) Representative examples of immunohistochemical 
staining of selected chordoma C and chordoma I samples with antibodies against CD3, CD4 and CD8. (e) Comparison of chordomas (including 
chordoma subtypes classified according to DNA methylation profile) with existing signatures for variable human cancer types from ESTIMATE 
method (signatures for immune and stromal components of the tumor)

(See figure on next page.)
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Validation of the findings
For cross-validation of our findings classification system 
into chordoma C and chordoma I subtype was applied 

to independent dataset from DNA methylation profil-
ing with HM450K arrays in 48 chordomas (GSE205331)
[14]. A set of 10 010 array probes (variable probes from 

Fig. 4  (See legend on previous page.)
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Fig. 5  Estimations of copy number alterations and their biological and prognostic relevance (a) Results of copy number variation (CNV) imputation 
from EPIC DNA methylation array performed by conumee method. Genomic segments with absolute scores above 0.3 are shown. Sample 
label colors correspond to methylation clusters (b) Box plot for conumee score of CDKN2A gene locus; 0.3 cut-off marked with dashed line (c) 
Estimation of gene expression across selected regions of chromosome 9 (according to chromosomal bands), calculated by GSEAlm package; label 
colors correspond to methylation clusters (d) Box plot of GSEAlm score for chr9p21 band (containing CDKN2A/B genes) that has lowest p-value 
as the result of comparing two chordoma subtypes in terms of the expression across the whole genome. (e) CDKN2A expression across methylation 
clusters and normal nucleus pulposus (f) Kaplan–Meier plot for number of CNVs (0.3 cut-off in conumee estimate); Cox proportional hazard model 
was used for testing, cut-off of 8 CNVs was picked by maxstat package for visualization purposes
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both experiments, occurring in both EPIC and HM450K 
arrays) were utilized for construction of consensus 
M-value matrix for unsupervised analysis. Pooled sam-
ples from both datasets were clustered in the same man-
ner as in the investigation phase of the study and a clear 
distinction into two clusters was observed (Fig. 6a). A less 
numerous cluster (metacluster C), contained 18 samples, 
including all 9 our chordoma C, 7 chordoma 1 samples, 1 
chordoma I sample, and 1 chordoma 2 sample. The larger 
metacluster C contained remaining 60 samples (22 chor-
doma I, 20 chordoma 1, 18 chordoma 2, and 4 nucleus 
pulposus samples).

The differences between chordoma C and chordoma 
I samples from validation set are concordant with those 
observed in our samples. In order to validate the global 
methylation effects, a consensus β-values matrix of com-
mon probes with standard deviation of β-values above 0.1 
was constructed. Again, global hypomethylation of chor-
doma C was most pronounced in the Open Sea region, 
less pronounced in the CGIs with gradient of this effect 
in Shelves and Shores (Fig.  6b). Similar concordance 
was observed with regard to methylation probe relation 
to gene (Additional File 5: Figure S5a). Moreover, hypo-
methylation of cg12044599 probe upstream of PTPRCAP 
promoter in chordoma I was observed in both validation 
set and metacluster I (Fig.  6c). The cg01392518 probe 
upstream of TBXT promoter had also virtually no meth-
ylation in chordomas from validation set (Additional File 
5: Figure S5c). In MethylResolver analysis, CD8+ lympho-
cytes were also more abundant in chordoma I in both 
validation set and metacluster I (Fig. 6d). Replication of 
other immune infiltration findings turned out to be more 
challenging—tumor purity and CD4+ lymphocytes infil-
tration were significantly higher in our and metacluster I 
samples, but was not in chordoma I from validation set, 
which may be due to insufficient number of observations 
(Additional File 5: Figure S5d-e).

