

HHS Public Access

Author manuscript

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2023 July 12.

Published in final edited form as: *Cancer Epidemiol Biomarkers Prev.* 2021 June ; 30(6): 1175–1184. doi:10.1158/1055-9965.EPI-20-0997.

Urinary cotinine and cotinine + trans-3'-hydroxycotinine (TNE-2) cut-points for distinguishing tobacco use from non-use in the United States: PATH Study (2013-2014)

Kathryn C. Edwards¹, Tasmia Naz¹, Cassandra A. Stanton¹, Maciej L. Goniewicz², Dorothy K. Hatsukami³, Danielle M. Smith², Lanqing Wang⁴, Andrea Villanti⁵, Jennifer Pearson⁶, Benjamin C. Blount⁴, Maansi Bansal-Travers², June Feng⁴, Raymond Niaura⁷, Michelle T. Bover Manderski⁸, Connie S. Sosnoff⁴, Cristine D. Delnevo⁸, Kara Duffy⁹, Arseima Y. Del Valle-Pinero⁹, Brian L. Rostron⁹, Colm Everard^{10,11}, Heather L. Kimmel¹¹, Dana M. van Bemmel⁹, Andrew Hyland^{1,2}

¹⁻Westat, Rockville, MD 20850

²-Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263

³⁻University of Minnesota, Minneapolis, MN 55455

⁴⁻Centers for Disease Control and Prevention, Atlanta, GA 30333

⁵⁻University of Vermont, Burlington, VA 05405

6-University of Nevada- Reno; Reno, NV 89557

⁷⁻New York University, New York, NY 10003

⁸⁻Rutgers Center for Tobacco Studies, Rutgers Biomedical and Health Sciences; Rutgers University, New Brunswick, NJ 08854

⁹⁻Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD 20993

¹⁰⁻Kelly Government Solutions; Rockville, MD 20850

¹¹Division of Epidemiology, Services, and Prevention Research, National Institute on Drug Abuse, Bethesda, Maryland 20852

Abstract

Background.—Determine the overall, sex-, and racially/ethnically-appropriate population-level cotinine and total nicotine equivalents (TNE-2, the molar sum of the two major nicotine

Corresponding author: Kathryn C. Edwards, PhD; Westat 1600 Research Blvd. Rockville, MD 20850; 301-251-4282; KatyEdwards@westat.com.

Disclosures: Maciej Goniewicz has received a research grant from Pfizer and served as a member of a scientific advisory board to Johnson & Johnson, manufacturers of smoking cessation medications. Raymond Niaura receives funding from the Food and Drug Administration Center for Tobacco Products via contractual mechanisms with Westat and the National Institutes of Health. Within the past 3 years, he has served as a paid consultant to the Government of Canada via a contract with Industrial Economics Inc. and has received an honorarium for a virtual meeting from Pfizer Inc.

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the U.S. Department of Health and Human Services or any of its affiliated institutions or agencies.

metabolites) cut-points to distinguish tobacco users from non-users across multiple definitions of use (e.g., exclusive vs. polytobacco, and daily vs. non-daily).

Methods.—Using Wave 1 (2013-2014) of the U.S. Population Assessment of Tobacco and Health (PATH) Study, we conducted weighted Receiver Operating Curve (ROC) analysis to determine the optimal urinary cotinine and TNE-2 cut-points, stratified by sex and race/ethnicity.

Results.—For past 30-day exclusive cigarette users, the cotinine cut-point that distinguished them from non-users was 40.5 ng/mL, with considerable variation by sex (male: 22.2 ng/mL; female: 43.1 ng/mL) and between racial/ethnic groups (non-Hispanic other: 5.2 ng/mL; non-Hispanic black: 297.0 ng/mL). A similar, but attenuated, pattern emerged when assessing polytobacco cigarette users (overall cut-point= 39.1 ng/mL, range= 5.5 ng/mL- 80.4 ng/mL) and any tobacco users (overall cut-point= 39.1 ng/mL, range= 4.8 ng/mL- 40.0 ng/mL). Using TNE-2, which is less impacted by racial differences in nicotine metabolism, produced a comparable pattern of results although reduced the range magnitude.

Conclusions.—Due to similar frequency of cigarette use among polytobacco users, overall cut-points for exclusive cigarette use were not substantially different from cut-points that included polytobacco cigarette use or any tobacco use. Results revealed important differences in sex and race/ethnicity appropriate cut-points when evaluating tobacco use status and established novel urinary TNE-2 cut-points.

Impact.—These cut-points may be used for biochemical verification of self-reported tobacco use in epidemiologic studies and clinical trials.

INTRODUCTION

Cigarette smoking prevalence has changed drastically in the United States (U.S.), down from 40% in 1964 to 13.7% in 2018.^{1,2} Second-hand exposure has also been greatly impacted by the passage of smoke-free laws in restaurants, public spaces, public housing, and college campuses.³⁻¹⁰ Furthermore, as public health efforts in the U.S. are considering reducing the addictive potential of cigarettes by reducing their nicotine content,11 it is critical to accurately evaluate changes in cigarette smoking behavior. Large longitudinal and surveillance studies often rely on self-reported tobacco use. Some large studies (e.g., Population Assessment of Tobacco and Health [PATH] Study, National Health and Nutrition Examination Survey [NHANES]) also measure biomarkers such as cotinine and other nicotine metabolites, allowing biochemical verification of self-reported tobacco use. Previous analyses of NHANES data from the 1990s and early 2000s suggest that selfreported estimates may underestimate true smoking prevalence, but only minimally.^{12,13} However, cigarette smoking prevalence as well as exposure to second hand smoke has decreased considerably in the last two decades,³⁻¹⁰ and use of non-cigarette tobacco products has grown in popularity. ¹⁴ As such, there is a need to revisit the appropriate thresholds (or cut-points) for biochemical validation of tobacco use, in addition to cigarette smoking, as polytobacco use (use of more than one tobacco product) increases.^{14,15}

Cotinine is the primary metabolite of nicotine and its detection in serum, urine, and saliva has been used to distinguish smokers from non-smokers,¹⁶⁻¹⁹ as well as second-hand exposure versus active smoking.^{20,21} Numerous cotinine cut-points (across various

biological matrices) have been suggested for biochemical validation of smoking status.^{17,22} Primary applications of these cut-points include validating abstinence in smoking cessation trials, as well as validating self-reported use for inclusion in research studies or in national surveillance surveys. One study evaluating cotinine cut-points using the NHANES data from 1999-2004 to distinguish recent cigarette smokers who have not used other tobacco products in the last five days from non-smokers found optimal cotinine cut-points of ~5 ng/mL in serum and projected ~15 ng/mL free cotinine in urine.¹⁶ This study also found differences in optimal cut-point by sex and race/ethnicity.¹⁶ These differences are the result of considerable variability in nicotine metabolism.^{23,24}

Nicotine is metabolized into cotinine primarily by the liver enzyme CYP2A6. Cotinine is metabolized by CYP2A6 and UGT2B10 into trans-3'-hydroxycotinine (3HC) and cotinine glucuronide, respectively.^{22,24,25} There is considerable genetic variability in CYP2A6 and UGT2B10 activity, with slow metabolism more common in Asians and African Americans.^{23,25} Sex differences, driven by estrogen induction of CYP2A6 activity, results in faster metabolism in females.²⁶ Although cotinine levels are variable due to these influences, they have been the primary mechanism for validating smoking status. Total Nicotine Equivalents (TNE), or the molar sum of nicotine and its metabolites, is considered the gold standard for estimating nicotine intake and is not affected by sex or race/ethnicity.²² TNE is measured by summing nicotine, cotinine, 3HC, four other minor metabolites, and their glucuronides (TNE-7).²² Analysis of TNE is more expensive than cotinine alone, and optimal TNE cut-points to distinguish tobacco users from non-users have not yet been reported. Because nicotine tends to be ubiquitous in the environment and attempting to achieve lower urine blanks is not feasible; TNE-2 (the sum of cotinine and 3HC) is used when non-users are included in analysis. TNE-2 is highly correlated with TNE-7 (r = 0.99) and is not affected significantly by race/ethnicity or sex.²²

Seventy-five percent of current smokers are daily users, and 19% use at least two tobacco products.¹⁴ Moreover, cigarette smokers are a heterogeneous group with distinct racial/ ethnic profiles (as well as sex differences) that may interact with different patterns of use (i.e., daily vs. non-daily) to make a single cut-point misleading. Using data from Wave 1 of the PATH Study, the main goal of this study is to determine overall as well as sex and racially/ethnically appropriate cut-points using cotinine and TNE-2 to distinguish cigarette users from non-users across multiple definitions of use (i.e., exclusive vs. polytobacco use; daily vs. non-daily). In addition, since nicotine is not a selective indicator of cigarette smoking but of overall tobacco exposure and polytobacco use continues to rise,¹⁴ determining sex and racially/ethnically appropriate cotinine and TNE-2 cut-points to distinguish any tobacco use (from no tobacco use) is essential for accurate prevalence estimates.

MATERIALS AND METHODS

Data Source

Adult Interview—Data are from Wave 1 (September 12, 2013 to December 15, 2014) of the PATH Study, a nationally representative, longitudinal cohort study of adults (18 years) and youth (12-17 years) in the U.S. The PATH Study used audio-computer assisted self-

interviews available in English and Spanish to collect information on tobacco-use patterns and associated health behaviors. Recruitment employed address-based, area-probability sampling, using an in-person household screener to select youths and adults. Adult tobacco users, young adults ages 18 to 24 and African Americans were oversampled relative to population proportions. The weighted response rate for the household screener was 54.0%. Among households that were screened, the overall weighted response rate was 74.0% for the Adult Interview. Further details regarding the PATH Study design, methods, and instruments are published elsewhere.^{27,28} Details on survey interview procedures, questionnaires, sampling, weighting, and information on accessing the data are available at https://doi.org/10.3886/Series606. Westat's Institutional Review Board, in accordance with the Common Rule, approved the study design and data collection protocol. All respondents ages 18 and older provided written informed consent, with youth respondents ages 12 to 17 providing assent whereas each one's parent/legal guardian provided consent.

Biospecimen Collection and Analysis—All Adult Interview respondents (N= 32,320) at Wave 1 were asked to provide biospecimens. Full-void urine specimens were self-collected by 21,801 (67.5%) consenting participants. For more information on the collection procedures, materials, and aliquots created from the urine specimens please see the PATH Study Biospecimen Urine Collection Procedures document in the "Study Level" files (http://doi.org/10.3886/ICPSR36840.v5).

A stratified probability sample of 11,522 adults who completed the Wave 1 Adult Interview and who provided a urine specimen were selected for analyses. The sample was selected to ensure respondents represented diverse tobacco product use patterns, including users of multiple tobacco products, and never users of any tobacco product. The current analysis draws from the 11,504 Adult Interviews collected at Wave 1 who have urinary cotinine data available (Wave 1 Biomarker Restricted Use Files [http://doi.org/10.3886/ICPSR36840.v5]; Wave 1 Adult Restricted Use Files [https://doi.org/10.3886/ICPSR36231.v20]).

See Supplemental Figure 1 for a flow diagram indicating our final analytic sample. Of the past 30-day (P30D) tobacco users (N= 8,963) and non-users (N= 2,276) with cotinine data, 3,010 P30D exclusive cigarette users, 3,592 P30D polytobacco cigarette users, and 2,209 non-users were included in the analyses stratified by cigarette use. Given that not all respondents agreed to provide biospecimens, the resulting biomarker data represent a subsample of adults; therefore, specific urine weights are needed to account for potential differences between the full set of adult interview respondents in the specified tobacco product user groups and the set of adults with analyzed biospecimens. The weighting procedures adjusted for oversampling and nonresponse; combined with the use of a probability sample, weighted estimates are representative of never, current, and recent former (within 12 months) users of tobacco products in the U.S. civilian, noninstitutionalized adult population at the time of Wave 1 (https://www.icpsr.umich.edu/ files/NAHDAP/36840-User_guide-Biomarker_Restricted_Use_Files_User_Guide.pdf).

Laboratory Analysis

Total urinary nicotine metabolites, including the free and glucuronide conjugated forms, were measured by two separate isotope dilution high performance liquid chromatography/ tandem mass spectrometric (HPLC-MS/MS) methods based on the cotinine cutoff value of 20 ng/mL. For samples with cotinine levels above or equal to 20 ng/mL, the "Nicotine Metabolites and Analogs in Urine" method was used to measure nicotine, cotinine, 3HC, and 4 other metabolites as well as minor tobacco alkaloids.²⁹ For samples with cotinine levels less than 20 ng/mL, the "Cotinine and Hydroxycotinine in Urine" method was applied to sensitively measure cotinine and 3HC using a modified version of the method of Bernert et al. (2005).³⁰ The lower limit of detection (LOD) for cotinine and 3HC is 0.030 ng/mL. Result values that were below the LOD were replaced with LOD divided by the square root of 2. TNE-2 was calculated by taking the molar sum (nmol/mL) of cotinine and 3HC for all respondents. If a respondent was missing a value for either analyte, TNE-2 was treated as a missing.

Measures

Tobacco Use Groups.—<u>P30D Exclusive Cigarette Use</u> was defined as those who are P30D smokers of cigarettes (either every day or some days), and are not P30D users of other tobacco products. P30D exclusive cigarette use was then stratified into P30D daily cigarette use and P30D non-daily cigarette use for those who used "every day" or "some days," respectively.

P30D Polytobacco Cigarette Use was defined as those who are P30D every day or some day users of cigarettes, and have also used at least one of the following tobacco products in the past 30 days: e-cigarettes, traditional cigar, cigarillo, filtered cigar, pipe, smokeless tobacco, snus pouches, and/or dissolvable tobacco. P30D polytobacco cigarette use was then stratified into P30D daily polytobacco cigarette use and P30D non-daily polytobacco cigarette use for those who used cigarettes "every day" or "some days," respectively.

<u>P30D Any Tobacco Use</u> was defined as those who are P30D users of any tobacco product (cigarettes, e-cigarettes, traditional cigar, cigarillo, filtered cigar, pipe, smokeless tobacco, snus pouches, and dissolvable tobacco).

<u>Non-User (reference for P30D Any Tobacco Use)</u> was defined as those who are not P30D users of any tobacco product. See Supplemental Figure 1 for more details.

Non-User (reference for P30D Exclusive and Polytobacco Cigarette Use) was defined as those who did not report P30D use of any tobacco product, did not report being a current every day or someday cigarette user, and provided logically consistent responses to both past 30-day use and daily/non-daily cigarette use items.

To avoid confounding nicotine exposure, all tobacco use groups and the non-user reference group excluded those who indicated any past 3-day use of nicotine replacement therapy (NRT) products. Product users were asked to confirm past 3-day use of a given tobacco product either in the questionnaire, or prior to biospecimen collection if collection occurred at least 4 hours after the questionnaire was completed. Instances where a respondent

All outliers were removed for the reference categories of the tobacco use groups. Outliers were removed in order to capture true non-users and avoid potentially misclassifying self-reported users as non-users, and to ensure that anomalies do not drive the cut-points higher. Values outside of the range of two standard deviations from the mean of urinary cotinine in the reference category were considered outliers. Similarly for TNE-2, values outside of the range of two standard deviations from the reference category were considered outliers.