Discussion
Our study aimed to determine DNA methylation profile 
in skull base chordomas as well as to investigate their 
possible methylation-based subclassification and the role 
of epigenetic abnormalities in their pathogenesis. The 
results indicate that there are two molecular subtypes of 
these tumors. These subtypes have distinct DNA meth-
ylation profile reflected by differences in global methyla-
tion level and several differentially methylated regions. 
In line with our findings, two epigenetic – DNA methyl-
ation-based subtypes of chordomas were also identified 
in the two recently published studies [13, 14]. To the best 
of our knowledge, this is the first report to character-
ize these chordoma subtypes by comparison with DNA 
methylation patterns obtained in NP which served as a 
normal controls for the study purposes. When analyz-
ing global methylation pattern, we found chordoma I to 
be quite similar to the control samples with comparable 
overall DNA methylation level and hypermethylation of 
5’ flanking regions of the genes and CGIs. The chordoma 
C subtype turned out to be generally hypomethylated 
with an increased to normal methylation level at CGIs. 
This epigenetic landscape of whole genome hypometh-
ylation with hypermethylated CGIs resembles the general 
DNA-methylation profile of cancer cells [42, 43]. Numer-
ous aberrantly methylated regions were identified in both 
chordoma subtypes. Comparison of chordoma with NP 
showed DMRs in many cancer-related genes as well as in 
genomic cluster encoding homeobox domain genes (at 
HOXD3, HOXD4 and HOX11, HOXA9, HOXA10) that 
play an important role in both normal differentiation and 
tumorigenesis [44]. Comparison of the two chordoma 
subtypes revealed DMRs in loci encoding genes with a 
known role in tumorigenesis but also in regions cover-
ing numerous genes encoding short RNAs (micro RNAs 
and small nucleolar RNA (snoRNAs)). Both classes of 
small RNA play a role in cancer but their significance in 
pathogenesis of chordomas is poorly recognized, espe-
cially for snoRNAs [45, 46]. Our results are the first to 

Table 3  Survival effect of selected clinical and molecular features in a uni- and multivariate Cox hazard model

Variable Trait Multivariate Univariate

Coefficient Z p value Coefficient Z p value

CNVs 0.16 2.92 0.003 0.08657 3.05 0.002

Immune infiltrate 6.70 1.60 0.11  − 2.32  − 1.06 0.29

Sex Male  − 1.12  − 1.45 0.15 0.05 1.84 0.07

Age 0.04 1.40 0.16  − 0.45  − 0.77 0.44

Cluster Chordoma I 0.60 0.61 0.54  − 0.32  − 0.52 0.60

Likelihood ratio test = 15.56 on 5 degrees of freedom, p = 0.008
events: 13 of 31 observations
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demonstrate epigenetic mis-regulation of small RNAs in 
these tumors.

RNA sequencing of the same tumor samples that were 
included in methylation analysis allowed for further char-
acterization of the methylation subtypes. [13, 14] Clus-
tering, based on gene expression did not show a clear 
overlap between expression and methylation-based clas-
sification of the samples. Most of chordoma samples were 

classified in the same gene expression cluster. No gene 
expression-based subclassification of skull base chordo-
mas was also found in previous RNA-seq analyses [16, 
47]. The existence of the distinct expression groups of 
skull base chordomas was described recently [18], how-
ever, it was not observed in our data. Correlation-based 
analysis of the role of DNA methylation in gene expres-
sion suggests that in chordomas a small proportion of all 

Fig. 6  Validation of the study findings in an independent data set (GSE205331) [14] (a) Clustering the samples with a set of 10 010 array 
probes (variable probes from both experiments, occurring in both EPIC and HM450K arrays) with heatmap of scaled methylation M-values (b) 
Beta-values of probes with standard deviation of β-values above 0.1, split according to CpG relation to CGI (c) Difference in the methylation levels 
of cg12044599 CpG in PTPRCAP locus in chordoma C and I subtypes in samples from current study, validation data set and in metaclusters (d) 
Difference in the content of CD8+ lymphocytes in chordoma C and I subtypes from current of study group, validation data set and in metaclusters
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the genes is-controlled by DNA methylation of promoter 
regions. The fact that genes with promoter methylation/
expression correlation are enriched in the genes that are 
differentially expressed in chordomas as compared to NP 
indicates that DNA methylation contributes to pathogen-
esis of these tumors. These DMRs with associated gene 
expression changes role, include some genes that are 
known to play a role in tumorigenesis, including PIK3CD 
[48], UNC5D [49], or NMU [50].

Interestingly, looking for more general relationship 
between promoter methylation and gene expression in 
chordoma samples we found brachyury gene expression 
to be correlated with DNA methylation. Lower pro-
moter methylation was related to higher TBXT expres-
sion in chordomas that is in line with the results on the 
regulation of this gene during cell differentiation. Low-
ering brachyury expression is associated with differen-
tiation of mesenchymal stem cells into osteoblasts and 
adipocytes and it is accompanied by progressive meth-
ylation of its promoter region [51]. Previous observa-
tions in chordomas suggested a role of histone rather 
than DNA methylation in epigenetic regulation of 
TBXT [52]. We assume that both elements of epigenetic 
regulation may contribute to upregulating brachyury 
expression in chordomas.