Demographics and other tobacco product characteristics.—Demographic characteristics presented for each user group include age, sex, race/ethnicity, educational attainment, and household income. Missing data on age, sex, race, Hispanic ethnicity, education were imputed as described in the PATH Study Restricted Use Files User Guide (United States Department of Health and Human Services, 2019). Additional tobacco use characteristics presented for each user group include cigarettes used per month (amount of cigarettes used per day [on days used] multiplied by number of days used in the past 30 days), percentage of daily use, type of polytobacco use, recency of last cigarette use, and exposure to second-hand smoke. See Tables 1-2.

Statistical Analysis

Weighted percentages and means were calculated for demographic and tobacco use characteristics for each user group. Statistical differences between user groups were calculated using chi-square tests for categorical variables and independent samples t-tests for continuous variables.

Next, weighted Receiver Operating Characteristic (ROC) curves were calculated to determine the optimal cut-point using urinary cotinine or TNE2 levels to distinguish P30D users from non-users. The Wave 1 full sample and 100 replicate urine weights were incorporated in logistic regression models of urinary cotinine run against the tobacco use groups to estimate predicted probabilities. The predicted probabilities were then used to generate ROC curves and associated characteristics with the full sample urine weight. The 95% confidence intervals of the weighted area under the curves (AUCs) were calculated using a bootstrap approach incorporating the 200 replicate bootstrap weights.³¹

Analyses were stratified by exclusive and polytobacco cigarette use, and then further stratified by daily and non-daily use among males and females and four race/ethnicity categories (non-Hispanic white, non-Hispanic black, non-Hispanic other race/multiple race, and Hispanic). This approach was repeated (without daily/non-daily stratification) to determine an ideal cut-point to distinguish any P30D tobacco users from non-users. All cut-points were selected using Youden's J-statistic.

Analyses were conducted using Stata software survey procedures, version 15.1 (StataCorp, College Station, TX), and SAS software survey procedures, version 9.4 (SAS Institute,

Inc., Cary, NC). Variances were estimated using the balanced repeated replication (BRR) method³² with Fay's adjustment set to 0.3 to increase estimate stability.³³

RESULTS

Sample Characteristics

As shown in Table 1, compared to exclusive cigarette smokers, polytobacco cigarette smokers were more likely to be male (Poly: 62.9%, Exclusive: 48.8%, p <0.001) and younger (age 18-24, Poly: 23.4%, Exclusive 9.8%, p <0.001). Exclusive cigarette users smoked more cigarettes per month (Exclusive: 120, Poly: 92, p= 0.01) and had greater daily use (Exclusive: 80.7%, Poly: 75.7%, p= 0.01) than polytobacco cigarette users. Non-users were more likely to be female (Non-user: 61.0%, Exclusive: 51.2%, Poly: 37.1%, p <0.001) and Hispanic (Non-user: 20.3%, Exclusive: 14.0%, Poly: 13.0%, p <0.001) than exclusive or polytobacco cigarette users.

As shown in Table 2, compared to non-users, any tobacco users were more likely to be male (Any tobacco: 59.0%, Non-users: 39.1%, p <0.001), had an income level of less than 25,000 a year (Any tobacco: 43.0%; Non-user: 30.8%, p <0.001), and had exposure to second hand smoke (Any tobacco: 85.3%, Non-user: 37.3%, p <0.001).

Cotinine Cut-points

Exclusive Cigarette Users .--- In order to compare our results to previous cut-points estimated using serum cotinine, we further extrapolated their estimated cut-point of 15 ng/mL of free cotinine in urine to 30 ng/mL total cotinine in urine (as shown in Figure 1A) since total cotinine estimates tend to be two times greater than free cotinine estimates.^{16,24} For exclusive cigarette users the cotinine cut-point that distinguished P30D users from nonusers was 40.5 ng/mL (area under the curve [AUC]= 0.98; 95% CI: 0.97-0.99). Females had a higher cut-point (43.1 ng/mL; AUC= 0.98; 95% CI: 0.97-0.99) than males (22.2 ng/mL; AUC= 0.98, 95% CI: 0.97-0.99; see Table 3A). There was considerable range among racial/ ethnic groups, from 5.2 ng/mL (AUC= 0.98, 95% CI: 0.97-1.00) for non-Hispanic other race/multiple race users to 297.0 ng/mL (AUC= 0.99, 95% CI: 0.98-1.00) for non-Hispanic black users. For all cut-points, sensitivity ranged from 88.4-96.0% and specificity ranged from 95.2-99.0%. Characteristics that may impact exposure, i.e., cigarettes per month, are also included in Table 3. Our team explored the possibility that menthol smoking may play a role in the race/ethnicity differences. We examined if menthol interacted with cotinine exposure among non-Hispanic black and white users differently. The menthol interaction term was not significant in either subgroup ($p_{\rm S} > 0.15$); therefore, there was not significant effect modification of menthol status on the cotinine cut-points.

When stratifying the sample by daily (N=2,394) and non-daily (N= 655) cigarette use, the overall cut-point increased to 144.0 ng/mL, AUC= 0.99, (95% CI: 0.99-1.00) for distinguishing daily users from non-daily/non-users, and decreased to 4.8 ng/mL, AUC= 0.93 (95% CI: 0.91-0.95) for distinguishing non-daily users from non-users (see Supplemental Table 1A and 1B). The large range in cut-points across racial/ethnic groups

followed the same pattern for both daily and non-daily users, but in the daily and non-daily analyses males had higher cut-points that females.

Polytobacco Cigarette Users.—The cotinine cut-points for polytobacco cigarette users were overall lower but followed a similar pattern as exclusive cigarette users (see Figure 1B/ Table 3B). The cotinine cut-point that distinguished P30D polytobacco cigarette users from non-users was 39.1 ng/mL, AUC= 0.99 (95% CI: 0.98-0.99). Females had a higher cut-point (39.5 ng/mL; AUC= 0.99; 95% CI: 0.98-0.99) than males (19.5 ng/mL; AUC= 0.99, 95% CI: 0.98-0.99) than males (19.5 ng/mL; AUC= 0.99, 95% CI: 0.98-0.99). The cut-points among racial/ethnic groups ranged from 5.5 ng/mL (AUC= 0.95, 95% CI: 0.94-0.97) for Hispanic users to 80.4 ng/mL (AUC= 0.99, 95% CI: 0.99-1.00) for non-Hispanic black users. For all cut-points, sensitivity ranged from 86.2-96.2% and specificity ranged from 95.2-98.7%.

When stratifying the sample by daily (N=2,629) and non-daily (N=963) cigarette use, the overall cut-point increased to 82.6 ng/mL, AUC= 1.00, (95% CI: 1.00-1.00) for distinguishing daily users from non-daily/non-users, and decreased to 7.4 ng/mL, AUC= 0.95 (95% CI: 0.94-0.96) for distinguishing non-daily users from non-users (see Supplemental Table 1C and 1D). The large range in cut-points across racial/ethnic groups followed the same pattern for both daily and non-daily users, but in the daily and non-daily analyses males had higher cut-points than females.

Any Tobacco Users.—The cotinine cut-point that distinguished P30D any tobacco use from non-use was 39.1 ng/mL, AUC= 0.96 (95% CI: 0.95-0.96 (see Figure 1C/Table 3C)). Females had a higher cut-point (39.5 ng/mL; AUC= 0.96; 95% CI: 0.95-0.97) than males (7.4 ng/mL; AUC= 0.95, 95% CI: 0.95-0.96). The cut-points among racial/ethnic groups range from 4.8 ng/mL (AUC= 0.95, 95% CI: 0.93-0.97) for non-Hispanic other race/multiple race users to 40.0 ng/mL (AUC= 0.97, 95% CI: 0.96-0.97) for non-Hispanic white users. For all cut-points, sensitivity ranged from 78.5-90.0% and specificity ranged from 94.6-98.7%.

TNE-2 Cut-points

Exclusive Cigarette Users.—Using the molar sum of cotinine and 3HC (TNE-2), the cut-point for distinguishing P30D users from non-users was 0.82 nmol/mL, AUC= 0.98 (95% CI: 0.98-0.99). As shown in Table 4A, similar to results using cotinine alone, females had a higher cut-point than males (0.82 vs. 0.56 nmol/mL), and non-Hispanic black users had a higher cut-point than other racial ethnic groups (0.94 nmol/mL vs. 0.06-0.68 nmol/mL). For all cut-points sensitivity ranged from 89.1-97.3% and specificity ranged from 94.8-99.2%.

Polytobacco Cigarette Users.—Using TNE-2, the cut-point for distinguishing P30D users from non-users was 0.61 nmol/mL, AUC= 0.99 (95% CI: 0.98-0.99). As shown in Table 4B, similar to results using cotinine alone, females had a higher cut-point than males (0.61 vs. 0.55 nmol/mL), and non-Hispanic black users had a higher cut-point than other racial ethnic groups (1.25 nmol/mL vs. 0.09-0.61 nmol/mL). For all cut-points sensitivity ranged from 87.3- 96.6% and specificity ranged from 94.8- 99.0%.

Any Tobacco Users.—Using TNE-2, the cut-point for distinguishing P30D any tobacco use from non-use was 0.61 nmol/mL, AUC= 0.96 (95% CI: 0.95- 0.96). As shown in Table 4C, similar to results using cotinine alone, females had a higher cut-point than males (0.82 vs. 0.17 nmol/mL), and non-Hispanic black users had a higher cut-point than other racial ethnic groups (0.80 nmol/mL vs. 0.04- 0.61 nmol/mL). For all cut-points, sensitivity ranged from 79.4- 90.4% and specificity ranged from 94.3- 99.0%.

DISCUSSION

Using nationally representative data of U.S. tobacco users, we found that cut-points to distinguish cigarette users from non-users when focused on exclusive cigarette use compared to polytobacco cigarette use do not differ substantially (Cotinine: 40.5 vs. 39.1 ng/mL; TNE-2: 0.82 vs. 0.61 nmol/mL). The number of cigarettes per month smoked by the exclusive vs. polytobacco cigarette users was 120 vs. 92, respectively. Together, this indicates that cigarette use in these groups is the driver for nicotine exposure, regardless of other product use. Previous research exploring dual use of cigarettes and e-cigarettes, as well as cigarettes and cigars indicates that cigarette use was similar in the exclusive vs. dual use groups.^{34,35}

Results revealed large variability in the sex and race/ethnicity specific cotinine cut-points. There are well-documented differences in nicotine metabolism in non-Hispanic black, non-Hispanic white, and Hispanic tobacco users.^{23,36} Non-Hispanic black users have reduced CYP2A6 activity and metabolize nicotine more slowly than non-Hispanic white users.²³ Therefore, with larger quantities of systemic nicotine and subsequently cotinine, their cotinine cut-points are much higher than for faster metabolizers (i.e., non-Hispanic Whites), which is consistent with our results. This was a consistent finding across various definitions of smoking status (i.e., exclusive vs. polytobacco use; daily vs. non-daily use). Furthermore, when examining cut-points using TNE-2, which is less impacted by differences in nicotine metabolism, the magnitude of the differences by race/ethnicity are lower than for cotinine cut-points among exclusive cigarette users. Studies seeking to use biochemical verification of smoking status should consider using race/ethnicity-specific cut-points.

Although the direction of race/ethnicity differences are consistent with previous literature, the magnitude of the racial/ethnic differences in cotinine cut-points is notable, particularly among exclusive users. Menthol smoking is much more prevalent in non-Hispanic black users than non-Hispanic white users.³⁷ There is also previous research indicating that menthol may interact with CYP2A6 activity.^{38,39} However, we did not find any significant interaction of menthol use and cotinine exposure. The differences in cut-point by sex are less consistent than those for race/ethnicity. Previous research indicates that females are faster metabolizers of nicotine,³⁶ and despite smoking fewer cigarettes per day than their male counterparts, may experience greater behavioral dependence symptoms and increased difficulty quitting.⁴⁰ This study found overall that females have a higher cotinine cut-point regardless of exclusive cigarette, polytobacco cigarette, or any tobacco use, but a lower cut-point when stratified by daily vs. non-daily cigarette use. One limitation may be misclassification of self-reported smoking status or amount used per day. Future research can use more recent waves of data to further elucidate these findings.

Daily users have greater systemic intake of nicotine and non-daily users have lower, more variable levels of nicotine. Therefore when classifying daily vs. non-daily use the cut-point shifts higher, and conversely shifts lower when classifying non-daily from non-users. When expanding our tobacco use population from cigarette users to users of any tobacco we found the cut-point was no different than that of polytobacco cigarette users. This is likely due to the fact ~40% of our any tobacco users use cigarettes.

The cut-points determined in this study are slightly higher than the projected cut-points (~30 ng/mL total urinary cotinine) from U.S. data in 1999-2004, although within the range of total urinary cotinine cut-point (34.5-46 ng/mL) suggested in the 2019 revised biochemical verification guidelines.²² We would have anticipated that cut-points would continue to decline over time due to decreased cigarette smoking prevalence and increases in tobacco-free policies. However, use of different biological specimens (Benowitz et al. 2008 used serum, and only projected urine cut-points), advances in laboratory methods, and continued high rates (~75%) of daily smoking among users may contribute to the differences between their findings and the current study.

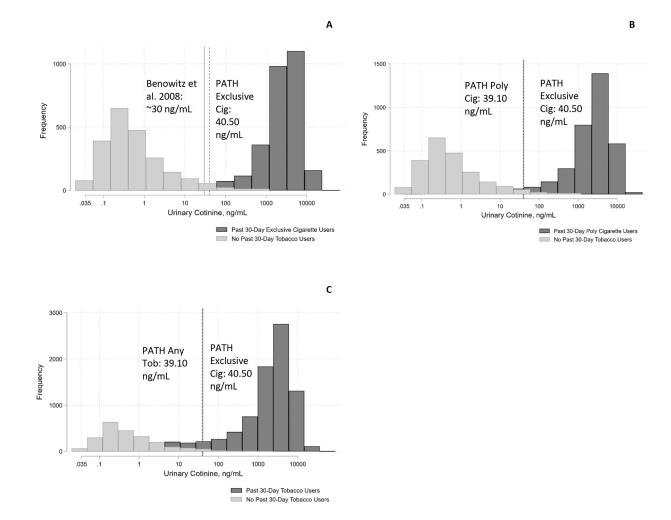
Limitations of the current study include the use of TNE-2 instead of TNE-3 because nicotine was not measured in our reference (non-use) groups. We also did not exclude blunt (marijuana wrapped in tobacco leaf) use from the tobacco use or referent groups, which impacts overall nicotine exposure and is more prevalent in non-Hispanic black users.⁴¹ While this study was able to generate updated total cotinine cut-points and novel TNE-2 cut-points for different types of cigarette users and any tobacco users more generally, these findings may not generalize to exclusive users of non-cigarette tobacco products. Future research could explore cut-points for non-cigarette users, as well as geography/ region-specific cut-points since patterns of tobacco use may differ by region.⁴² Studies may also wish to use the cut-points derived from this analysis to biochemically verify smoking status using subsequent waves of PATH Study data, or other types of data sources (e.g., clinical trials).