Transcriptomic profiling in chordomas allowed for 
functional analysis of the differences in gene expression 
between tumor clusters I and C. The results clearly dem-
onstrated that distinct molecular processes are involved 
in the pathogenesis of these two tumor subtypes. Gene 
expression pattern of cluster I tumors indicates high 
immune infiltration, while cluster C tumors appear to be 
driven by the processes related to mitosis and cell cycle. 
Correspondingly, pathway analysis of genes differentially 
expressed between the two chordoma subtypes that are 
controlled by DNA methylation (as examined with cor-
relation analysis) showed overrepresentation of genes 
related mainly to immune infiltration pathways. Enrich-
ment in immune component in chordoma I was observed 
independently in both gene expression analysis and the 
analysis of the relationship between DNA methylation 
and expression levels. These observations were con-
firmed by a downstream analysis with deconvolution 
methods. Estimation based on both methylation arrays 
and RNA-seq consistently show that chordoma cluster I 
tumors are highly enriched in immune cells. The results 
of deconvolution analysis were preliminary validated by 
immunoassaying a set of sample against T lymphocytes. 
We observed that they more highly infiltrate tissue sam-
ples of tumors with higher immunoreactivity score [13, 
14]. Using gene expression data, we compared the esti-
mated immune infiltration status in chordomas with 
common human cancer types. This clearly highlighted 

the difference between subtypes and showed that chor-
doma C subtype generally has immune scores below 
those observed in other caners (Fig.  4d) and can be 
therefore called immune-cold. Comparable results were 
observed in studies by Huo et al. and Zuccato et al. who 
reported that one of DNA methylation chordoma sub-
types has notably higher content of immune cells [13, 
14]. However, our comparative results indicate that those 
clusters cannot be used interchangeably.

We used data generated with EPIC microarrays for 
DNA copy number analysis. It showed that, in contrast to 
chordoma I, chordoma C subtype is notably affected by 
DNA copy number changes with deletion of 9p chromo-
somal arm as most common aberration found in nearly 
all tumors in this methylation cluster. This chromosomal 
arm contains CDKN2A and CDKN2B genes—crucial 
cyclin-dependent kinase inhibitors. Loss of these key 
cell cycle suppressors in C-type chordomas clearly cor-
responds to results of gene set enrichment analysis which 
revealed the role of cell proliferation in the pathogen-
esis of this chordoma subtype. We also observed notably 
lower expression of both genes in samples with 9p loss 
accordingly to previous results including a study on 384 
chordoma samples that showed loss of P16/INK4A pro-
tein expression in chordomas with 9p deletion [53]. Our 
result showing the occurrence of 9p deletion in nearly all 
tumors of C subtype slightly differs from the observation 
by Huo et al. and Zuccato et al. [13, 14]. Both groups also 
showed that CNAs are more frequent in one of methyla-
tion subtypes of chordoma, but they identified 9p loss 
only in a minor proportion of specimens. However, Huo 
et  al. reported a frequent loss of chromosome arm 19p 
(encoding cyclin E gene) in immune enriched subtype 
of chordomas that was found neither in our results nor 
in those published by Zuccato et al. Some differences in 
molecular features of the tumors as well as slightly dif-
ferent abundance proportions between two subtypes that 
are observed in ours and previously reported studies may 
by caused by populational differences or distinct demo-
graphic/clinical profile of each of the patient groups. Pre-
vious studies included Canadian/French [13] and Chinese 
[14] patients while our cohort was composed of Polish 
patients only. Of note, the average patients’ age in study 
by Huo et al. is notably lower than in our research (36.8 
vs 54.28 years, respectively). Additionally, in our study we 
included recurrent chordomas (31%). It is not clear what 
was the proportion of recurrent tumors in Canadian/
French and Chinese studies patient groups but CDKNA2 
deletions were reported more common in patients with 
higher age (age > 40 years) and in recurrent tumors [53]. 
Interestingly, the frequency of CDKN2A deletions in 
independent chordoma dataset (GSE140686) reported by 
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Huo et al. [14] was higher than in our study group (34.8% 
vs 28.12%, respectively).