In conclusion, the overall cut-points defined by exclusive cigarette use were not substantially different from cut-points that include polytobacco cigarette use or any tobacco use. This may be a result of the high frequency of use of cigarettes among polytobacco users, particularly in 2013-2014. It will be important to continue to examine changes in cotinine/TNE-2 thresholds over time as new highly efficient nicotine delivery devices enter the market. Moreover, differences in sex and race/ethnicity cotinine cut-points were revealed and are critical to consider when using cotinine cutoffs to determine cigarette smoking status in epidemiologic studies and clinical trials. This study is the first to examine cut-points using TNE-2 which is less impacted by sex and race/ethnicity differences in nicotine metabolism, and a preferred validation mechanism if available. In practice, these findings can serve as a reference for validating smoking or tobacco use status for different demographic sub-groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding statement:


This manuscript is supported with Federal funds from the National Institute on Drug Abuse, National Institutes of Health, and the Center for Tobacco Products, Food and Drug Administration, Department of Health and Human Services, under contract to Westat (Contract Nos. HHSN271201100027C and HHSN271201600001C) and through an interagency agreement between the FDA Center for Tobacco Products and the Centers for Disease Control and Prevention.

REFERENCES

- US Department of Health and Human Services. The health consequences of smoking—50 years of progress: a report of the Surgeon General. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. 2014:943.
- Creamer MR, Wang TW, Babb S, et al. Tobacco Product Use and Cessation Indicators Among Adults - United States, 2018. MMWR Morbidity and mortality weekly report. 2019;68(45):1013– 1019.
- Homa DM, Neff LJ, King BA, et al. Vital signs: disparities in nonsmokers' exposure to secondhand smoke—United States, 1999–2012. MMWR Morbidity and mortality weekly report. 2015;64(4):103. [PubMed: 25654612]
- Fallin A, Roditis M, Glantz SA. Association of campus tobacco policies with secondhand smoke exposure, intention to smoke on campus, and attitudes about outdoor smoking restrictions. American journal of public health. 2015;105(6):1098–1100. [PubMed: 25521901]
- Frazer K, Callinan JE, McHugh J, et al. Legislative smoking bans for reducing harms from secondhand smoke exposure, smoking prevalence and tobacco consumption. Cochrane Database of Systematic Reviews. 2016(2).
- 6. Frazer K, McHugh J, Callinan JE, Kelleher C. Impact of institutional smoking bans on reducing harms and secondhand smoke exposure. Cochrane Database of Systematic Reviews. 2016(5).
- MacNaughton P, Adamkiewicz G, Arku RE, Vallarino J, Levy DE. The impact of a smoke-free policy on environmental tobacco smoke exposure in public housing developments. Science of the Total Environment. 2016;557:676–680. [PubMed: 27037889]
- Nguyen KH, Gomez Y, Homa DM, King BA. Tobacco use, secondhand smoke, and smoke-free home rules in multiunit housing. American journal of preventive medicine. 2016;51(5):682–692. [PubMed: 27423656]
- Perlman SE, Chernov C, Farley SM, et al. Exposure to secondhand smoke among nonsmokers in New York City in the context of recent tobacco control policies: Current status, changes over the past decade, and national comparisons. Nicotine & Tobacco Research. 2016;18(11):2065–2074. [PubMed: 27190401]
- Wei B, Bernert JT, Blount BC, et al. Temporal trends of secondhand smoke exposure: nonsmoking workers in the United States (NHANES 2001–2010). Environmental health perspectives. 2016;124(10):1568–1574. [PubMed: 27164619]
- 11. Gottlieb S, Zeller M. A Nicotine-Focused Framework for Public Health. The New England journal of medicine. 2017;377(12):1111–1114. [PubMed: 28813211]
- West R, Zatonski W, Przewozniak K, Jarvis MJ. Can we trust national smoking prevalence figures? Discrepancies between biochemically assessed and self-reported smoking rates in three countries. Cancer Epidemiology and Prevention Biomarkers. 2007;16(4):820–822.
- Caraballo RS, Giovino GA, Pechacek TF, Mowery PD. Factors associated with discrepancies between self-reports on cigarette smoking and measured serum cotinine levels among persons aged 17 years or older: Third National Health and Nutrition Examination Survey, 1988–1994. American journal of epidemiology. 2001;153(8):807–814. [PubMed: 11296155]
- Wang TW, Asman K, Gentzke AS, et al. Tobacco product use among adults—United States, 2017. MMWR Morbidity and mortality weekly report. 2018;67(44):1225. [PubMed: 30408019]
- Kasza KA, Ambrose BK, Conway KP, et al. Tobacco-Product Use by Adults and Youths in the United States in 2013 and 2014. The New England journal of medicine. 2017;376(4):342–353. [PubMed: 28121512]

- Benowitz NL, Bernert JT, Caraballo RS, Holiday DB, Wang J. Optimal serum cotinine levels for distinguishing cigarette smokers and nonsmokers within different racial/ethnic groups in the United States between 1999 and 2004. American journal of epidemiology. 2008;169(2):236–248. [PubMed: 19019851]
- Benowitz NL, Jacob P, Ahijevych K, et al. Biochemical verification of tobacco use and cessation. Nicotine & tobacco research. 2002;4(2):149–159. [PubMed: 12028847]
- Jarvis MJ, Tunstall-Pedoe H, Feyerabend C, Vesey C, Saloojee Y. Comparison of tests used to distinguish smokers from nonsmokers. American journal of public health. 1987;77(11):1435– 1438. [PubMed: 3661797]
- Zieli ska-Danch W, Wardas W, Sobczak A, Szołtysek-Bołdys I. Estimation of urinary cotinine cutoff points distinguishing non-smokers, passive and active smokers. Biomarkers. 2007;12(5):484– 496. [PubMed: 17701747]
- Benowitz N, Goniewicz ML, Eisner MD, et al. Urine cotinine underestimates exposure to the tobacco-derived lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in passive compared with active smokers. Cancer Epidemiology and Prevention Biomarkers. 2010;19(11):2795–2800.
- Goniewicz ML, Eisner MD, Lazcano-Ponce E, et al. Comparison of urine cotinine and the tobaccospecific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and their ratio to discriminate active from passive smoking. Nicotine & Tobacco Research. 2011;13(3):202– 208. [PubMed: 21330276]
- Benowitz NL, Bernert JT, Foulds J, et al. Biochemical Verification of Tobacco Use and Abstinence: 2019 Update. Nicotine & Tobacco Research. 2019;22(7):1086–1097.
- 23. Perez-Stable EJ, Herrera B, Jacob P 3rd, Benowitz NL. Nicotine metabolism and intake in black and white smokers. Jama. 1998;280(2):152–156. [PubMed: 9669788]
- Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacological reviews. 2005;57(1):79–115. [PubMed: 15734728]
- Murphy SE, Park SS, Thompson EF, et al. Nicotine N-glucuronidation relative to Noxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups. Carcinogenesis. 2014;35(11):2526–2533. [PubMed: 25233931]
- Dempsey D, Jacob P, Benowitz NL. Accelerated Metabolism of Nicotine and Cotinine in Pregnant Smokers. Journal of Pharmacology and Experimental Therapeutics. 2002;301(2):594– 598. [PubMed: 11961061]
- 27. Hyland A, Ambrose BK, Conway KP, et al. Design and methods of the Population Assessment of Tobacco and Health (PATH) Study. Tobacco control. 2016:tobaccocontrol-2016-052934.
- Tourangeau R, Yan T, Sun H, Hyland A, Stanton CA. Population Assessment of Tobacco and Health (PATH) reliability and validity study: selected reliability and validity estimates. Tobacco Control. 2019;28(6):663–668. [PubMed: 30297373]
- Wei B, Feng J, Rehmani IJ, et al. A high-throughput robotic sample preparation system and HPLC-MS/MS for measuring urinary anatabine, anabasine, nicotine and major nicotine metabolites. Clinica chimica acta; international journal of clinical chemistry. 2014;436:290–297. [PubMed: 24968308]
- Bernert JT, Harmon TL, Sosnoff CS, McGuffey JE. Use of continine immunoassay test strips for preclassifying urine samples from smokers and nonsmokers prior to analysis by LC-MS-MS. Journal of analytical toxicology. 2005;29(8):814–818. [PubMed: 16374940]
- 31. Lohr SL. Using SAS[®] for the Design, Analysis, and Visualization of Complex Surveys. Paper presented at: SAS Global Forum2012.
- 32. McCarthy PJ. Pseudoreplication: further evaluation and applications of the balanced half-sample technique. 1969.
- 33. Judkins DR. Fay's method for variance estimation. Journal of Official Statistics. 1990;6(3):223.
- Goniewicz ML, Smith DM, Edwards KC, et al. Comparison of Nicotine and Toxicant Exposure in Users of Electronic Cigarettes and Combustible Cigarettes. JAMA Network Open. 2018;1(8):e185937–e185937. [PubMed: 30646298]

- 35. Chang CM, Rostron BL, Chang JT, et al. Biomarkers of Exposure among U.S. Adult Cigar Smokers: Population Assessment of Tobacco and Health (PATH) Study Wave 1 (2013–2014). Cancer Epidemiology Biomarkers & Prevention. 2019;28(5):943–953.
- Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009(192):29–60. [PubMed: 19184645]
- Villanti AC, Mowery PD, Delnevo CD, Niaura RS, Abrams DB, Giovino GA. Changes in the prevalence and correlates of menthol cigarette use in the USA, 2004-2014. Tob Control. 2016;25(Suppl 2):ii14–ii20. [PubMed: 27729565]
- Benowitz NL, Herrera B, Jacob P 3rd. Mentholated cigarette smoking inhibits nicotine metabolism. The Journal of pharmacology and experimental therapeutics. 2004;310(3):1208– 1215. [PubMed: 15084646]
- MacDougall JM, Fandrick K, Zhang X, Serafin SV, Cashman JR. Inhibition of human liver microsomal (S)-nicotine oxidation by (–)-menthol and analogues. Chemical research in toxicology. 2003;16(8):988–993. [PubMed: 12924926]
- Bohadana A, Nilsson F, Rasmussen T, Martinet Y. Gender differences in quit rates following smoking cessation with combination nicotine therapy: Influence of baseline smoking behavior. Nicotine & Tobacco Research. 2003;5(1):111–116. [PubMed: 12745512]
- 41. Montgomery L, Oluwoye O. The truth about marijuana is all rolled up in a blunt: prevalence and predictors of blunt use among young African–American adults. Journal of Substance Use. 2016;21(4):374–380.
- Jemal A, Thun M, Yu XQ, et al. Changes in smoking prevalence among U.S. adults by state and region: Estimates from the Tobacco Use Supplement to the Current Population Survey, 1992-2007. BMC Public Health. 2011;11(1):512. [PubMed: 21714876]

Figure.

Cotinine cut-points to distinguish past 30 day use. In Figure 1A (past 30-day exclusive cigarette use vs. no past 30-day tobacco use), the reference cut-point (solid line) was extrapolated from Benowitz et al., 2008 who measured serum cotinine cut-points. In Figure 1B (past 30-day polytobacco cigarette use vs. no past 30-day tobacco use) and 1C (past 30-day any tobacco use vs. no past 30-day tobacco use), the reference cut-point (solid line) is from overall past 30 day exclusive cigarette use (Figure 1A and Table 3). Histogram frequencies are unweighted.

Table 1.

Self-reported smoking prevalence, sociodemographic characteristics, and tobacco use characteristics of Wave 1 (2013-2014) past 30-day exclusive and polytobacco cigarette users

Edwards et al.

							Statistical I	Statistical Differences Between	tween
		Wave 1	Respondents wit	Wave 1 Respondents with Non-missing Cotinine Data	ata		User Groups ¹	^{ISC}	
	Past 30-Day Exclusive (N=3010)	Exclusive Cigarette Use ²	Past 30-Day Pe Use (N=3592)	Past 30-Day Polytobacco Cigarette Use (N=3592)	No Past 30-Day Tobacco Use (N=2209)	Tobacco Use	Exclusive Use vs. No Use	Exclusive Use vs. Poly Use	Poly Use vs. No use
	Unweighted N	Weighted % (CI) ³	Unweighted N	Weighted % (CI)	Unweighted N	Weighted % (CI)			
Age									
18-24	509	9.8 (8.3,11.5)	1297	23.4 (21.3,25.6)	881	16.7 (15.3,18.2)	< 0.001	< 0.001	< 0.001
25-39	934	30.9 (28.3,33.8)	1175	37.7 (34.7,40.7)	564	27.9 (25.4,30.5)			
40-54	921	32.2 (29.6,35.0)	719	23.2 (21.2,25.3)	386	25.9 (23.2,28.8)			
55+	646	27.0 (24.4,29.9)	401	15.8 (13.4,18.5)	378	29.6 (26.7,32.6)			
Sex									
Male	1409	48.8 (45.8,51.8)	2184	62.9 (60.0,65.7)	903	39.0 (36.7,41.4)	< 0.001	< 0.001	< 0.001
Female	1601	51.2 (48.3,54.2)	1408	37.1 (34.3,40.0)	1306	61.0 (58.6,63.3)			
Race/Ethnicity									
Non-Hispanic white	1903	66.0 (62.7,69.1)	2184	64.5 (61.3,67.5)	1112	56.6 (53.1,60.1)	< 0.001	0.53	< 0.001
Non-Hispanic black	448	14.9 (12.5,17.6)	537	16.8 (14.0,20.0)	399	14.4 (12.3,16.8)			
Non-Hispanic other race/ multiple race	207	5.2 (4.2,6.4)	313	5.8 (5.0,6.8)	189	8.7 (7.1,10.6)			
Hispanic	452	14.0 (11.8,16.4)	558	13.0 (11.5,14.6)	509	20.3 (17.9,23.1)			
Education									
Less than high school or some high school (no diploma) or GED	940	29.8 (27.4,32.4)	1069	28.6 (25.9,31.5)	345	15.7 (13.8,17.8)	< 0.001	0.03	< 0.001
High school diploma	749	29.5 (26.8,32.5)	904	25.3 (23.1,27.6)	532	25.0 (21.7,28.7)			
Some college (no degree) or associate degree	1033	30.9 (28.3,33.6)	1349	36.9 (33.8,40.0)	809	28.3 (25.5,31.3)			
Bachelor's degree or more	288	9.7 (8.0,11.7)	270	9.3 (7.9,10.8)	523	30.9 (27.5,34.7)			
Income									