A notable effort in chordoma research is focused on 
identification of prognostic factors. DNA methylation-
based subclassification of skull base chordomas showed 
a clinical relevance. Both the results by Zuccato et al. and 
Huo et al. [13, 14]. indicated prognostic role of immune 
component in DNA methylation pattern, but the authors 
found dissimilar results. Observations by Zuccato et  al. 
indicate shorter overall survival (OS) in patients with 
immune-hot chordoma subtype identified in DNA meth-
ylation-based clustering. Contrastingly, Huo et  al. [14] 
reported worse outcome in patients with low immune 
cell content and higher tumor purity [13, 14]. We did not 
find a significant difference between the two DNA meth-
ylation-based subtypes of chordomas in terms of patients’ 
overall survival. The molecular features that we found as 
discriminating epigenetic chordoma subtypes are known 
as relevant prognostic factors in other studies. Previously, 
a higher immune infiltration status determined by micro-
scopic assessment of CD3 + and CD8 + cells count was 
identified as related to better prognosis in patients with 
spinal chordomas [54, 55] but another study showed that 
higher content of CD8-positive cells is related to shorter 
survival [56].

In previous studies, DNA copy number status in skull 
base chordomas also showed prognostic value. Dele-
tion of 9p21, that we observed in nearly all subtype C 
chordomas was associated with worse recurrence-free 
survival but not OS in study by Bai et al. [10]. The same 
study also showed a prognostic relevance of 22q (encod-
ing SMARCB1 gene) deletions [10]. Changes in 22q 
region were not observed in our patients’ group prob-
ably because it is more homogeneous and contained only 
one histological subtype of classical chordomas. Clinical 
relevance of CDKN2A expression and deletion of this 
gene locus were specifically address in the other study 
on classical and chondroid chordomas [40]. It revealed 
CDKN2A deletion in approximately 50% of the tumors 
but significant relationship between DNA copy number 
and patients’ survival was not observed [40].

Our results of copy number analysis showed prognostic 
value of chromosomal instability. We did not find survival 
difference between patients with 9p (CDKN2A locus) 
loss and 9p stable patients, but we observed a significant 
relationship of the higher level of copy number changes 
in tumors with shorter survival as clearly illustrated by 
significant difference in OS between patients with high 
and low number of CNAs. This observation is concord-
ant with a general finding that chromosomal instability in 
human cancer is a biomarker of poor prognosis [57].

Besides a potential prognostic value, the observed 
biological difference between two chordoma subtypes 
with potentially important clinical implications in 
terms of the therapy. Immunotherapy, that include the 
use of immune checkpoint inhibitors (ICI) is a prom-
ising therapeutic avenue in chordoma and number of 
clinical trials on this field has been already initiated 
[58]. Importantly, the level of tumor-infiltrating lym-
phocytes is generally one of most relevant indicators of 
response to this therapy [59]. Therefore, this treatment 
may potentially be more beneficial in patients with 
chordoma I tumors. In turn, the role of cell cycle regu-
lation and deletion of CDKN2A in chordoma C suggests 
an efficiency of cell cycle targeting therapy in these 
patients. Inhibitor of cyclin-dependent kinases 4/6, pal-
bociclib showed an inhibitory activity in chordoma cell 
lines with P16/INK4A loss [60] and more recently in 1 
(out of 2) chordoma xenografts with this 9p deletion 
[61]. The synergistic effect of combination of rapamy-
cin and palbociclib in chordoma cell lines with PTEN 
and P16/INK4A loss was also shown [62]. Chordoma 
C patients harboring 9p are those who could poten-
tially benefit from this type of treatment. The clinical 
trial on efficiency of palbociclib in chordoma patients 
has already been initiated. Its protocol includes molec-
ular tumor profiling that hopefully would provide the 
rationale for this hypothesis [63]. Our findings are first 
to indicate that immune infiltration is negatively corre-
lated with CDKNA2 loss and therefore immunotherapy 
and cell-cycle inhibitors may have different target sub-
populations, among patients, affected by chordoma.

Conclusions
Two distinct chordoma subtypes (subtype C and I) with 
different patterns of aberrant DNA methylation have 
been identified upon genome-wide DNA methylation 
analysis. They have different profiles of both global and 
locus-specific methylation pattern as well as distinct 
gene expression. Differences in gene expression indi-
cate immune activation in I chordomas and enhanced 
cell proliferation in C chordomas. Immune enrichment 
in I chordomas found in transcriptomic profiling is also 
confirmed by results of analysis with deconvolution 
methods. C chordomas are characterized by higher chro-
mosomal instability, according to results of copy number 
analysis and they have 9p deletion causing downregula-
tion of cell cycle inhibitors CDKN2A/B. Tumor subtypes 
do not differ significantly in terms of prognosis, however, 
there is a significant influence of chromosomal instability 
level on shorter survival.
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