		Wave 1	Respondents wit	Wave 1 Respondents with Non-missing Cotinine Data	ata		Statistical Diff User Groups ^I	Statistical Differences Between User Groups ¹	tween
	Past 30-Day E (N=3010)	Past 30-Day Exclusive Cigarette Use ² (N=3010)	Past 30-Day Po Use (N=3592)	Past 30-Day Polytobacco Cigarette Use (N=3592)	No Past 30-Day Tobacco Use (N=2209)	lobacco Use	Exclusive Use vs. No Use	Exclusive Use vs. Poly Use	Poly Use vs. No use
	Unweighted N	Weighted % (CI) ³	Unweighted N	Weighted % (CI)	Unweighted N	Weighted % (CI)			
< \$25,000	1493	43.4 (40.4,46.3)	1994	50.2 (47.6,52.9)	806	30.7 (27.8,33.8)	< 0.001	< 0.001	< 0.001
\$25,000-\$74,999	1012	35.4 (32.5,38.3)	1077	31.9 (29.4,34.5)	750	33.5 (30.3,36.9)			
>\$75,000	302	11.1 (9.6,12.8)	327	11.6 (9.8,13.6)	457	26.0 (22.7,29.6)			
Not reported	203	10.2 (8.1,12.8)	194	6.3 (5.4,7.4)	196	9.8 (8.0,11.9)			
Tobacco Use Characteristics									
CPM (cigarettes per month)	785	120.4 (104.9,135.8)	1110	92.2 (81.0,103.4)	N/A	V/N	N/A	0.01	N/A
Daily cigarette use	2394	80.7 (78.0,83.2)	2629	75.7 (73.3,77.9)	N/A	V/N	N/A	0.01	N/A
Polytobacco- Combustible only	N/A	N/A	2208	57.2 (54.1,60.2)	N/A	V/N	N/A	N/A	N/A
Polytobacco- Combustible + Noncombustible	N/A	N/A	1384	42.8 (39.8,45.9)	N/A	N/A	N/A	N/A	N/A
Recent Cigarette Use									
Last used today	2480	83.26 (80.58,85.65) ⁴	2717	77.4 (74.8,79.9)	N/A	N/A	N/A	0.02	N/A
Last used yesterday	246	7.38 (6.02,9.00)	423	9.6 (8.4,10.9)	N/A	V/N			
Last used the day before yesterday	237	7.57 (6.11,9.35)	373	9.9 (8.2,11.9)	N/A	N/A			
Nicotine Exposure									
Geometric mean of urinary cotinine (ng/mL)	3010	1550.31 (1333.87,1801.87)	3592	1515.1 (1391.5,1649.7)	2209	0.4 (0.4,0.5)	< 0.001	0.78	< 0.001
Exposure to second hand smoke	2694	88.47 (86.19,90.41)	3360	92.9 (91.5,94.0)	962	37.3 (33.4,41.3)	< 0.001	0.02	< 0.001
Notes		-							

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2023 July 12.

Notes.

/Statistical differences between user groups were calculated using chi-square tests for categorical variables and t-tests for continuous variables. P-values below 0.05 indicate statistical significance. 2 Exclusive users could have no missing values on other tobacco product use. Polytobacco users could be missing on other products as long as the indicated using at least two products.

 ${}^{\mathcal{J}}_{\text{For continuous variables mean and standard error are reported$

Author Manuscript

Author Manuscript

Anthor Manuscript Anthor Manuscript ⁴Includes missing cases, therefore some column percentages add up to less than 100%.

Autho

Edwards et al.

Page 17

Self-reported smoking prevalence, sociodemographic characteristics, and tobacco use characteristics of Wave 1 (2013-2014) past 30-day any tobacco users

	Wave 1 Responde	Wave 1 Respondents with Non-missing Cotinine Data	otinine Data		Statistical Differences Between User Groups ²
	Past 30-Day Any 7	Past 30-Day Any Tobacco Use (N=8963)	No Past 30-Day T	No Past 30-Day Tobacco Use (N=2276)	Poly Tobacco Use vs. No Tobacco Use
	Unweighted N	Weighted $\%$ (CI) I	Unweighted N	Weighted % (CI)	
Age					
18-24	2710	18.5 (17.1,20.0)	207	16.8 (15.5,18.2)	< 0.001
25-39	2731	32.8 (30.9,34.8)	585	27.9 (25.5,30.5)	
40-54	2116	26.9 (25.5,28.3)	400	25.9 (23.1,28.8)	
55+	1406	21.8 (20.3,23.5)	384	29.4 (26.6,32.5)	
Sex					
Male	5199	59.0 (57.0,61.0)	938	39.1 (36.9,41.5)	< 0.001
Female	3764	41.0 (39.0,43.0)	1338	60.9 (58.5,63.2)	
Race/Ethnicity					
Non-Hispanic white	5578	65.7 (63.7,67.7)	1139	56.5 (53.0,59.9)	< 0.001
Non-Hispanic black	1335	15.1 (13.7,16.7)	402	14.4 (12.3,16.7)	
Non-Hispanic other race/multiple race	697	5.7 (5.0,6.6)	195	8.71 (7.1,10.6)	
Hispanic	1353	13.5 (12.4,14.6)	540	20.5 (18.0,23.2)	
Education					
Less than high school or some high school (no diploma) or GED	2441	26.2 (24.7,27.7)	356	15.7 (13.8,17.8)	< 0.001
High school diploma	2255	27.1 (25.7,28.6)	548	25.0 (21.8,28.7)	
Some college (no degree) or associate degree	3333	34.4 (32.8,36.0)	830	28.3 (25.5,31.3)	
Bachelor's degree or more	934	12.3 (11.2,13.5)	542	31.0 (27.5,34.7)	
Income					
< \$25,000	4399	43.0 (41.2,44.8)	832	30.8 (27.8,33.8)	< 0.001
\$25,000-\$74,999	2872	33.6 (31.8,35.5)	765	33.5 (30.3,36.8)	
>\$75,000	1134	14.9 (13.7,16.2)	475	26.0 (22.7,29.6)	

	Wave 1 Responde	Wave 1 Respondents with Non-missing Cotinine Data	otinine Data		Statistical Differences Between User Groups ²
	Past 30-Day Any	Past 30-Day Any Tobacco Use (N=8963)	No Past 30-Day T	No Past 30-Day Tobacco Use (N=2276)	Poly Tobacco Use vs. No Tobacco Use
	Unweighted N	Weighted % $(CI)^{I}$	Unweighted N	Weighted % (CI)	
Not reported	558	8.5 (7.5,9.7)	204	9.8 (8.0,11.9)	
Tobacco Use Characteristics					
Cigarette	7196	81.6 (80.4,82.8)	N/A	N/A	N/A
E-cigarette	2599	24.4 (23.0,25.9)	N/A	V/N	N/A
Cigar	2663	25.5 (24.1,26.9)	N/A	V/N	N/A
Traditional Cigar	1241	13.4 (12.2,14.7)	N/A	V/N	N/A
Cigarillo	1862	16.3 (15.2,17.5)	N/A	V/N	N/A
Filtered Cigar	742	6.7 (5.7,7.7)	N/A	V/N	N/A
Pipe	351	3.0 (2.5,3.6)	N/A	N/A	N/A
Hookah	1037	8.3 (7.5,9.3)	N/A	N/A	N/A
Smokeless	1126	10.7 (9.7,11.7)	N/A	N/A	N/A
Snus	237	2.2 (1.7,2.9)	N/A	N/A	N/A
Dissolvable	36	0.2 (0.2,0.4)	N/A	N/A	N/A
Recent Cigarette Use					
; Last used today	5378	$62.8~(61.0, 64.5)^{\mathcal{J}}$	N/A	N/A	N/A
Last used yesterday	686	6.5 (5.8,7.3)	N/A	N/A	
Last use the day before yesterday	693	7.2 (6.3,8.1)	62	$0.8\ (0.6,\ 1.0)$	
Nicotine Exposure					
Geometric mean of urinary cotinine (ng/mL)	8963	762.7 (692.2,840.4)	2276	0.5 (0.4,0.5)	< 0.001

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2023 July 12.

Notes.

 $I_{\rm For}$ continuous variables mean and standard error are reported

 2 Statistical differences between user groups were calculated using chi-square tests for categorical variables and t-tests for continuous variables. P-values below 0.05 indicate statistical significance. ${}^{\mathcal{J}}$ includes missing cases, therefore some column percentages add up to less than 100%.

< 0.001

37.3 (33.4,41.3)

988

85.3 (84.0,86.4)

7765

Exposure to second hand smoke

Edwards et al.

Table 3.

Receiver Operating Curve (ROC) characteristics and optimal cotinine cut-point to distinguish past 30-day cigarette users from non-users, overall and by sex and race/ethnicity.

Edwards et al.

					,				
						KUC Optimal Cut-point	it-point		
	Unweighted N	Unweighted Denominator	CPM	Cut-point (ng/mL)	Sensitivity %	Specificity %	AUC	95% CI Lower	95% CI Upper
A. Past 30-Day Exclusive Cigarette Use vs. No Past 3	e Use vs. No Past 30)-Day Tobacco Use				-			
Overall	3010	5219	120.4	40.5	93.6%	98.1%	0.98	0.97	66.0
Sex									
Male	1409	2312	131.9	22.2	95.0%	96.9%	0.98	0.97	66.0
Female	1601	2907	107.3	43.1	93.7%	98.5%	0.98	0.97	66.0
Race/Ethnicity									
Non-Hispanic white	1903	3015	134.9	53.2	95.1%	99.0%	0.99	0.98	0.99
Non-Hispanic black	448	847	150.1	297.0	94.3%	98.5%	0.99	0.98	1.00
Non-Hispanic other race/multiple race	207	396	103.4	5.2	96.0%	97.6%	0.98	0.97	1.00
Hispanic	452	196	75.4	5.5	88.4%	95.2%	0.93	06.0	0.97
B. Past 30-Day Polytobacco Cigarette Use vs. No Past	tte Use vs. No Past	: 30-Day Tobacco Use							
Overall	3592	5801	92.2	39.1	93.3%	98.1%	0.99	0.98	0.99
Sex									
Male	2184	3087	90.8	19.5	94.8%	96.8%	0.99	0.98	0.99
Female	1408	2714	94.7	39.5	92.7%	98.3%	0.99	0.98	0.99
Race/Ethnicity									
Non-Hispanic white	2184	3296	101.2	40.0	96.2%	98.7%	0.99	0.99	1.00
Non-Hispanic black	537	936	106.7	80.4	95.2%	96.1%	0.99	0.99	1.00
Non-Hispanic other race/multiple race	313	502	64.3	5.9	92.0%	97.9%	0.98	0.97	1.00
Hispanic	558	1067	68.3	5.5	86.2%	95.2%	0.95	0.94	0.97
C. Past 30-Day Any Tobacco Use vs. No Past 30-Day	s. No Past 30-Day	Fobacco Use							
Overall	8963	11239	111.6	39.1	85.0%	98.0%	0.96	0.95	0.96
Sex									
Male	5199	6137	115.3	7.4	88.9%	94.6%	0.95	0.95	0.96

					[ROC Optimal Cut-point	t-point		
	Unweighted N	Unweighted Denominator CPM Cut-point (ng/mL) Sensitivity % Specificity % AUC 95% CI Lower	CPM	Cut-point (ng/mL)	Sensitivity %	Specificity %	AUC	95% CI Lower	95% CI Upper
Female	3764	5102	106.4	39.5	85.4%	98.2%	0.96	0.95	0.97
Race/Ethnicity									
Non-Hispanic white	5578	6717	123.2	40.0	87.7%	98.7%	0.97	0.96	0.97
Non-Hispanic black	1335	1737	135.7	39.8	90.0%	94.7%	0.97	0.96	0.98
Non-Hispanic other race/multiple race	697	892	83.7	4.8	85.8%	97.5%	0.95	0.93	0.97
Hispanic	1353	1893	76.6	5.5	78.5%	%0.26	06.0	0.88	0.92
				:					

percentile). Cotinine was log-transformed. Reference group observations with cotinine values that were outside of the range of 2 times the standard deviation of the mean of the reference groups were classified as outliers and removed from analysis. Cut-points based off Youden's J statistic. Analyses are weighted. Notes: CPM= Cigarettes per month; AUC= Area under curve. CPM values were winsorized at 95% to adjust for outlier values (all values above 95th percentile were recoded as the value at the 95th

Table 4.

Receiver Operating Curve (ROC) characteristics and optimal TNE-2 cut-point to distinguish past 30-day cigarette users from non-users, overall and by sex and race/ethnicity.

Edwards et al.

				ā	DOC Ontimal Cut-noint	noint		
	Unweighted N	Unweighted Denominator C	CPM Cut-point (nmol/mL)	Sensitivity %	Specificity %	AUC	95% CI Lower	95% CI Upper
A. Past 30-Day Exclusive Cigarette Use vs. No Past 30-Day Tobacco Use	tte Use vs. No Past	t 30-Day Tobacco Use						
Overall	3006	5195 12	120.8 0.82	93.6%	98.6%	0.98	0.98	66.0
Sex								
Male	1405	2296 13	132.8 0.56	94.1%	98.0%	0.98	0.97	66.0
Female	1601	2899 10	107.3 0.82	93.4%	98.9%	0.98	0.97	66.0
Race/Ethnicity								
Non-Hispanic white	1901	3002 13	135.2 0.68	95.5%	99.2%	0.99	0.99	0.99
Non-Hispanic black	448	844 15	150.1 0.94	97.3%	95.6%	0.99	0.98	1.00
Non-Hispanic other race/ multiple race	207	395 10	103.4 0.06	96.2%	95.5%	96.0	0.96	1.00
Hispanic	450	954	76.2 0.08	89.1%	94.8%	0.94	0.91	0.98
B. Past 30-Day Polytobacco Cigarette Use vs. No Past	arette Use vs. No P	ast 30-Day Tobacco Use						
Overall	3592	5781 9	92.2 0.61	93.5%	98.3%	0.99	0.98	0.99
Sex								
Male	2184	3075	90.8 0.55	94.0%	98.0%	0.99	0.98	0.99
Female	1408	2706	94.7 0.61	93.0%	98.4%	0.99	0.98	0.99
Race/Ethnicity								
Non-Hispanic white	2184	3285 10	101.2 0.61	96.2%	99.0%	0.99	0.99	1.00
Non-Hispanic black	537	933 10	106.7 1.25	96.6%	96.2%	0.99	0.99	1.00
Non-Hispanic other race/ multiple race	313	501 0	64.3 0.18	90.5%	98.1%	0.98	0.96	1.00
Hispanic	558	1062 0	68.3 0.09	87.3%	94.8%	0.95	0.94	0.97
C. Past 30-Day Any Tobacco Use vs. No Past 30-Day Tobacco Use	e vs. No Past 30-Da	y Tobacco Use						
Overall	8949	11205 1	111.8 0.61	85.3%	98.2%	0.96	0.95	0.96
Sex								
Male	5188	6115 11	115.7 0.17	88.2%	95.3%	0.96	0.95	0.96

					R	ROC Optimal Cut-point	point		
	Unweighted N	Unweighted Denominator	CPM	Cut-point (nmol/mL)	Sensitivity %	Specificity %	AUC	95% CI Lower	95% CI Upper
Female	3761	2090	106.4	0.82	85.0%	98.9%	0.96	0.95	0.97
Race/Ethnicity									
Non-Hispanic white	5568	6695	123.3	0.61	88.0%	%0.66	0.97	0.96	0.97
Non-Hispanic black	1335	1734	135.7	0.80	90.4%	95.3%	0.97	0.96	0.98
Non-Hispanic other race/ multiple race	696	891	83.7	0.04	87.2%	94.5%	0.95	0.93	0.97
Hispanic	1350	1885	0.77.0	0.08	%†`6L	94.3%	0.91	0.89	0.93
							:		

percentile). TNE2 was log-transformed. Reference group observations with TNE-2 values that were outside of the range of 2 times the standard deviation of the mean of the reference groups were classified as outliers and removed from analysis. Cut-points based off Youden's J statistic. Analyses are weighted. Notes: CPM= Cigarettes per month; AUC= Area under the curve. CPM values were winsorized at 95% to adjust for outlier values (all values above 95th percentile were recoded as the value at the 95th